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– Recent discovery of superconductivity in Fe-based layered compounds may have
opened a new pathway to the room temperature superconductivity. A model Hamiltonian
describing FeAs layers is introduced, highlighting the crucial role of puckering of As atoms in
promoting d electron itinerancy and warding off large local-moment magnetism of Fe ions, the main
enemy of superconductivity. Quantum many-particle effects in charge, spin and multiband channels
are explored and a nesting-induced spin density-wave order is found in the parent compund. We
argue that this largely itinerant antiferromagnetism and high Tc itself are essentially tied to the
multiband nature of the Fermi surface.

Copyright c© EPLA, 2009

Recently, a surprising new path to room-temperature
superconductivity might have been discovered. The
quaternary compound LaOFeP was already known to
become superconductor below 7K [1], when its doped
sibling LaO1−xFxFeAs turned out to have unexpectedly
high Tc = 26K [2]. Even higher Tc’s were found by rare-
earths (RE) substitution, reaching the current record of
55K [3]. These are the first non-cuprate superconductors
exhibiting such high Tc’s.
The surprise here is that the most prominent charac-

teristic of iron is its magnetism. By conventional wisdom,
the superconductivity in RE-OFeAs compounds is unex-
pected, all the more so since it apparently resides in FeAs
layers. Following standard ionic accounting, rare-earths
are 3+, while As and O are 3− and 2−, respectively. One
then expects Fe to be in its 2+ configuration, two of its 4s
electrons given away to fill As and O p-orbitals, with assis-
tance from a single rare-earth atom. The remaining six
d electrons fill atomic orbitals of Fe in the overall tetrago-
nal As/O environment (fig. 1); the lower three t2g orbitals
should be filled while the upper two eg orbitals should be
empty. However, the Coulomb interactions intervene via
Hund’s rule. The simplest realization of this is to fully
occupy a low t2g orbital while storing the remaining four
electrons into the spin-up states. The result is a total spin
S = 2 of Fe++, with the associated local magnetic moment
and likely magnetism in the parent compounds. This is the
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Fig. 1: (Colour on-line) (a) The structure of the parent
compound, with FeAs layer (Fe: red, As: green) on top of REO
layers (RE: yellow, O: blue); the blue square in the FeAs plane
corresponds to the “planar” unit cell (b). We denote two Fe
atoms with A and B, while the two As atoms that are displaced
up and down with respect to the layer are represented by
dotted and crossed circles respectively. (c) The evolution of d-
orbital energy levels from the tetragonal to tetrahedral crystal
field environment. The puckering of FeAs planes results in the
situation which is “in between”, placing all d-orbitals near the
Fermi level.
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Thermodynamic quantities in quasi-2D type-II superconductors exhibit characteristic scaling be-
havior for high fields in the critical region around H,2(T). Using a nonperturbative approach to the
Ginzburg-Landau free energy functional, the scaling functions for the free energy, magnetization, en-
tropy, and speci6c heat are evaluated in a closed form. The experimental data for Bi&Sr2Ca2Cu30yp
are presented which are in agreement with the theoretical results.

PACS numbers: 74.60.Ge

The properties of type-II systems have recently been
under intense study, particularly in connection with
high-temperature superconductors (HTS). A fundamen-
tal problem in this field is that of critical behavior arising
from thermal fluctuations. Several experiments point to
the importance of fluctuations in the thermodynamics of
HTS [1—6]. In a recent experiment, Welp et al. [3] ob-
served that the superconducting contribution to the mag-
netization and resistivity of YBapCu30p crystals displays
three-dimensional (3D) scaling behavior in the variable
[T—T,(H)]/(TH) Is around the critical temperature in
the general vicinity of the upper critical field H, (Tz). Li
and Suenaga [6] noticed that the magnetization of highly
anisotropic Bi2Sr2Ca2CusOtn crystals near critical tem-
perature can be described by the 2D version of the scal-
ing function in the variable [T—T,(H)]/(TH)tIz. The
scaling indicates that the problem of fluctuations near
H,2(T) can be represented in terms of the Ginzburg-
Landau (GL) field theory on a degenerate manifold
spanned by the lowest Landau level (LLL) for Cooper
pairs (we call it the GL-LLL theory). The GL-LLL de-
scription of fluctuations near H, (Tz) is formally valid
if the (H, T) point lies above the H(T) line given by
H(T) = (1/3)Hcz(T) + (~8/3) H(T)Hcg(0)T/Tcp
where 8 « 1 is the Ginzburg fluctuation parameter (see
below). Below H(T) the interaction term in the GL the-
ory is larger than the cyclotron gap of Cooper pairs and
the fluctuations from excited Landau levels become sig-
nificant. The GL-LLL description is valid everywhere in
the critical region around H,2(T) except for the area of
size 8 « 1 surrounding [K = 0, T = T,o].
The scaling property of GL-LLL theory for a quasi-

2D superconductor implies that the free energy F(T,H)
near H,q(T) must be of the form F(T, H) = THf(At),
where f(At) is a scaling function of variable t = [T-
T,(H)] (/T H)i 12and A is a constant [7]. The function
f(x) is known only in the limit x » 1, where perturba-
tion theory can be used to account for the fluctuation
contribution to the free energy. Various extrapolation

schemes have been used in the past to reconstruct the
form of f(z) outside the perturbative regime (z » 1),
and, in particular, in the crossover region around x = 0
[H,2(T) line]. These schemes include the diagrammatic
approach, [8] Pade and Borel-Pade approximants to the
perturbation series [9], and possible connection with a
simple OD GL theory in zero field. Recently, a nonper-
turbative approach to this problem has been developed
in Ref. [10]. In this Letter we use this approach to solve
for the thermodynamics of quasi 2D type-II supercon-
ductors in the vortex phase and derive an explicit form
for f(x) After i.ntroducing the correct collective vari-
ables, the overall amplitude of the order parameter @(r)
and positions of vortices, we proceed to perform the in-
tegration over the overall amplitude exactly [10]. As a
result, the correlations among vortices affect thermody-
namics through interaction which can be thought of as
an analog of the Abrikosov parameter pA for arbitrary
configurations of vortices [10]. Such interaction depends
only weakly on vortex configurations, an example being
the well-known small difference between l3A for a trian-
gular and a square lattice. Neglecting the dependence
of the generalized Abrikosov parameter on vortex corre-
lations we find explicit closed form expressions for the
scaling functions f(z) for free energy, as well as for mag-
netization, entropy, and specific heat. Our theoretical
results are in very good agreement with the experimen-
tal magnetization data for Bi2SrzCazCusOtp obtained in
the high-field regime where the GL-LLL description and
corresponding scaling behavior are valid [5, 6].
For our purposes it suEces to study a 2D system. The

description of fluctuations in superconductors with weak
Josephson coupling between the layers is based on the
2D GL functional at all temperatures except in a narrow
interval near T„where the fluctuations have a 3D char-
acter. This temperature interval of 3D fluctuations AT
can be roughly estimated by comparison of the Josephson
coupling energy with the intralayer condensation energy.
This gives the condition (,(T) = s where (,(T) is the
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Algebraic Fermi Liquid from Phase Fluctuations: “Topological” Fermions, Vortex “Berryons,”
and QED3 Theory of Cuprate Superconductors
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Within the phase fluctuation model for the pseudogap state of cuprate superconductors we identify
a novel statistical “Berry phase” interaction between the nodal quasiparticles and fluctuating vortex-
antivortex excitations. The effective action describing this model assumes the form of an anisotropic
Euclidean quantum electrodynamics in !2 1 1" dimensions !QED3" and naturally generates non-Fermi
liquid behavior for its fermionic excitations. The doping axis in the x -T phase diagram emerges as a
quantum critical line which regulates the low energy fermiology.

DOI: 10.1103/PhysRevLett.87.257003 PACS numbers: 74.60.Ec, 74.72.–h

Perhaps the most intriguing property of high tempera-
ture superconductors is the anomalous character of their
normal state [1]. This “strange metal” stands in stark con-
trast to the relatively benign features of the superconduct-
ing phase which can be understood rather accurately within
the framework of a d-wave BCS-like phenomenology with
well-defined quasiparticle excitations [2].

In this Letter we propose a theory of the pseudogap
phase in cuprate superconductors based on the following
premise: a successful phenomenology of the strange metal
should be built by starting from a comprehensive under-
standing of the adjacent superconducting state and its ex-
citations. The spirit of our approach is the traditional one
[1,3] but turned upside down. Usually, the strategy is to
first understand the normal state before we can understand
the superconductor. In the cuprates, however, it is the
superconducting state that appears “conventional” and its
quasiparticles “less correlated” and better defined. Having
adopted this “inverted” paradigm, we proceed to study the
interactions of the quasiparticles with the collective modes
of the system, i.e., fluctuating (anti) vortices (our strategy
here is similar to that of Ref. [4]). We show that in d-wave
superconductors these interactions take a form of a gauge
theory which shares considerable similarity with the quan-
tum electrodynamics in !2 1 1"-dimensions !QED3". In
the superconducting state, where vortices are bound, the
gauge fields of the theory are massive and the low en-
ergy quasiparticles remain well-defined excitations. This
is the mundane Fermi liquid state in our inverted para-
digm. In the normal state, however, as vortices unbind,
our QED3-like theory enters its massless phase and it aban-
dons this “inverted Fermi liquid” protectorate in favor of a
weakly destabilized Fermi liquid characterized by a power
law singularity in the fermion propagator which we call al-
gebraic Fermi liquid. We compute the spectral properties
of fermions in our theory and find that they capture some
key qualitative aspects of the available experimental data.

We concentrate on the portion of the pseudogap phase
above the shaded region and below T ! in Fig. 1. We as-
sume that Cooper pairs are formed at or somewhat be-
low T! but the long-range phase coherence sets in only

at the superconducting transition temperature TSC ø T!

[5]. Between TSC and T ! the phase order is destroyed by
unbound vortex-antivortex excitations of the Cooper pair
field [6–8]. In this pseudogap regime the d-wave super-
conducting gap is still relatively intact [4,5] and the domi-
nant interactions are those of nodal quasiparticles with
fluctuating vortices. There are two components of this in-
teraction: First, vortex fluctuations produce variations in
superfluid velocity which cause Doppler shift in quasipar-
ticle energies [9]. This effect is classical and already much
studied [10,11]. Second, there is a purely quantum “statis-
tical” interaction, tied to a geometric “Berry phase” effect
that winds the phase of a quasiparticle as it encircles a vor-
tex [12,13]. It is this quantum mechanical interaction that
ultimately causes the destruction of the Fermi liquid in the
pseudogap phase.

Our starting point is the partition function

Z !
Z

DCy !r, t"
Z

DC !r, t"
Z

Dw !r, t" exp#2S$ ,

S !
Z

dt
Z

d2r %Cy≠tC 1 CyH C 1 !1&g"D!D' ,

(1)

where t is the imaginary time, r ! !x, y", g is an effec-
tive coupling constant, and Cy ! !c̄", c#" are the standard
Grassmann variables. The Hamiltonian H is given by

FIG. 1. Phase diagram of a cuprate superconductor.
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The Bardeen–Cooper–Schrieffer theory describes the formation of electron pairs, or Cooper pairs, and their instant condensation

into a superconducting state. Helium atoms are ‘preformed’ bosons and, in addition to their superfluid state, can also form a

quantum solid that lacks phase coherence. Here I show that the fate of Cooper pairs can be more varied than the Bardeen–Cooper–

Schrieffer or helium paradigms. In copper oxide d-wave superconductors, Cooper pairs are non-local objects, with both centre-of-

mass and relative motions. As the level of doping of charge carriers decreases, the centre-of-mass fluctuations force a correlated

d-wave superconductor into a state with enhanced diamagnetism and robust but short-ranged superconducting order. At extreme

underdoping, the relative fluctuations take over and two pseudogaps—‘small’ (charge) and ‘large’ (spin)—emerge naturally, as Cooper

pairs ‘disintegrate’ and charge detaches from spin-singlet bonds. The ensuing ground state(s) are governed by antiferromagnetic

rather than by superconducting correlations.
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Twenty years after its discovery, high-temperature superconductivity1

remains a towering challenge on the physics frontier. Recent2

experiments
1

have narrowed the field of contenders for theoretical3

description of high-Tc cuprates while simultaneously promoting4

the nature of the pseudogap state to the key conceptual issue.5

Two basic ideas are in play
1
: either the pseudogap is a quantum6

disordered d-wave superconductor (dSC), or an entirely different7

form of ‘competing’ order, originating from the particle–hole8

(diagonal) channel
2–5

.9

In this paper, I show that the pseudogap in a correlated lattice10

dSC is both. Several recent experiments offer important clues in11

this respect: the observations of enhanced quantum diamagnetism12

and giant Nernst effect in the pseudogap state of LSCO
6

point13

to an intimate relation between the pseudogap and a quantum-14

disordered dSC
7
—there is hardly another known mechanism that15

can deliver diamagnetism of this magnitude. Furthermore, the16

angle-resolved photoemission in underdoped LBCO
8

reveals a17

nodal d-wave-type excitation spectrum inside the pseudogap,18

testifying to the shared origins with the superconducting state.19

Importantly however, the observed quantum diamagnetism
6

20

terminates at very low but finite underdoping and thereupon the21

magnetic signal is dominated by spin response. This is in line22

with the angle-resolved photoemission data on BSCCO
9
, infrared23

ellipsometry on RBCO
10

and the most recent STM data
11

, which24

are suggestive of two pseudogaps: the nodal one, reminiscent of a25

superconductor and decreasing at extreme underdoping, and the26

antinodal one, which seems to be related to spin correlations and27

remains large.28

I report two sets of new results: first, guided by broadly accepted29

microscopic features of cuprates, a theory for the charge-2e sector30

of the pseudogap state is constructed and shown to provide31

quantitative understanding of the observations in ref. 6, including32

the measured upper critical field at temperature T = 0 and the33

quantum vortex liquid and solid at lower fields. Furthermore, a34

dSC dome in the doping–magnetic-field–temperature (x–H–T) 35

phase diagram is found to be enveloped by a larger, charge-2e 36

Cooper pairing dome, dominated by quantum fluctuations of 37

the superconducting order parameter Ψ . This larger dome 38

collapses to T = 0 at finite x = x0 ∼ 0.01, whereas the amplitude 39

of the microscopic spin-singlet pairing term ∆jk = |∆jk|eiθjk
40

remains large as x → 0. Between x0 and xc ∼ 0.055, the 41

ground state is the quantum disordered dSC, the order in 42

Ψ (↔ e
iθjk ) pre-empted by free vortex–antivortex excitations. 43

Two distinct pairing energy scales—Ψ∆ for the charge and 44

∆ for the spin sector—-naturally explain ‘small’ and ‘large’ 45

pseudogaps observed by various experimental probes
1,9–11

. Both 46

pseudogaps, however, share the same physical origin: the energetic 47

preference for the formation of a spin-singlet bond in a strongly 48

correlated system. 49

Second, a sharp distinction is drawn between the particle– 50

particle (off-diagonal) and particle–hole regimes of the microscopic 51

theory in terms of the symmetry of the action for the bond phase 52

θjk. In the former case, this symmetry is a global superconducting 53

U (1) (or XY ), whereas in the latter it is a local compact 54

gauge symmetry, and thus much larger. The x > x0 XY regime 55

is dominated by the centre-of-mass (COM) fluctuations of θjk, 56

whereas its relative fluctuations proliferate in the ‘compact gauge’ 57

regime (x0 > x → 0), with fundamental consequences, dissolving 58

vortices of the XY regime and eliminating Cooper pairs as relevant 59

degrees of freedom. The different physics of these regimes is 60

manifested by the presence or absence of quantum diamagnetism— 61

a phase transition between them is likely at extreme underdoping 62

x ∼< x0. By analogy with its familiar s-wave cousin
4,7,12,13

, I dub 63

this sequence of events—unleashed by intensifying quantum 64

fluctuations of θjk on approach to the Mott insulating state—a 65

‘d-wave duality’. 66

The starting point is a general strongly correlated microscopic 67

hamiltonian which almost certainly underlies the essential physics 68
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