Quantum Entanglement in typical and Not so typical States

Paolo Zanardi (USC)

Correlations and coherence in quantum systems Evora, Portugal 2012

Quantum Entanglement: problem or opportunity?

"old" **problem:** non locality/non realism, **EPR** paradox, Bell Inequality violations,.....*Quantum Weirdness*

"new" **opportunity:** quantum computation/communication speed-ups, quantum simulations, understanding origin of stat-mech,....*Harnessing Quantum Weirdness*

Q: how much entangled is a Typical Quantum State?

A:Well, it depends on what we mean by Typical.....

Typical 1: Random Quantum State (Haar distributed) **A1**: (by far) most of the states are nearly maximally entangled $\Pr \{\Psi : Ent(\Psi) / Ent_{MAX} < 1 - \alpha \} = O(e^{-\alpha N_A})$

 $\alpha > 0, N = \# \text{ of particles in the subsystem } A = Ent_{TYP_1} \sim N_A$

Volume Law for Entanglement, extensive behavior, fulfilled by the Overwhelming majority of states

PROBLEM: *Typ1* states are exponentially hard to prepare =sampling the Haar Distr requires exp depth stochastic quantum circuits

Hilbert Space is a "*convenient illusion*" (sic!) D. Poulin et al, Phys. Rev. Lett. 106, 170501 (2011) **Typical 2**: most of the physical states around us Low energy states of local Hamiltonians,

A2: "area laws" are fulfilled (out of criticality)

1- gapped GS implies finite correlation length **2**- just particles within a distance ξ from ∂A contribute to **EE** $Ent_{TYP_2} \sim |\partial A|$ **Violations** @criticality: $\xi \rightarrow \infty$

Example 1D spin chain: off-critical →EE saturation Critical →logarithmic divergence with size (Rico et al PRL 2003)

Consequences

"Good": **EE** is a powerful indicator of Quantum Phase Transitions "Bad": critical systems are hard to simulate

Rigorous proofs: typically (very) hard.... **Q:** can we make it any easier?? Lorenzo CV and I tried.... Entanglement Susceptibility arXiv:1205.2507

Typical 3: Stochastic Local Quantum Circuits

Physical Model: limited control resourcesa) spatial resolution; b) Hamiltonian control

Mathematical Model: at each tick of the clock one enacts a Random Unitary acting on a small subset of vertices

System: collection of |V| local *d*-dimensional sub-systems e.g., qubits Global state space: $H_V := \bigotimes_{i \in V} h_i \cong (C^d)^{\otimes |V|}$ $V = \{i\} = \text{ set of vertices}; |V| = \text{ size of } V = O(N) [N \text{ is large TL}]$

We are going to consider random variables valued in the unitary groupOf A(V): $\Omega \subseteq V \Rightarrow H_{\Omega} =: \bigotimes_{i \in \Omega} h_i$; $A(V) =: L(H_{\Omega}) \otimes Id_{V \setminus \Omega}$ RegionRegion state-spaceRegion operator algebra

PREPARE $\rho_{in} \coloneqq |\Psi_{in}\rangle \langle \Psi_{in}|; /*|\Psi_{in}\rangle \in H_V */$

for(i=1;I<=k; i++){ /* time iterations. Total time=k */</pre>

SELECT region $\Omega_i \subseteq V$; /* according $q^{(i)}$ */ **ENACT** unitary $U_i \in A(\Omega_i)$; /* according $d\mu^{(i)}(U \mid \Omega_i)$ */

 $q^{(i)}: \Omega \subseteq V \rightarrow q^{(i)}(\Omega) \in [0,1]$ Probability distributions over the regions of V $d\mu^{(i)}(U \mid \Omega_i)$ Probability densities over the unitary part of $A(\Omega_i)$; e.g., Haar Locality assumption: the $q^{(i)}$ are supported of small regions $\mid \Omega_i \models O(1)$ i.e., U_i is $\mid \Omega_i \mid -local$

The Circuit: $\mathbf{C}(\rho_{in}) \coloneqq U_k U_{k-1} \cdots U_1 \rho_{in} U_1^* \cdots U_{k-1}^* U_k^*$

 $\mathbf{C} = \mathbf{C}[\{q^{(i)}\}_{i=1}^{k}, \{d\mu^{(i)}(\bullet \mid \Omega_{i})\}_{i=1}^{k}]$ Random *CP*-map of *A(V)* into itself $\mathbf{C}_{k} = \mathbf{C}_{k}[q, d\mu] = \{\text{circuits of length with schedule } [q, d\mu] \}$

Model 1: Random Edge Model (REM)

G=(V,E) graph (V=vertices, E=edges)

 $q^{(i)} = q: \Omega \to \frac{1}{|E|} \sum_{e \in E} \delta(\Omega, e) \quad \text{Uniform distribution over the edges of } \mathbf{G}$

 $d\mu^{(i)}(\bullet \mid \Omega) =$ Haar distribution over the unitary part of $A(\Omega)$

Model 2:One dimensional architecture (CHAIN)

a) Schedule 1: *expanding*

 $d\mu^{(i)}(\bullet | e_i) =$ Haar distribution over edge unitaries; basic block *k*=2*L*-1 (*iters*)

Observables and Goal Functionals

$$F_{O}[\mathbf{C}] = Tr[O\mathbf{C}^{\otimes n}(\rho_{in})] = \langle \rho_{in}, \mathbf{C}_{*}^{\otimes n}(O) \rangle \qquad (O \in A(V))$$

Non linear functionals; Rand Var F_o :

$$F_O: \mathbf{C}_k \to \mathbf{R}$$

Expectations: $\overline{F_O[\mathbf{C}]}^{\mathbf{C}_k} \coloneqq \sum_{\mathbf{C}} p(\mathbf{C}) F_O[\mathbf{C}] = \langle \rho_{in}, \sum_{\mathbf{C}} p(\mathbf{C}) \mathbf{C}_*^{\otimes n}(O) \rangle$

Example: Local Purity $\| \rho_A \|_2^2 := Tr[\rho_A^2] = Tr[T_A \rho \otimes \rho]$ $T_A : H_V^{\otimes 2} \to H_V^{\otimes 2}$ Swap of the A factors

Generalization: Schatten Norms $\| \rho_A \|_p^p := Tr[\rho_A^{p}] = Tr[T^{(p)}_A \rho^{\otimes p}]$ $T^{(p)}_A : H_V^{\otimes p} \to H_V^{\otimes p}$ Cyclic shift of the A factors

Proxies of Entanglement Entropy

$$S(\rho_A) = -\lim_{p \to 1} \frac{1}{p-1} \log \|\rho_A\|_p^p$$

Circuit super-operators

 $\overline{F_O[\mathbf{C}]}^{\mathbf{C}_k} \coloneqq \langle \rho_{in}, R(O) \rangle \qquad R \coloneqq \sum_{\mathbf{C} \in \mathbf{C}_k} p(\mathbf{C}) \mathbf{C}_*^{\otimes n} = R^{(k)} R^{(k-1)} \cdots R^{(1)} \in \mathbf{CP}$

$$R^{(i)}(O) \coloneqq \sum_{\Omega \subseteq V} q^{(i)}(\Omega) \int d\mu^{(i)}(U \ \Omega) U^{\otimes n} O U^{* \otimes n}$$

Goal functionals are matrix elements of the R's

REM:
$$R = (R^{(1)})^k$$
 $R^{(1)}(O) := \frac{1}{|E|} \sum_{e \in E} \int d\mu (U \nmid e) U^{\otimes n} O U^{\otimes n} = :\frac{1}{|E|} \sum_{e \in E} R_e(O)$

 $(O \in A(V))$

 R_e Edge **CP**-maps: **projections** on the commutant of the representation $U \in U(d^2) \rightarrow U^{\otimes n} \in L(H_e^{\otimes n})$ linear span of perms of perms S_n

CHAIN: $R_{exp} = (R_{b_{L-1}}R_{b_{L-2}}\cdots R_{b_1})(R_{a_{L-1}}R_{a_{L-2}}\cdots R_{a_1})R_e$ (Schedule 1): $R_{comp} = R_e(R_{a_1}R_{a_2}\cdots R_{a_{L-1}})(R_{b_1}R_{b_2}\cdots R_{b_{L-1}})$ (Schedule 2):

Remark: Strings of non-commuting projections

Purity Dynamics and permutation algebra

$$R_e(T_A) = \chi_{E \setminus \partial A}(e)T_A + \chi_{\partial A}(e)N_d(T_{A \cup e} + T_{A \setminus e}) \qquad [N_d \coloneqq d(d^2 + 1)^{-1}]$$

Key algebraic relation: the set of swaps is invariant (and reducible)

R is (non-negative) matrix on a $2^{|V|} - \dim$ space: purity dynamics is a dynamical system on |V| qubits !

REM:
$$P_k := \left\langle \rho_{in}^{\otimes 2}, (R^{(1)})^k (T_A) \right\rangle \approx \left(1 - e_p \frac{|\partial A|}{|E|} \right)^k$$

 $\rho_{in} = \bigotimes_{i \in V} |\phi_i\rangle \langle \phi_i|^{\otimes 2}; \qquad k, \deg(i) = o(|\partial A|);$ $e_p(d) = \frac{(d-1)^2}{d^2+1} = 1 - 2N_d \qquad \text{Average "Entangling power" in d-dim}$

PZ et al, Phys. Rev. A 62, 030301 (2000)

$$S_k \ge -\log P_k \approx ke_p \frac{|\partial A|}{|E|}$$

Area Law (small k) And linear in k ! **CHAIN**: use expanding schedule (*k*=# of blocks)

Asymptotic purity.

$$P_k \approx 2 \left(\frac{1 - e_p}{1 + e_p} \right)^k$$

$$1 << k \le |A|$$

Exponential decrease of average purity; 2-Renyi entropy increase $\overline{S_2(k)} \ge -\log P_k \approx k \log d - \log 2$ For k=O(|A|) we have a volume law

$$P_{\infty} = \frac{d^{|A|} + d^{|B|}}{d^{|A|}d^{|B|} + 1} \le P_{\min} + d^{-|B|}$$

(easy) bound: $D_{k} \coloneqq \langle || \mathbf{C}_{k}(\rho_{in}) - \mathbf{1}/d^{|A|} ||_{1} \rangle_{\mathbf{C}_{k}} \leq \sqrt{d^{|A|}} \sqrt{\frac{1}{d^{|B|}} + |P_{k} - P_{\infty}|}$ $|A| = (1 - \alpha) |B| \quad AND \quad |P_{k} - P_{\infty}| = O(d^{-(1 + \alpha)|A|})$ $0 \leq \alpha \leq 1, \qquad \Rightarrow D_{k} = O(d^{-\alpha|A|/2})$

Markov inequality ==> Vast majority of (*A*-reduced) states are exp close to the maximally mixed one

(critical) Question: How about convergence time *T*_{conv}?

Answer: study the spectral properties of R

$$sp(R) = \{\lambda_1 = 1 \ge \lambda_2 \ge \ldots \ge \lambda_{2^L}\}, \quad \lambda_i \models 1; \quad ||R||_{\infty} = 1$$

REM on a complete graph: Symmetry ==> Exp complexity reduction: need to study **R** just in the (*L*+1)-dim symmetric subspace (*L*=#nodes)!

$$R \to \mathbf{R} = 1 - \frac{1}{|E|} \left[(L/2)^2 - (S^z)^2 + C_d \left(S^+ (\frac{L}{2} + S^z) + S^- (\frac{L}{2} - S^z) \right) \right] = :1 - \widehat{\mathbf{R}}$$

$$|A| = L/2 \qquad k \gg T_{Conv}^{\varepsilon} =: \frac{C(L) + \log(1/\varepsilon)}{\log(1/\lambda_2(L))} \Longrightarrow |P(k) - P(\infty)| \le \varepsilon$$

 $C(L) \sim L, \qquad \lambda_2 = 1 - O(1/L) \Rightarrow \qquad T_{Conv}^{\varepsilon} = O(L^2 + L \log 1/\varepsilon)$

Convergence time is polymonial in the system size!

A. Hamma, S. Santra and PZ, arXiv:1204.0288 (PRA soon)

Conclusions

- O- Volume laws for entanglement are typical for random quantum states, boundary laws are typical for physical states
- We introduced *loc-RQC* to generate physical states with a well defined probability distribution
- **2-** Boundary laws are obtained for k=O(1); volume for k=O(|A|)
- 3- Convergence time to (nearly)maximally mixed states is poly(|A|)

Do you wanna know a bit more? A. Hamma, S. Santra and PZ, Phys. Rev. Lett. 109, 040502 (2012)

REM: The Complete Graph

$$R(T_A) = q(A)T_A + \frac{C_d}{|E|} \left\{ N_B \sum_{i \in A} T_{A \setminus i} + N_A \sum_{j \in B} T_{A \cup j} \right\}, \qquad |E| = \binom{|V|}{2}; \qquad q(A) = \frac{1}{|E|} \binom{|A|}{2} + \binom{|B|}{2} \binom{|A|}{2} + \binom{|A|}{2} + \binom{|A|}{2} + \binom{|A|}{2} \binom{|A|}{2} + \binom{$$

Mapping sets/qubits $T_A \rightarrow \bigotimes_{i \in V} |\chi_A(i)\rangle \in (\mathbb{C}^2)$

$$\equiv (\mathbf{C}^2)^{\otimes |V|} \qquad S^{\alpha} = 1/2 \sum_{i \in V} \sigma_i^{\alpha}, \quad (\alpha = x, y, z)$$
$$N_A \rightarrow |V|/2 + S^z$$
$$|V| + S^z + S^z (|V| - S^z) = 1 - \widehat{\mathbf{P}}$$

1

$$R \to \mathbf{R} = 1 - \frac{1}{|E|} \left[|V/2|^2 - (S^z)^2 + C_d \left[S^+ (\frac{V}{2} + S^z) + S^- (\frac{V}{2} - S^z) \right] =: 1$$

 $\|\widehat{\mathbf{R}}\| \le \frac{|V|^2}{2|E|} (1 + 2C_d) = \frac{|V|^2}{2|V|(2|V|-1)} \frac{(d+1)^2}{d^2+1} \le 1 \Longrightarrow sp(\mathbf{R}) \subset [0,1]$

R has positive spectrum with max eigenvalue 1

$$\begin{split} P_{k} &= \left\langle \Omega^{(+)}, R^{k}(T_{A}) \right\rangle = \left\langle \Omega^{(+)}, \sum_{B \subset V} (R^{k})_{B,A} T_{B} \right\rangle = \sum_{B \subset V} (R^{k})_{B,A} \left\langle \Omega^{(+)}, T_{B} \right\rangle = \\ &\sum_{B \subset V} (R^{k})_{B,A} = \left\langle \Phi \mid \mathbf{R}^{k} \mid A \right\rangle = \left\langle \Phi \mid P_{Symm} \mathbf{R}^{k} P_{Symm} \mid A \right\rangle \qquad |\Phi\rangle \coloneqq (|0\rangle + |1\rangle)^{\otimes |V|} \in H_{Symm} \end{split}$$

NB: We used $[P_{Symm}, \mathbf{R}^k] = 0$

We need to diagonalize **R** just in H_{symm} A |V|+1-dim problem....!