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Quantum Entanglement: problem or opportunity?

“old” problem: non locality/non realism, EPR paradox, Bell
Inequality violations,.....Quantum Weirdness

“new” opportunity: quantum computation/communication
speed-ups, quantum simulations, understanding origin of
stat-mech,....Harnessing Quantum Weirdness

Q: how much entangled is a Typical Quantum State?

A:Well, it depends on what we mean by Typical.....

Let' s see.....



Typical 1: Random Quantum State (Haar distributed)
Al: (by far) most of the states are nearly maximally entangled

Pr{lIJ: EntW)/Ent,,, < 1—a}= O(e *")

a>0,N= #of particles in the subsystem A E ntTYPl ~ NA

Volume Law for Entanglement, extensive behavior,
fulfilled by the Overwhelming majority of states

PROBLEM: Typ1 states are exponentially hard to prepare
=sampling the Haar Distr requires exp depth stochastic quantum circuits

Hilbert Space is a " corwenient illusiow (sic!)
D. Poulin et al, Phys. Rev. Lett. 106, 170501 (2011)



Typical 2: most of the physical states around us
Low energy states of local Hamiltonians,

A2: “area laws” are fulfilled (out of criticality)

1- gapped GS implies finite correlation length
2- just particles within a distance S from A contribute S

to EE EntTYP2 ~|9A|
Violations @criticality: & — oo

Example 1D spin chain: off-critical =»EE saturation
Critical =»logarithmic divergence with size (Rico et al PRL 2003)

Consequences
“Good”: EE is a powerful indicator of Quantum Phase Transitions

“Bad": critical systems are hard to simulate

Lorenzo CV and I tried....
Entanglement Susceptibility

arXiv:1205.2507

Rigorous proofs: typically (very) hard....
Q: can we make it any easier??




Typical 3: Stochastic Local Quantum Circuits

Physical Model: limited control resources
a) spatial resolution; b) Hamiltonian control

Mathematical Model: at each tick of the clock one enacts a
Random Unitary acting on a small subset of vertices

System: collection o f | V| local d-dimensional sub-systems e.g., qubits
d\®IVI
Global state space: H, :=®._, h, = (C*)®
V={i}= set of vertices; |V|= size of V=O(N) [N is large TL]
We are going to consider random variables valued in the unitary group

OfAV): QCV = Hy =&, ,h; A(V)=L(Hg,) ® Id,q

Region Region state-space Region operator algebra



PREPARE 0, =W, X%, ;  /*IW,)EH, */
for(i=1;l<=k; i++){ /[* time iterations. Total time=k */

SELECT region Q. CV; /* according 4" */
ENACT unitary U, € A(Q)); /* according du® U 1RQ,)/
}

" QCV —g"”(Q)E[0,1] Probability distributions over the regions of V/
du” (U | €2,) Probability densities over the unitary part of A(Q));e.g., Haar

Locality assumption: the ¢' are supported of small regions
1Q. =001) i.e., U, islQ,|-local

The Circuit: 1C(p,) =UU, ,---U,p, U 1--U U«

lC = C[{q""}:, {du'” (¢ 1)} .1 Random CP-map of A(V) into itself

C, =Clg.dul = {circuits of length with schedule [q, du ] }



Model 1: Random Edge Model (REM)
G=(V,E) graph (V=vertices, E=edges)

g =q:Q—> — 25(9 ¢) Uniform distribution over the edges of G
| E |

eEF

du(i)(' | C2) = Haar distribution over the unitary part of A(€2)

Model 2:0ne dimensional architecture (CHAIN)
a) Schedule 1: expanding

A B «w, 4u, ---u )\, U U, U

L-2 bL—2 e

Ua2 Ua1 Ue Ub1 Ub2 Ub3

b) Schedule 2: contracting
Ue(Ual Ua2 o UaL )(Ubl sz o UbL )

du'” (e le;) = Haar distribution over edge unitaries;
basic block k=2L-1 (iters)



Observables and Goal Functionals
F,[C]=Tr OC® (p,)]=(p,.C.7"(0)) (OE A(V))

Non linear functionals; Rand Var F,:C, —R

Expectations: £o [C]™ = > POF,[CI=(p,. Y p(CC.”"(0)

Example: Local Purity lp, IB=Tr(p,*1=Tr(T,p® p]
®?2
I,:H, = — Hv®2 Swap of the A factors

Generalization: Schatten Norms o, I0:=Tr[p,"1=Tr[T"4p®"]

T :H,*" — H,*”  Cyclic shift of the A factors

Proxies of Entanglement Entropy |S(pA) =-lim,_, pl_llog o, ID:




Circuit super-operators

.
F,[Cl =(p,,»R(0O)) R:=Y _ p(CIC.* =RPR*™P...R" € CP

|R(i)(0) = Eq(i)(g)f dM(i)(U Q)U®nOU*®n (0 = A(V))

Goal functionals are matrix elements of the R’s

L

. R=(RV) DOy
REM: (R7)"  RV(0) ]

* 1
du(U e)U®"OU ®" =.—— » R, (O)
2J Ei2
Re Edge CP-maps: projections on the commutant of the representation
UcUd®)—U® € LHS") linear span of perms of perms S

n

CHAIN: R.,=(R, R, ---R, )R, R, ---R,)R, (Schedule 1):

ar -2

R, =R (R R

comp a,” ta,

R, YR, R, ---R, ) (Schedule 2):

Remark: Strings of non-commuting projections



Purity Dynamics and permutation algebra

R.(T,) = Xpou (T, + x4 (N, (T, +T,,)| [Ny=dd +D7]

Key algebraic relation: the set of swaps is invariant (and reducible)

R is (non-negative) matrixona 2'V' _dim space:
purity dynamics is a dynamical system on |V| qubits !

k
|0A |
REM: P, ={p," . (R")(T,)) = ( ¢, IEI)
Pin = Oicy 16X 1% k,deg(i) = o(19A);
e,(d)= (fz +1)1 =1-2N,  Average "Entangling power” in d-dim

PZ et al, Phys. Rev. A 62, 030301 (2000)

15A | Area Law (small k)
?|E| And linear in k !




k
CHAIN: use expanding schedule (k=# of blocks) ~ 2(1_ “r ) l<<k=<lAl

1+ep

Exponential decrease of average purity; 2-Renyi entropy increase

S,(k)z-logF, =klogd-log2  For k=O(|A|) we have a volume law

Asymptotic purity:

(easy) bound:

|BI

D, =(IC,(p,)~1/d" )¢, = d'A'\/—+IP P,

|Al=(1-a)IBl AND |P,—P,|l=0(d ")

Osa=l, = D, = O(d~ ")

Markov inequality ==> Vast majority of (A-reduced) states are
exp close to the maximally mixed one

(critical) Question: How about convergence time Tcon/?



Answer: study the spectral properties of R

sp(R)={A =1lzA,=z...2A,}, Akl IRI =1

REM on a complete graph: Symmetry ==> Exp complexity reduction:
need to study R just in the (L+1)-dim symmetric subspace (L=#nodes)!

1 2 7\2 b £ z - £_ z — _A
ReR=1—ml(L/2) - (5Y) +Cd(S (2+S)+S (2 S))] :1-R

AL L/2 kos T8 = C(L) + log(1/¢)
log(1/A,(L))

—|P(k)— P() < ¢

C(Ly~L, A, =1-0(1/L)=> e

Cony

=O(L” + Llogl/¢)
Convergence time is polymonial in the system size!

A. Hamma, S. Santra and PZ, arXiv:1204.0288 (PRA soon)




Conclusions

0- Volume laws for entanglement are typical for random quantum
states, boundary laws are typical for physical states

1- We introduced loc-RQC to generate physical states
with a well defined probability distribution

2- Boundary laws are obtained for k=0(1); volume for k=0O(/A/)

3- Convergence time to (nearly)maximally mixed states is poly(|A|)

Do you wanna know a bit more?
A. Hamma, S. Santra and PZ, Phys. Rev. Lett. 109, 040502 (2012)




REM: The Complete Graph

5121

- S“=1/2) of, — Xy,
Mapping sets/qubits  Tx = ®iev | X4 (i) € (C*)®"' EEVUZ (o =x,y,2)

N, —=IVI/2+ 5"

(S (M+SZ)+S (M—SZ))]=:1—R

[V | 1
R(T,) = q(A)T, + {N ETA\Z+N %TAU]} IEI=( > ) Q(A)=m
V=AUB

ReR=1—L [V /21 =(S%)” +
| E |

2 2 2
IR V" 420y V! (d+1)
21E | 20VIQIVI-1) d*+1

<1=> sp(R) C [0.1]

R has positive spectrum with max eigenvalue 1

Pk = <Q(+)>Rk(TA )> = <Q(+)’ E(Rk)B,A TB> = E(Rk)B,A<Q(+)’TB> =

YRy, =(PIR 1Ay =(D@ P, RP, | A) D) = (10)+ 11)*V' € Hy,,,.
NB: We used [Py R 1=0 We need to diagonalize R just in Hsymm

A |V|+71-dim problem.....!




