Quantum integrability in systems with finite number of levels

Emil Yuzbashyan

Rutgers University

Collaborators: S. Shastry, H. Owusu, K. Wagh

arXiv:1111.3375

J. Phys. A, 44 395302 (2011); 42, 035206 (2009)

In this talk (preview):

What is quantum integrability? How is it defined? Hamiltonian operator H is said to be integrable if...???

No clear unambiguous definition! (See e.g. B. Sutherland, Beautiful Models (2004) for review)

e.g. no natural notion of an integral of motion: for any H_{θ} can find a full set of H_k such that $[H_{\theta}, H_k] = 0$

 $H_0 = \sum_{1}^{N} E_n |n\rangle\langle n|, \quad H_k = |k\rangle\langle k|$

- 1. Properties of quantum integrable models: Hubbard model on a ring
 - ✓ Exact solution via Bethe's Ansatz
 - ✓ Energy level crossings in violation of Wigner-v. Neumann noncrossing rule
 - ✓ Poisson level statistics

In this talk (preview):

- 2. Dynamical properties of integrable models
 - Exactly solvable multi-state Landau-Zener problems
 - ✓ Generalized Gibbs distribution
- 3. What is required of a good definition of quantum integrability?
- 4. Classical integrability
- 5. Difficulties in defining quantum integrability
- 6. Proposed definition fix parameter dependence

$$H_i(u) = T_i + uV_i, \quad [H_i(u), H_j(u)] = 0 \quad \text{for all } u$$

- 7. Classification (types 1, 2,...) and explicit construction. Examples: Hubbard, XXZ, Gaudin models
- 8. Consequences: exact solution, level xings, Yang-Baxter, Poisson statistics
- 9. Type 1 = Gaudin magnets
- 10. Hubbard model: additional conservation laws, simplification of BA
- 11. Can we solve multi-state Landau-Zener for a much wider class of Hamiltonians?

Properties of quantum integrable models: Exact Solution

Example: Hubbard model

$$\hat{H} = T \sum_{j,s=\uparrow\downarrow} (c_{js}^{\dagger} c_{j+1s} + c_{j+1s}^{\dagger} c_{js}) + U \sum_{j} \hat{n}_{j\uparrow} \hat{n}_{j\downarrow}$$

H depends linearly on one parameter u=U/T

tight-binding + onsite interactions, electrons on a ring

N=6 cites, 3 spin-up, M=3 spin-down \langle

Exact Solution (Bethe's Ansatz):

E.H. Lieb and F.Y.Wu (1969)

$$e^{6ik_j} = \prod_{\alpha=1}^{3} \frac{\Lambda_{\alpha} - \sin k_j - iu/4}{\Lambda_{\alpha} - \sin k_j + iu/4}, \quad \prod_{\alpha=1}^{3} \frac{\Lambda_{\alpha} - \Lambda_{\beta} + iu/2}{\Lambda_{\alpha} - \Lambda_{\beta} + iu/2} = -\prod_{j=1}^{6} \frac{\Lambda_{\beta} - \sin k_j - iu/4}{\Lambda_{\beta} - \sin k_j - iu/4}$$

9 coupled nonlinear equations

$$E = -\sum_{j=1}^{6} 2\cos k_j, \quad P = \sum_{j=1}^{6} k_j, \quad |P, S, S_z, \dots\rangle = \dots$$

Properties of quantum integrable models: Level crossings

Example: Hubbard model

$$\hat{H} = T \sum_{j,s=\uparrow\downarrow} (c_{js}^{\dagger} c_{j+1s} + c_{j+1s}^{\dagger} c_{js}) + U \sum_{j} \hat{n}_{j\uparrow} \hat{n}_{j\downarrow}$$

H depends linearly on one parameter u=U/T

Energies for a 14 x 14 block of 1d Hubbard on six sites characterized by a complete set of quantum numbers

H(u)=A+uB is a 14 x 14 Hermitian matrix linear in real parameter u

"The noncrossing rule is apparently violated in the case of the 1d Hubbard Hamiltonian for benzene molecule [six sites]..."

Heilmann and Lieb (1971)

Commuting integrals (conservation laws) Example: Hubbard model

$$\hat{H} \equiv \hat{H}_0(u) = \sum_{j=1}^{N} \sum_{s=\uparrow\downarrow} (c_{js}^{\dagger} c_{j+1s} + c_{j+1s}^{\dagger} c_{js}) + u \sum_{j=1}^{N} \hat{n}_{j\uparrow} \hat{n}_{j\downarrow} \qquad \hat{n}_{j\sigma} = c_{js}^{\dagger} c_{js}$$

$$\hat{H}_{1}(u) = -i\sum_{j=1}^{N} \sum_{s=\uparrow\downarrow} (c_{j+2s}^{\dagger} c_{js} - c_{js}^{\dagger} c_{j+2s}) - iu\sum_{j=1}^{N} \sum_{s=\uparrow\downarrow} (c_{j+1s}^{\dagger} c_{js} - c_{js}^{\dagger} c_{j+1s})(\hat{n}_{j+1,-s} + \hat{n}_{j,-s} - 1)$$

$$[\hat{H}_0(u), \hat{H}_1(u)] = 0$$
 for all u

B. S. Shastry, PRL (1986)

Both the Hamiltonian and first conserved current are Hermitian matrices linear in real parameter *u*

 $H_2(u), H_3(u), H_4(u), \dots$ - in principle, infinitely many integrals of motion can be found from Shastry's transfer matrix (but not all of them are nontrivial for finite N)

Properties of quantum integrable models: Poisson statistics

Example: Hubbard model

Poilblank et.al. Europhys. Lett. (1993)

Level spacing (s) distribution for Hubbard chain with 12 cites at $\frac{1}{4}$ filling, total momentum $P=\pi/6$, spin S=0

Time-dependent exactly solvable problems: multi-state Landau-Zener

$$H(t) = A + Bt$$
, $A, B - N \times N$ Hermitian matrices

$$p(0 \rightarrow k) = ?$$

N=2: Landau-Zener formula

Exact solution for N>2?

Only in very special cases

$$B = b\pi_{11}, \quad A = \sum_{k} a_i \pi_{kk} + \sum_{i \neq 1} v_k (\pi_{k1} + \pi_{1k}), \quad \pi_{ik} = |i\rangle\langle k|$$

Other nonequilibrium properties of integrable models: Mazur inequalities, no thermalization after a quantum quench – generalized Gibbs distribution

Notion of Quantum Integrability: What are we looking for?

Definition: Quantum Hamiltonian H_{θ} is integrable if...

Consequences:

- 1. Exact Solution (Yang-Baxter equation)
- 2. Commuting integrals $[H_i, H_j] = 0$; i, j = 0, 1...
- 3. Energy level crossings
- 4. Poisson level statistics
- 5. Generalized Gibbs distribution for dynamics

Classical integrability

Definition: A classical Hamiltonian $H_0(p_k, q_k)$ with n degrees of freedom (n coordinates) is integrable if it has the maximum possible number (n) of independent Poissoncommuting integrals $\{H_i, H_i\} = 0$; i,j = 0,1...n

Consequences:

- 1. Exact solution: the dynamics of $H_i(p_k, q_k)$ is exactly solvable by quadratures (Liouville-Arnold theorem)
- 2. Poisson level statistics semi-classically [Berry & Tabor (1976)]
- 3. Generalized Gibbs (dynamics uniform on invariant tori) [E.Y., unpublished]

Can we develop a similar sound notion of integrability in Quantum Mechanics – for $N \times N$ Hermitian matrices (Hamiltonians)?

Difficulties:

✓ Integrals of motion not well-defined, every Hamiltonian has a full set of commuting partners. What's an independent integral?

$$H_0 = \sum E_n |n\rangle\langle n|, \quad H_k = |k\rangle\langle k|, \quad [H_i, H_j] = 0$$

✓ No notion of # of degrees of freedom – how many integrals are needed?

Alternative definitions based on:

- ➤ Poisson level statistics or level xings not exclusive to integrable models. Certain integrable systems don't have these e.g. Richardson (BCS) model
- Exact solution but every matrix is "exactly solvable" in some sense

$$\det(H - \lambda I) = 0$$

> Plus, like in CM, would like these as consequences rather than definitions

Proposed solution: consider parameter-dependent Hamiltonians

Hints from Hubbard study, u=U/T: Yuzbashyan, Altshuler, Shastry (2002)

Let
$$H(u) = T + uV$$

$$u - \text{real parameter,}$$

$$T, V - N \times N \text{ Hermitian matrices}$$

Suppose we search for a commuting partner $H_1(u) = T_1 + uV_1$ also linear in u

$$[H_0(u), H_1(u)] = 0$$
 $\footnote{}$
 $[T, T_1] = [V, V_1] = 0, \quad [T, V_1] = [T_1, V]$

Now these commutation relations severely constraint matrix elements of T & V. For a generic/typical H(u) – no commuting partners except the trivial one – a linear combination of itself and identity

N x N Hamiltonians linear in a parameter separate into two distinct classes

$$H(u) = T + uV$$

No commuting partners linear in u other than itself and identity (typical) – nonintegrable, $N^2/2$ real parameters are need to specify H(u)

Nontrivial commuting partners $H_k(u)=T_k+uV_k$ exist – integrable, turns out less than 4N parameters are needed – measure zero in the space of linear Hamiltonians

Classification by the number n of commuting partners

n=N (maximum possible) – type 1 integrable system n=N-1 – type 2 n=N-2 – type 3 ... n=N-M+1 – type M

Definition: A Hamiltonian operator $H \equiv H_0(u) = T_0 + uV_0$ is integrable if it has $n \geq 1$ nontrivial linearly independent commuting partners $H_i(u) = T_i + uV_i$

Owusu, Wagh, Yuzbashyan (2008)

$$[H_i(u), H_j(u)] = 0$$
 for all u and $i, j = 0, ..., n-1$

General member of the commuting family: $h(u) = \sum_{i=1}^{n} d_i H_i(u)$

Examples of integrable models that fall under this definition:

- \triangleright 1d Hubbard model: u=U/T, Hamiltonian and first integral are linear in u
- integrable XXZ spin chain: u = anisotropy, $H_0(u)$ and $H_1(u)$ are linear in u
- Figure 2 Gaudin magnets (all integrable pairing models): u=B=magnetic field, Hamiltonian and all integrals are linear in u

$$H_i(B) = Bs_i^z + \sum_{k \neq i} \frac{\mathbf{s}_i \cdot \mathbf{s}_k}{\epsilon_i - \epsilon_k} [H_i(B), H_j(B)] = 0$$

 \mathbf{s}_i – quantum spins ϵ_i – real parameters

What can we achieve with this notion of quantum integrability? - almost everything we wanted!!

1. Remarkably, we are able to explicitly construct integrable families with any given number n of integrals, i.e. resolve nonlinear commutation relations:

$$[H_i(u), H_j(u)] = 0 \iff [T_i, T_j] = [V_i, V_j] = 0, \quad [T_i, V_j] = [T_j, V_i]$$

Example: n=N (type 1 – max # of integrals)

Owusu, Wagh, Yuzbashyan (2008) Owusu, Yuzbashyan (2011)

$$H_i(u) = u\pi_{ii} + \sum_{k \neq i} \frac{\gamma_i \gamma_k (\pi_{ik} + \pi_{ki}) - \gamma_k^2 \pi_{ii} - \gamma_i^2 \pi_{kk}}{\epsilon_i - \epsilon_k}$$

$$\pi_{ik} = |i\rangle\langle k|$$
 - projectors, γ_i, ϵ_i - arbitrary real numbers

Type 1 maps onto a sector of Gaudin magnets with rational spins

$$u = B, \quad \gamma_i = s_i^2, \quad |i\rangle = s_i^+|0\rangle$$

What can we achieve with this notion of quantum integrability? - almost everything we wanted!!

2. Exact solution through a single algebraic equation for all types (cf. Bethe Ansatz)

(type 1)
$$\sum_{j} \frac{\gamma_{j}^{2}}{\lambda - \epsilon_{j}} = u, \quad E_{k} = \frac{\gamma_{k}^{2}}{\lambda - \epsilon_{k}}, \quad |\lambda\rangle = \sum_{j} \frac{\gamma_{j}|j\rangle}{\lambda - \epsilon_{j}}$$
$$\gamma_{j}, \epsilon_{j} \text{ - given; solve for } \lambda \qquad \text{Owusu, Wagh, Yuzbashyan (2008)}$$

3. Yang-Baxter formulation

scattering matrix
$$S_{ij} = \frac{(\epsilon_j - \epsilon_i)I + 2g\Pi_{ij}}{(\epsilon_j - \epsilon_i) + g(\gamma_i^2 + \gamma_j^2)}$$

$$S_{ik}S_{jk}S_{ij} = S_{ij}S_{jk}S_{ik}$$
 Yuzbashyan, Shastry (2011)

4. Can prove the existence of level xings and determine their number as a function of the #(n) of commuting partners in an integrable family

$$\max \# \text{ of } \text{crossings} = (N^2 - 5N + 2)/2 + n$$
 Owusu, Yuzbashyan (2011)

5. Poisson level statistics except at isolated points of measure zero in the parameter space Hansen, Yuzbashyan, Shastry (in progress)

Applications: Blocks of 1d Hubbard model (6 sites, 3 up and 3 down spins)

- \succ Each block is characterized by a complete set of quantum #s (P, S^2 , S_z ...)
- > We determine the type of each block

of nontrivial integrals =
$$Size - Type - 1$$

Momenta $P = \pi/6, 5\pi/6$	
Size of the block	Its Type
8×8	Type 3
3×3	Type 1
16×16	Type 12
14×14	Type 3
3×3	Type 1

Momenta $P = \pi/3, 2\pi/3$	
Size of the block	Its Type
12×12	Type 7
14×14	Type 11
4×4	Type 1
2×2	
16×16	Type 6

Results for Hubbard:

- In most blocks exact solution in terms of a single equation vast simplification over Bethe Ansatz (9 equations)!
- ❖ New symmetries in 1d Hubbard! # of nontrivial integrals linear in u=U/T is 14-3-1=10. Only one such integral was identified before

Solvable multi-state Landau-Zener problem turns out to be a special case of Type1!

 ${\it N}$ state Landau -Zener problem: $p(0 \rightarrow k) = ?$

$$p(0 \to k) = ?$$

$$H(t) = A + Bt$$
, $A, B - N \times N$ Hermitian matrices

Exact solution known only in very special cases

$$B = b\pi_{11}, \quad A = \sum_{k} a_i \pi_{kk} + \sum_{i \neq 1} v_k (\pi_{k1} + \pi_{1k}), \quad \pi_{ik} = |i\rangle\langle k|$$

But this is just one of Type 1 basic operators

$$H_i(u) = u\pi_{ii} + \sum_{k \neq i} \frac{\gamma_i \gamma_k (\pi_{ik} + \pi_{ki}) - \gamma_k^2 \pi_{ii} - \gamma_i^2 \pi_{kk}}{\epsilon_i - \epsilon_k}$$

Set
$$u = bt$$
, $i = 1$, $\epsilon_1 = 0$, $\gamma_1 = 1$, $\epsilon_k = -1/a_k$, $\gamma_k = v_k/a_k$

General Type 1:
$$h(u) = \sum_i d_i H_i(u)$$

Is it possible to solve multi-state Landau-Zener for a much larger class of Hamiltonians - general Type 1 and other Types???

Summary:

- ✓ Proposed a simple, natural notion of quantum integrability based on parameter-dependence
- ✓ Derived exact solution, existence of level crossings (and their #),
 Yang-Baxter formulation from this notion
- ✓ Exact solution is in terms of a single algebraic equation implying that at least in some cases Bethe's Ansatz equations can be dramatically simplified
- ✓ New linear integrals in the 1d Hubbard model
- ✓ Exact solution of the multi-state Landau-Zener problem for a new, much wider class of Hamiltonians?