
Dynamics of interacting fermions on a 
bichromatic optical lattice 

“Correlations and coherence in quantum systems” 

Évora, 8 October 2012 

PRA 85, 031602(R) (2012); PRA 82, 043613 (2010) 

Masaki TEZUKA 
(Department of Physics, Kyoto University) 

In collaboration with 

Antonio M. García-García 
(Cavendish Laboratory, Cambridge University) 



Table of contents 

• Introduction: 

– Optical lattice with a quasiperiodic potential 

– Experiment with bosons 

• Phase diagram for 1D two-component Fermi 
system 

• Dynamics after release from a box trap 

• Conclusion 

 

 



Superconductivity 

Superfluidity 

Superconductivity 

Superfluidity 

Inhomogeneity: 
enhance? 
suppress? 

Interaction: 
 

pairing force? 
other phase? 

Now widely controllable in cold atomic gases 

Population imbalance 
= “magnetic field” : FFLO 

Introduction: Fermi condensates 

Bichromatic potential 
 “Aubry-Andre model” 

non-interacting : “metal”-insulator transition at λ=2J (J: hopping) 
 Numerical studies of interacting systems 

 Bose-Hubbard (DMRG): Deng et al.: PRA 78, 013625 (2008); Roux et al.: 
PRA 78, 023628 (2008);  cf. studies of BEC with non-linear Schrödinger eq. 

 Spinless Fermions : Chaves and Satija (ED, PRB 55, 14076 (1997)); Schuster 
et al. (PBC DMRG, PRB 65, 115114 (2002)) 
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n: site index of the main optical lattice 

(cf. talk by Marcos Rigol this morning) 



Hopping J Interaction U 

Modulation 
amplitude 2λ 

Optical 
lattice 

2λ 

J 

U 

cf. Superconductor with disorder 
e.g. Yanase & Yorozu JPSJ 2009 (3D, RSTA) 

Harper’s potential 
Aubry-Andrè model 

S=1/2 Fermions in bichromatic potential 

Ratio ω between wavelengths:  
Golden ratio in this work 

Localization 
(insulator) 

Pairing 
(Superfluid) 

     nnV 2cos

Modulation λ Motivation: 

U(<0) 

Dynamics at the 
transition point? 



Single-particle level scheme 

Ratio between wavelengths:  
Golden ratio = (√5-1) / 2 

(L=2048) J=1 

λ < 2: bands; λ > 2: separate, localized energy levels (as L∞) 



All single-particle states known to localize at λ=2 

What happens in interacting systems? 

Single particle wavefunctions (L=1024) 



Interacting fermions in 
quasiperiodic potential 

• U=0 : All eigenstates localized for λ > λc = 2 

• U>0 : Repulsive interaction 

– λc >2, but not much increase [MT and García-García, in prep.] 

• U<0 : Superfluidity; quasi-condensate (in 1D) 

– λc < 2  (for |U|>> 1, λc ~ 2/|U| << 1): Dynamics? 

– Does the potential inhomogeneity enhance pairing? 

 Study the system numerically with DMRG 

2λ 

J:=1 

U 
     nnV 2cos

(Density-matrix renormalization group) 



How to detect pairing and delocalization? 

Compare between different system sizes using DMRG 

Pairing 
On-site pair correlation function:  
easy to calculate with DMRG 
But depends on the site potentials of the site pair 

Averaged equal-time pair structure factor 
Sum of pair correlation for all lengths 
 average over sites 
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Increasing function of L 
if decay of correlation is slow cf. Hurt et al.: PRB 72, 144513 (2005); 

Mondaini et al.: PRB 78, 174519 (2008) 
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Site y 

1. Take the sum over distance r=|x-y| > 0 

0 

System size: L 

L 

2. Average over sites x 



How to detect pairing and delocalization? 

cf. Phase sensitivity: requires (anti-)periodic condition [see e.g. Schuster et al.: PRB 65, 115114 (2002) ] 

Hard to calculate within DMRG (not open BC) in large systems (OK for small systems) 

Compare between different system sizes using DMRG 

(De)localization 
Inverse participation ratio (IPR)  
Add 2 atoms  How uniformly is the population increase distributed? 
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Equal distribution of increase: IE = L/4 ∝ L 

Increase limited to a single site: IE  1/4 

(n↑, n↓) = (N, N)  (N+1, N+1): obtain Δ(<ni,↑+ ni,↓>) at each lattice site i 



The case without lattice modulation (λ=0) 

Inverse participation ratio 
indicator of atom delocalization 

Both increase with |U|, and system size L 

indicator of global (quasi long-range) superfluidity 
Pair structure factor 

1/9 filling 



U=-1 
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L=378 Open BC DMRG (m=400) 

Change between 
N=42 and 43 (per spin) 



Small |U|: weak attractive int. 

Pairing enhanced 
by modulation 

U=-1 : 
Quasi long-range 
pairing disappears 
(λp~0.95) before 
localization (λc~1.00) 

Pair structure factor 

Inverse participation ratio 

Tezuka and García-García: 
PRA 82, 043613 (2010) 

1/9 filling 

cf. Pair correlation enhanced in 1D by 
random disorder 
E. Gambetti: PRB 72, 165338 (2005); 
T. Shirakawa et al.: J. Phys. Conf. Ser. 
150, 052238 (2009) 



Stronger attractive interaction 
Pair structure factor 

Tezuka and García-García: 
PRA 82, 043613 (2010) 

U=-6 : 
Quasi long-range 
pairing disappears 
at localization 
(λc~0.30) 

1/9 filling 

Inverse participation ratio 



Summary (1): Schematic phase diagram 

• Effect of coexisting modulation (bichromatic potential) 
and short-range attractive interaction 

– Studied for 1D fermionic atoms on optical lattice 

 
• For strong interaction (|U|≫J), 

pairing decreases as modulation 
amplitude  λ is increased, and 
localizes at ~ insulating transition λc 

 

• For weaker interaction (|U|~J), 
pairing has a peak as a function of 
λ, but localizes before λc 

|U|/J 

λ/J 

Insulator, not superfluid 
spin, charge gaps 

Global superfluidity 

Metal without superfluidity 

Attraction 
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enhanced 

Tezuka and Garcia-Garcia: PRA 82, 043613 (2010) 



Dynamics 

• Simulate trap-release experiments 

• At localization transition point, does the 
dynamics after release depend on the value of U? 



Disorder + interaction: subdiffusion? 

• 1D random potential, discrete version of Gross-
Pitaevskii equation (BEC, mean-field approximation): 

– “Long-time Anderson localization”: concluded that 
“displacement of the wave front slower than tα for any α>0” 

[W.-M. Wang and Z. Zhang: J. Stat. Phys. 134, 953 (2009)] 

 
– “Anderson localization destroyed by 

 nonlinearlity; subdiffusion continues” 

 [Pikovsky and Shepelyansky: PRL 100, 

 094101 (2008)] 

Debated 

For a potential which localizes single-particle states in 1D… 



Dynamics: experiments with bosons 
Trap-release experiments: dynamics of the atomic clouds observed 

Bosons: E. Lucioni et al. (LENS, Florence): PRL 106, 230403 (2011) 

V(x) = V1cos2(k1x) + V2cos2(k2x), k1=2π/(1064.4nm), k2=2π/(859.6nm) 
50 thousand 39K atoms, almost spherical trap switched off at t=0 

Initially a=280a0 (repulsive), λ~3J (localized)  tuned to final value within 10 ms 

Subdiffusion (slower than random walk) observed in bichromatic lattice (3D) 

 What happens for interacting fermions in a bichromatic potential? 



Very weakly attractive interaction 

Modulation governs the conductance 

Effect of modulation: relatively strong (|U|<< λ) 

2λ 

J 

U 

At transition point: spectrum still fractal; 
random walk-like motion (<x2>～t) expected 

Hopping not significantly renormalized 

λc < 2J but not much smaller 



Strongly attractive interaction 

Two fermions ~ tightly bound hard-core bosons 

Effect of modulation: relatively weak (λ<<|U|) 

2λ 

J 

U 

At transition point: spectrum should be almost normal 
Is particle motion almost ballistic? (<x2>～t2 ?) 

Effective hopping ~ J2/U 

λc ~ 2J2/U << J 



One parameter scaling theory 
Abrahams et al.: PRL 42, 673 (1979) 

see also Garcia-Garcia and Wang: PRL 100, 070603 (2008) 

Dimensionless conductance  g(L) = ET / δ: behavior as L→∞? 
 ET : Thouless energy 
~ 1 / ( typical time for particle to travel L ) 

δ : (1 particle) mean level spacing 

(d>2)D Normal metal: 
 g(L) ∝ Ld-2→∞ 
∵ ET ∝ L-2, δ ∝ L-d 

Insulator: 
g(L) ∝ exp(-L/ξ) → 0 
ξ: localization length 

Metal-insulator transition 
g(L) = gc (constant) 

Motion slowed down for α<1, 
~ L2/α time to propagate L, ET ∝ L -2/α 

Multifractal spectrum with 
Hausdorff dimension dH 

 δ ∝ L-d/dH; g(L) ∝ Ld/dH-2/α 

Insulating transition should occur at α/2 = dH/d = dH (d=1) 

 (has been checked for the non-interacting case: 
 Artuso et al.: PRL 68, 3826 (1992); Piechon et al.: PRL 76, 4372 (1996)) 
(dH ~ 1/2 at U=0; dH = 1 if not fractal) 

<x2(t)> ∝ tα (0<α<2) 

Disordered system 

L : system size 



Setup 
• Optical lattice + incommensurate potential (Aubry-

André model) 

• On-site attractive interaction 

• Initially trapped in a box 

 potential without q.p. potential 

 (initial condition does not 

 depend on λ) 

 

•  Remove the box potential and switch the 
incommensurate potential on: what happens? 

 Study by time-dependent DMRG for Hubbard model 

 

x 0 



Example: U=-10 (λc~0.17) 
𝑛𝑥𝜎  12 particles per spin 



Example: U=-10 (λc~0.17) 

Site x 

U=-10 
λ=0.15, 
0.20, 
0.28 
(λc~0.17) 
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Participation number  

Estimation of the number of sites occupied 
 Shows complete localization for λ >> λc 

Tezuka and García-García: PRA 85, 031602 (R) (2012) 



Second moment: U=-1 

 00 /1 ttx 

λ=0.95 < λc λ=λc 

λ=1.06 > λc 

<x2(t)> fit by  
α ~ 1.06 (larger than α=1 for U=0) at transition point 

Tezuka and García-García: PRA 85, 031602 (R) (2012) 
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Larger U: longer timescale needed 
 00 /1 ttx Fit by  

Value of α at transition increasing as |U| increases: 
 anomalous exponent! (between random walk and ballistic) 

Tezuka and García-García: PRA 85, 031602 (R) (2012) 

α~1.48 

α~1.54 
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Scaling of localization length 

Sensitivity of the ground state energy to a change of boundary conditions (b.c.) 

EP(A): ground state energy for periodic (antiperiodic) b.c. 

ΔE = |EP-EA| ∝ e-L/ξ in the insulator side (λ > λc) of the transition 

ΔE = 10-5 

fit with 
ξ ∝ |λ – λc|

-ν 

ln ΔE ～ – L |λ – λc|
ν 

Localization length ξ should diverge as |λ-λc|
-ν as MIT is approached from 

insulator side (ν=1 at U=0; ν=1/2 in mean field limit) 

U=-1 

U=-3 

U=-6 decrease 
Our conjecture from 
phenomenological 
arguments: να=1 

1D system: α/2 = dH 



Exponents 

α indeed increases at least up to |U| ~ bandwidth (=4J) 
 while ν decreases; να = 1 ? 

Exponent of localization length (static property) 

Tezuka and García-García: PRA 85, 031602 (R) (2012) 
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 να = 1: our conjecture 

U=-10, -6, -3 

U=-2 

U=-1 
U=0 

12+12 fermions, 64160 or 256 sites 

J=1 



Summary (2) 

|U| 0 intermediate |U| |U| ∞ 

Hausdorff  dimension 
of the spectrum dH 

dH=0.5 dH~1? 

see e.g. Artuso et al.: 
PRL 68, 3826 (1992) 

Not fractal? 

Diffusion <x2(t)> ∝ tα α=1 α~2? 

brownian motion ballistic motion? 

Localization length 
close to transition 
ξ ∝ |λ – λc|

-ν 

ν=1 ν~1/2? 
mean-field like; 
similar to Cayley tree 

Modulated 1D system, U < 0, at metal-insulator transition 

α = 2dH at MIT 

Our conjecture: να=1 

One parameter scaling 

increases as 
|U| increases 

Anomalous diffusion in modulated, interacting 1D Fermi gas 
observed; interesting relation between the dynamic and static behavior 

(Bichromatic lattice) 

decreases as 
|U| increases 

Tezuka and García-García: PRA 85, 031602 (R) (2012) 

(1) λc strongly 
suppressed!  (~1/|U|) 



Conclusion 
• Static and dynamic behavior of Fermi cold atom gases in 

1D inhomogeneous potential – DMRG study 

– Quasiperiodic modulation 
• Can enhance condensation for weak attraction 

• Trap-release dynamics close to metal-insulator transition: anomalous 
diffusion observed 

 

Other recent works 

1D topological superconductor in quasiperiodically modulated 
systems 

Collision of spin clusters: more atoms pass through than 

 quasi-classically expected = emergent many-body behavior 

MT and A. M. García-García: 
PRA 82, 043613 (2010) 

J. Ozaki, MT, and N. Kawakami: PRA 86, 033621 (2012) 

MT and N. Kawakami: PRB 85, 140508 (R) (2012) 

 MT and AMG: PRA 85, 031602 (R) (2012) 



Majorana fermions (MF) at the ends of 
1D topological superconductor (TS) 3D Fermi superfluid 

Magnetic field BSO 

Q. Effect of lattice modulation? 
1. Quasiperiodic lattice 2. Harmonic trap 

BdG and 
DMRG analysis 

☑ Pair of E=0 BdG eigenstates; 
DMRG ground state degeneracy 
 
☑ Reduced density matrix: 
 eigenvalue degeneracy 
 
☑ Localized Majorana modes 

MT and Norio Kawakami: Phys. Rev. B 85, 140508(R) (2012) 

Multiple TS regions 

Chemical potential 
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MF at effective 
boundaries 

x 
0 

μ 

1D S=1/2 fermions  

cf. Semiconductor experiment 
Mourik et al. : Science 336, 1003 (2012) 

See http://ngf.jp/MF12/ for details! 

http://ngf.jp/MF12/
http://ngf.jp/MF12/

