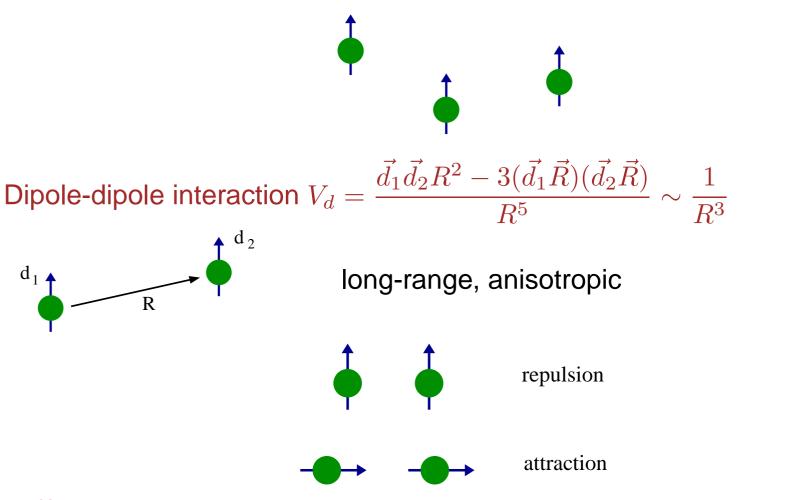
Novel macroscopic quantum states in dipolar systems

Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam


Outline

- Introduction
- RF-dressed fermionic polar molecules in 2D
- **•** Topological $p_x + ip_y$ phase
- \checkmark *p*-wave and *d*-wave pairing in bilayered systems
- Conclusions and outlook

Collaborations: N.R. Cooper and J. Levinsen (Cambridge), M. Efremov (Orsay) Evora, October 12, 2012

Dipolar gas

Polar molecules or atoms with a large magnetic moment

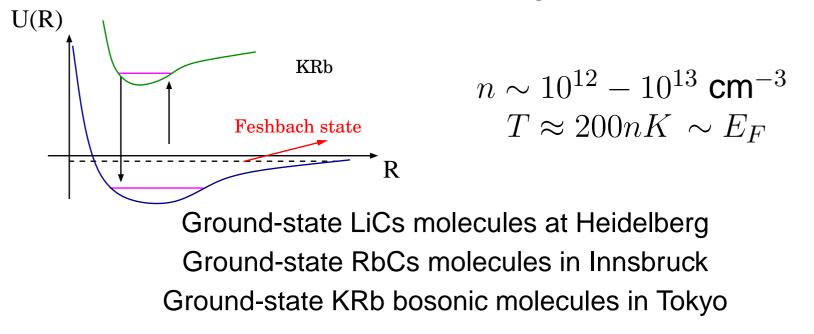
Different physics compared to ordinary atomic ultracold gases

Alkali-atom molecules d from 0.6 D for KRb to 5.5 D for LiCs

Atoms with large μ

Remarkable experiments with Cr atoms ($\mu = 6\mu_B \Rightarrow d \approx 0.05$ D) T. Pfau group (Stuttgart)

Effects of the dipole-dipole interaction in the dynamics Stability diagram of trapped dipolar BEC

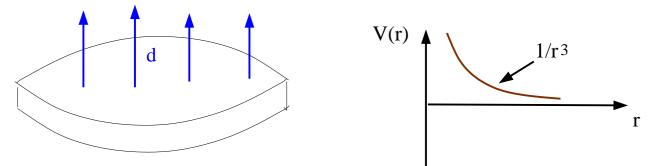

Spinor physics in chromium experiments at Villetaneuse, B. Laburthe-Tolra

Dysprosium BEC ($\mu = 10\mu_B$, (B. Lev, Stanford)) Erbium BEC ($\mu = 7\mu_B$, (F. Ferlaino, Inscbruck))

Polar molecules. Creation of ultracold clouds

Photoassociation

Transfer of weakly bound KRb fermionic molecules to the ground rovibrational state JILA, D. Jin, J. Ye groups



Experiments with NaK (MIT, Munich, Trento, Hannover) and KCs (Innsbruck) molecules

Ultracold chemistry

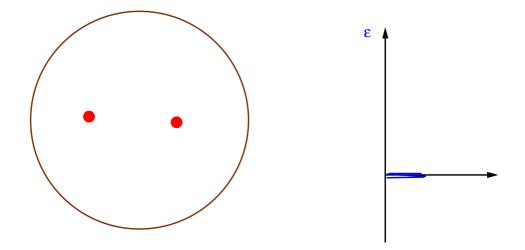
Ultracold chemical reactions $KRb + KRb \Rightarrow K_2 + Rb_2$

Suppress instability \rightarrow induce intermolecular repulsion For example, 2D geometry with dipoles perpendicular to the plane

Reduction of the decay rate by 2 orders of magnitude at JILA

Select non-reactive molecules, like NaK, KCs, RbCs

What are prospects for novel physics ?


Theoretical studies

- Innsbruck group (P. Zoller, G. Pupillo, M.A. Baranov et al). Large variety of proposals including bilayer systems, Rydberg atoms etc.
- Trento group (S. Stringari et al). Excitation modes etc
- Harvard group (E. Demler, M. Lukin et al). Multilayer systems etc
- Hannover group (L. Santos et al). Spinor and dipolar systems
- Tokyo group (M. Ueda et al) Spinor and dipolar systems
- Cambridge group (N.R. Cooper, Jesper Levinsen). Novel states
- Rice group (H. Pu et al). Excitations and stability etc
- Maryland group (S. Das Sarma et al) Fermi liquid behavior etc
- Taipei group (D.-W. Wang et al)
- Barcelona group (M. Lewenstein et al)

Why single-component fermions are interesting?

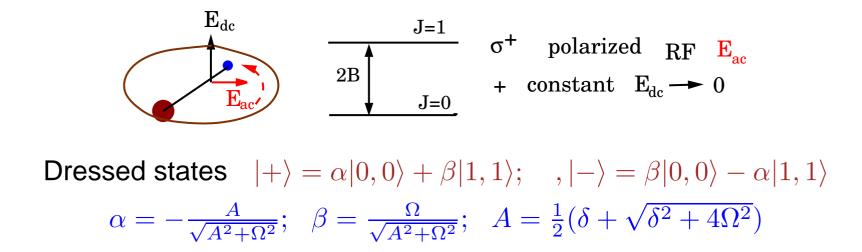
Topological aspects of $p_x + ip_y$ state in 2D

Vortices. Zero-energy mode related to two vortices. (Read/Green, 2000)

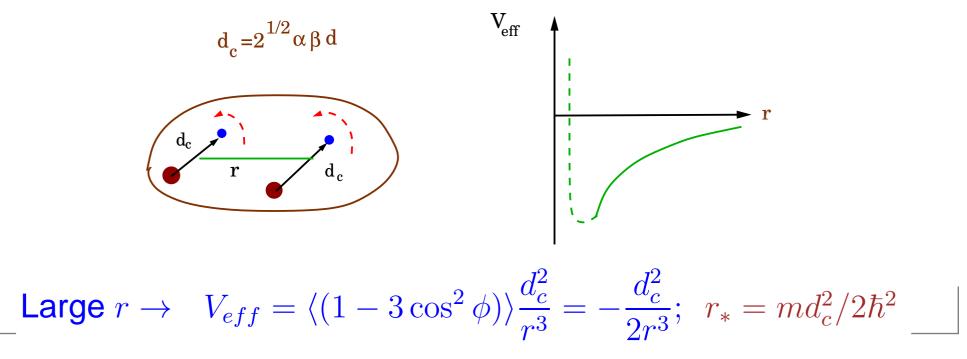

The number of zero-energy states exponentially grows with the number of vortices $2^{(N_v/2-1)}$ Non-abelian statistics \Rightarrow Exchanging vortices creates a different state! Non-local character of the state. Local perturbation does not cause decoherence Topologically protected state for quantum information processing

p-wave resonance for fermionic atoms

p-wave resonance Experiments at JILA, ENS, Melbourne, Tokyo, elsewhere


$$\mathsf{BCS} \Rightarrow \quad T_c \sim \exp\left(-\frac{1}{(k_F b)^2}\right) \quad \text{practically zero}$$

Molecular and strongly interacting regimes \Rightarrow rather high T_c , but collisional instability



Gurarie/Radzihovsky; Gurarie/Cooper; Castin/Jona-Lazinio

RF-dressed polar molecules in 2D;Gorshkov et al (2008)

Two RFD molecules in 2D. The dipole moment is rotating with RF frequency

Fermionic RFD molecules. Superfluid transition; Cooper/G.S. (2009)

Fermionic RFD molecules in a single quantum state in 2D Attractive interaction for the *p*-wave scattering ($l = \pm 1$)

$$\hat{H} = \int d^2 r \,\hat{\Psi}^{\dagger}(\mathbf{r}) \{ -(\hbar^2/2m)\Delta + \int d^2 r' \hat{\Psi}^{\dagger}(\mathbf{r}') V_{eff}(\mathbf{r} - \mathbf{r}') \hat{\Psi}(\mathbf{r}') - \mu \} \hat{\Psi}(\mathbf{r})$$
$$\Delta(\mathbf{r} - \mathbf{r}') = \langle V_{eff}(\mathbf{r} - \mathbf{r}') \hat{\Psi}(\mathbf{r}) \hat{\Psi}(\mathbf{r}') \rangle$$

Gap equation $\Delta(\mathbf{k}) = -\int \frac{d^2k}{(2\pi)^2} V_{eff}(\mathbf{k} - \mathbf{k}') \Delta(\mathbf{k}') \frac{\tanh(\epsilon(k')/T)}{2\epsilon(k')}$ $\epsilon(k) = \sqrt{(\hbar^2k^2/2m - \mu)^2 + |\Delta(k)|^2}; \quad \mu \approx E_F$ $T_c \approx E_F \exp(-3\pi/4k_F r_*)$ $\Delta(\mathbf{k}) = \Delta \exp(i\phi_k) \quad p_x + ip_y \text{ state } (l = \pm 1)$

Superfluid transition. Role of anomalous scattering

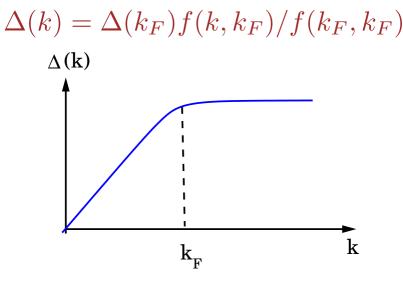
For short-range potentials should be $V_{eff} \propto k^2$ and $T_c \propto \exp(-1/(k_F b)^2)$ This is the case for the atoms

Anomalous scattering in $1/r^3$ potential \rightarrow Contribution from $r \sim 1/k$

$$V_{eff}(k) = -\frac{8\hbar^2}{3m}(kr_*); \qquad |k| = |k'|$$
$$T_c \propto \exp\left(-\frac{1}{\nu(k_F)|V_{eff}(k_F)|}\right); \qquad \nu = \frac{m}{2\pi\hbar^2}$$

$$T_C \propto E_F \exp\left(-\frac{3\pi}{4k_F r_*}\right)$$

Second order diagrams \Rightarrow Get a correct preexponential factor?

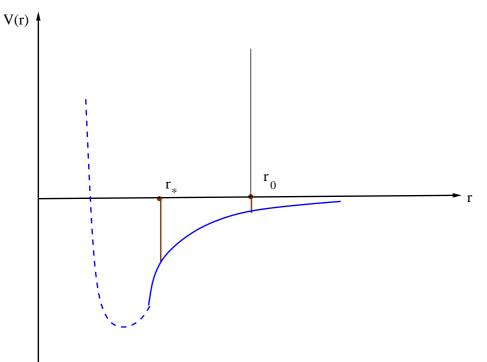

Transition temperature

Do better than simple BCS. Reveal the role of short-range physics

Renormalized gap equation

 $\Delta(\mathbf{k}') = -\int f(\mathbf{k}', \mathbf{k}) \Delta(\mathbf{k}) \left\{ \frac{\tanh[\epsilon(k)/2T]}{2\epsilon(k)} - \frac{1}{(E_k - E_{k'} - i0)} \right\} \frac{d^2k}{(2\pi)^2}$

 $\Delta(\mathbf{k}) = \Delta(k) \exp(i\phi_k); f(\mathbf{k}', \mathbf{k}) = f(k', k) \exp[i(\phi_k - \phi_{k'})] \text{ scattering amplitude}$



2D scattering in the potential with a $1/r^3$ tail

Scattering amplitude. No transparent exact solution for a finite k

Asymptotic method for slow scattering ($kr_* \ll 1$)

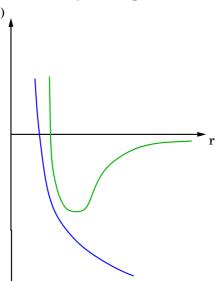
Divide the range of distances into two parts, $r < r_0$ and $r > r_0$ The distance r_0 is such that $r_0 \gg r_*$, but $kr_0 \ll 1$

 $r < r_0$ Match exact zero-energy with free finite-k solution at $r = r_0$: $f \Rightarrow (\pi/2)d^2r_*k^2 \ln k$ $r > r_0$ interaction as perturbation: $f = -(8\pi/3)d^2k + (\pi/2)d^2r_*k^2 \ln k$ Related results for the off-shell scattering amplitude

Manipulate T_c ?

$$f(k',k) = -\pi d^2 k F\left(\frac{1}{2}, -\frac{1}{2}, 2, \frac{k^2}{k'^2}\right); \ k \le k'; \ kr_* \ll 1$$

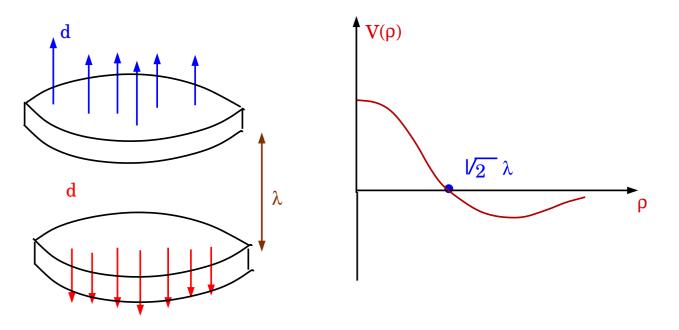
Include k^2 -term $f = \frac{1}{2}\pi d^2 r_* k^2 \ln[kr_*u]$
 $T_c = \frac{2e^C}{\pi} E_F \exp\left\{-\frac{3\pi}{4k_F r_*} - \frac{9\pi^2}{64}\ln[k_F r_*u]\right\}$


Take into account second-order Gor'kov-Melik-Barkhudarov processes

 κ depends on short-range physics and can be varied within 2 orders of magnitude

Collisional stability and T_c

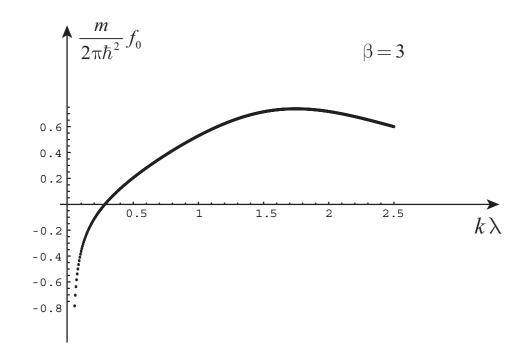
p-wave atomic superfluids: $BCS \Rightarrow T_c \rightarrow 0$ Resonance \Rightarrow collisional instability


Polar molecules \Rightarrow sufficiently large T_c and collisional stability

 $\alpha_{in} = A \frac{\hbar}{m} (kr_*)^2; \quad A \Rightarrow 10^{-3} - 10^{-4} \quad \alpha_{in} \to (10^{-8} - 10^{-9}) \text{ cm}^2/\text{s}$

Bilayer system of \uparrow **and** \downarrow **dipoles**

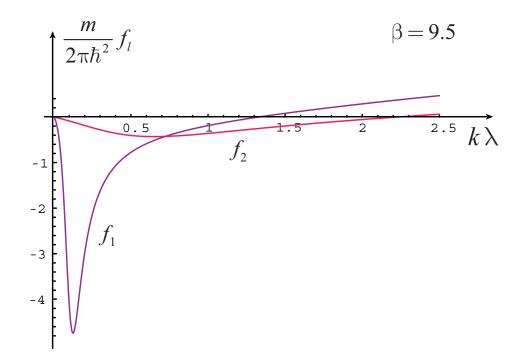
Put J = 0 molecules in one layer and J = 1 in the other Apply an electric field perpendicularly to the layers Slightly non-uniform to prevent resonant dipolar flips leading to a rapid decay


Always a bound state of \uparrow and \downarrow dipoles

$$\beta \lesssim 1 \Rightarrow \epsilon_b \simeq \frac{\hbar^2}{m\lambda^2} \exp[-8/\beta^2 - 8/\beta - (5 + 2C - 2\ln 2)]$$

 $\beta = r_*/\lambda$

Interlayer interaction. Scattering amplitudes


s-wave amplitude
$$k \to 0$$
 $f_0(k) = \frac{4\pi\hbar^2}{m\ln(\epsilon_b/\epsilon)} + \frac{8\hbar^2}{m}kr_*$
 $\epsilon = \hbar^2 k^2/m$ $r_* = md^2/\hbar^2$

 $f_0 > 0$ for reasonable k. No interlayer superfluid pairing

Interlayer interaction. Scatering amplitudes

p-wave and d-wave amplitudes are < 0

Interlayer *p***-wave and** *d***-wave pairing**

For $k_F r_* \gtrsim 1$ the effective mass significantly decreases

Transition temperature $T_c \sim E_F^* \exp\left(\frac{2\pi\hbar^2}{m_*|f(k_F)|}\right)$

The quasiparticle Fermi energy increases

Compensate the decrease of m_* in the exponent by increasing d^2 and, hence, f

p-wave interlayer superfluid with $T_c \sim \text{tens}$ of nK

d-wave superfluids with $T_c\sim$ nK. Analogy with high-temperature superconductors LiCs with $n>10^9~{\rm cm}^{-2}$

Conclusions

Creation of ultracold polar molecules opens wide avenues to make new quantum states

- $\mathbf{P}_x + ip_y$ topological state for identical fermions
- *p*-wave and *d*-wave interlayer superfluids in bilayered fermionic dipolar systems