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Outline

e Antiferromagnet-paramagnet quantum phase transition

¢ Valence-bonds-solid (VBS) order and “deconfined” criticality

e Microscopic realizations; J-Q model

e Insights from QMC simulations; SU(2) and SU(N) models

e Time permitting: Emergent U(1) symmetry of the near-critical VBS
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Conventional Neel-paramagnet quantum phase transition
Example: Dimerized S=1/2 Heisenberg models

e every spin belongs to a dimer (strongly-coupled pair)

® many possibilities, e.g., bilayer, dimerized single layer

=== Strong interactions

g=Js/J1 | = Weak Interactions
2

J1

Singlet formation on strong bonds = Neel - disordered transition
Ground state (T—O) phases
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= 3D classical Heisenberg (O3) universality class; QMC confirmed

Wednesday, October 10, 12



Example of QMC finite-size scaling scaling with QMC data
dimerized single-layer Heisenberg model
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According to theory, spin stiffness
at the critical point should scale
according to (T=0)

1

Ps ™~ 7 — Lpg constant

Allows accurate determination of the
critical point (curve crossings)
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More complex non-magnetic states; systems with 1 spin per unit cell

(1,d)
e non-trivial non-magnetic ground states are possible, e.g.,

= resonating valence-bond (RVB) spin liquid
= valence-bond solid (VBS)

Non-magnetic states often have natural descriptions with valence bonds

RVB
Z ﬁ/— = (Til; — LiT;)/V2

The basis including bonds of all lengths
IS overcomplete in the singlet sector

* non-magnetic states dominated by short bonds
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VBS states and “deconfined” quantum criticality
Read, Sachdev (1989),....,Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

e — JZSISJ Slie 2 Gl
(1,j)

Neel-VBS transition in 2D

e generically continuous

e violating the “Landau rule”
stating 1st-order transition

Description with spinor field

(2-component complex vector)
b — ZZO'a,eZﬁ gauge redundancy: 7 — €

A

order parameter

iy(r,7) -

S, = | &rdr| (0, —1iA,)z,|" + 5|2, +u(|z,|?)* —I—L(e 3,A,)?
4 o Y uw)“~a o o 26% UVAT V2L

Ais a U(1) symmetric gauge field e CP' action (non-compact)
e large-N calculations for CPN-' theory

- proposed as critical theory separating Neel and VBS states
- describes VBS state when additional terms are added

Competing scenario: first-order transition (Kuklov et al., 2008)
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In what systems can Neel-VBS transition be studied with QMC?
VBS states from multi-spin interactions (Sandvik, 2007)

The Heisenberg interaction is equivalent to a singlet-projector

—

Cij =155

e we can construct models with products of singlet projectors

e no frustration in the conventional sense (QMC can be used)
e correlated singlet projection reduces the antiferromagnetic order

—dﬁ- ) —O—{D—>— + all translations

C ‘i j ( ‘kl ( ‘1'/'( 'Vk/ ( -‘mn

—gp-— —Q—{A}— " —{?—-q\?—g}_ | and rotations
The “J-Q2” model with two projectors is

eSS C, 0 Y CC
(i)

(17kl)

e Has Néel-VBS transition, appears to be continuous
* Not a realistic microscopic model for materials
® Intended to study Néel-VBS transition (universal physics)
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Néel-VBS transition in the J-Q model

T=0 projector QMC results (no approximations; finite size)
(Sandvik, 2007; Lou, Sandvik, Kawashima, 2009)

VBS vector order parameter (Dx,Dy) (X and y lattice orientations)

i e
D, =~ S-S5, D, = N ¥ (~HHS
i=1 i=1
Néel order parameter (staggered magnetization
e i
M=) (-1)™+g, A A
7 v o
No symmetry-breaking in simulations; study the squares # / T

M? = (M-M), D?®=(D.+ D2
Finite-size scaling: a critical squared order parameter (A) scales as
e = 0= el (g — g ) LYY coupling ratio

Data “collapse” for different system 18— Q@
sizes L of AL'*" graphed vs (q-qc)L'"V J+ @
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J-Q2 model; qc.=0.961(1)

(55 (2)
20 2)
N R6T(1)

J-Q3 model; q.=0.600(3)
ns = 0.33(2)
() 2)

E—()69(2)

Exponents universal
(same within error bars)
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Making connections with field theory

The non-compact CPN-" model has been studied for large N
e large-N expansion, SU(N) symmetry

Senthil et al. (2004), Kaul & Sachdev (2009)
32 f * .QC

s = 1 |
4 TN 2) — SU(N

e older results, using relationship between monopoles in the
field theory and the VBS order parameter Read & Sachdev (1989)

ng=0.2492 x N —1+...

How can we test these results?
QMC studies of spin hamiltonians with SU(N) spins

2D SU(N) Heisenberg model [Harada et al. (2003), Beach et al. (2010)]
e Fundamental and conjugate repr. of SU(N) on A,B sublattices
e No sign problem in QMC

e Same repr. used in analytical large-N calculations

e Neel ground state for N<5, VBS for N=5,6,...
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J-Q models with SU(N) spins

Lou, Sandvik, Kawashima, PRB (2009)

Heisenberg model (Q=0) has

Neel ground state for N=2,3,4 =

Neel - VBS transition vs Q/J

Model, symmetry 7 Ny v

J-0,, SU(2) 0.35(2) 0.20(2) 0.67(1)
J-05, SU(2) 0.33(2) 0.20(2) 0.69(2)
J-0,, SU(3) 0.38(3) 0.42(3) 0.65(3)
J-0,, SU4) 0.42(5) 0.64(5) 0.70(2)

How can we reach larger N to

really study the large-N limit?

T)s
1d

—
— »
—

-5 0
L M'( q-9 )/q.

1 o |-t
2 N

0.2492 x N —1 + ...
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J1-J2 Heisenberg model with SU(N) spins

(Kaul, Sandvik, PRL 2012)

Ferromagnetic 2nd-neighbor couplings enhance Neel order

H=) J;S
(4,9)
SU(N) generalization:
J1 Jo
-2 Pi— 5 2 My
(27)

((i3))
Pij = SU(N) singlet projector
[1j = permutation operator

There is Neel order for all N>4
e Neel - VBS transition accessible
with QMC for large N

— Jh >
— R

9=J2/J1 o

2 - ’
h Néel Vo

151 y
- ,.
l
i o
05 o VBS
o |
B — ' —
2 4 6 8 10 12
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Comparing results: J1-J2, J-Q, NCCPN-1

].O I | ] | I(l | ] ] I 1 1 1 | 3'0 1 | | 1 1
- [ I
NN =t 1TV ~
I sS4l I - -® 5
osl\ T H% 1 25F T
. 1 -2 ﬁ : 1
B 0 PR N T R : 2.0 j | —_
06 02 04 _| i 04 |
~ I} /N | 1/N
. 1.5 —
04 . - : 1
. e J,-J, model 1 i 1
0.2 B JQ model 1 osF
— 1/N expansion < T a
() I AT T TR TR SN TR SR TR W NN SN W N ] O 1 y
0 0.2 0.4 0 , ,
1/N 1/N

Conclusion: Trends for large N show excellent agreement
® QMC results predict size of the next 1/N corrections

® Field-theory challenge: Compute the next correction
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Nature of the VBS fluctuations in the J-Q model - SU(2)
Joint probability distribution P(Dx,Dy) of x and y VBS order

N N
1 a 1 .
e L D), D, = B PSS, D, = o > (—1)¥8; - Sitg
=i =3l
The squared order parameter cannot distinguish between:

columnar plaquette J-Q2> model, J=0, L=128

[T O H O
L1 61 ] AR
L1 b1 1] L3 2d L]

Dy Dy
g o O
- L
D, D,
® i o

Magnitude of D has formed but
the VBS “angle” is fluctuating

Wednesday, October 10, 12 14



VBS fluctuations in the theory of deconfined quantum-critical points

[Senthil et al., 2004]

> plaquette and columnar VBS are almost degenerate

> tunneling barrier seperating the two
e barrier increases with increasing system size L
e barrier decreases as the critical point is approached

(a)

il

> emergent U(1) symmetry

(b)

(c)

(d)

> ring-shaped distribution expected in the VBS phase for small systems

L<A~¢& a>1 (related to spinon confinement length)

Wednesday, October 10, 12

15



Creating a more rubust VBS order - the J-Qs model
J.Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

el — —JZCq;j . Q3 Z CijClemn C@j == i o SZ : Sj
j (17klmn) o

This model has a more robust VBS phase q = T+ 0O
e can the symmetry cross-over be detected? =

q—0635 q—085
—32
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Analysis of the VBS symmetry cross-over (J-Qs model)
J.Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

Zs-sensitive VBS order parameter
D4—/rdr/dq5P r, @) cos(4¢)

Finite-size scaling gives U(1) length-scale

AF 1 | | | =
A s fl—l—a
. & o o 0.1/ i
T I R -
3 ¢ [ =48 oA 1
S ok = A d
a = 0.20 + 0.05 B =R
~ /7 -
SU3):a=06+0.2 1= = -
SUM4) : a = et 3™ '
(4) : a =0.5 % 0.2 Noote®¥ | . 1 1,
D 10 [5 20 25

LY+ (g — gc) [qe
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Signs of Z4 symmetry in the original J-Q model?

L=128, J=0

P(DX!DY)
20
~ 15
10
()“
! |
L=32, L=64; J=0 0162k L=~ 2\
- - oo [ =04 ¢
Weak but statistically - 3 2R
significant angular T 2y
dependence consistent 30-'60*\} 1] ‘\",
with columnar VBS T sl ‘{y .l'h 1{.1
: . i, ’
(L=128 still too noisy) -t s ]
0.158} '-W' '.‘Wg),
0.157 \vf \ ¢
E : 1 ! 1 | |
0 0.2 0.4 0.6 0.8 I
O/2T
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The simulations take a long time to rotate the VBS angle

L=128: 10°> measurements require > 1 day of computation

building 100x10°> measurements 10° measurements

Wednesday, October 10, 12
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Conclusions

Large-scale QMC calculations of the J-Q model

e scaling behavior consistent with a continuous Neel-VBS transition
- with weak scaling corrections; maybe logarithmic

¢ no signatures of first-order behavior
- cannot be ruled out as a matter of principle, but seems unlikely

e emergent U(1) symmetric VBS order parameter

SU(N) J-Q model and J1-J2 Heisenberg model
e critical correlation exponents approach large-N results

Relation to deconfined quantum-criticality of Senthil et al.
e Main features in good agreement

- z=1 scaling

- “large” anomalous dimension Nspin

- emergent U(1) symmetry
e NCCPN-1 field theory for large N

[Senthil et al. (PRB 2004), Kaul & Sachdev (PRB 2008)]

- no log-corrections found analytically

- difficult to extend to N=2 (3,4) in analytical work

- could there be log-corrections for N=2 (or general “small” N)?

- claimed recently by Nogueira & Sudbo (arXiv 2011)

Wednesday, October 10, 12
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Could the transition be first-order?

Jiang, Nyfeler, Chandrasekharan, Wiese, JSTAT, PO2009 (2008)

From an antiferromagnet to a valence bond solid: evidence for a first order phase transition

Kuklov, Matsumoto, Prokof'ev, Svistunov, Troyer, PRL 101, 050405 (2008)
Deconfined Criticality: Generic First-Order Transition in the SU(2) Symmetry Case

One can never, strictly speaking, rule out a very weak first-order transition

e but are there any real signs of this in the J-Q model?

The above studies were based on scaling of winding numbers
e claimed signs of phase coexistence (finite spin stiffness and susceptibility)

(W?) = (W) + (W) +(W;)
= Ps 3 X

At at a critical point

= <[ —

L, x L

— (W?*) = constant

Linear divergence (first-order)?

3.5

3.4}

3.1

1 T 7T

T T T 1

L |

Jiang et a. (2008)
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Recent large-scale QMC results Sandvik, PRL 104, 177201 (2010)

e Stochastic series expansion

® up to 256x256 lattices
Bx L (B=L, 8=1L/4)

Same finite-size definition
of critical point as used by

Kuklov et al. and Jiang et al.

e fixed probability of the
generated configurations
haVing Wx=Wy=WT=O

| . | . | . |

0.055} > x
oo (p=1L)
0.050 oo (B=1/4)
ﬂu .
~
M
S 0.045 oo &
0.040} \ .
0.035} L
0 0.03 0.04 0.05
1/L

Logarithmic divergence of <W?>
e scaling correction (not 1st-order)

0.95

()95 F
[ 0.90 }
[ 0.85F
L 0.80 F |
B=1
| |
10 200
|| |
3.1
3.0 F ®
29 %
28 ¢ '
~i27 i
B =1/4
l A s 1 . l
10 30 40 50 200
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Let’s look at a well known signal of a first-order transition:

Binder ratio 0.3k ' ' | ‘ ' | T e
(m*)

(2 = i
(m?)?

: 0.6

Binder cumulant

U =(5-3Q2)/2 3 .|

Size independent _

(curve crossings) at e

criticality 02F o

U> < 0 at a first-order -

transition 0 ()i.-- - 1 . | . !
e no signs of U»<0 in 0 0.02 0.04 0.06 0.08
J/0
SSE QMC results for | i
L up to 256 Example: Scalar order parameter at classical transition
P(m) i A5 P(mn) =T, P(m) (i X 5 n
Phase coexistence
leads to Uy = -
at 1st-order trans } \
. } /'\ \ m \ 'm — . TN 'm

-1 0 l -1 0 l -1 0 |
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Example of a first-order Néel - VBS transition

J-Q model with staggered VBS phase [A. Sen, A. Sandvik, PRB (2010)]
* no local VBS fluctuations favoring emergent U(1) symmetry

VBS
H=-J) Cij=Q3) CyCuCmn  Cy
(i) (ijklmn)
] | 1] s ) 7-

i—j

e clear signs of phase coexistence

Binder cumulant g -
of the Neel order o5

-0.5
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Any signs of coexistence in the standard J-Q VBS distributions?
e | =128 data close to the transition

J/Q=0.040

P(r)

20

10

25
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J/Q=0.041

E(r)

20

10

N

i 5

26
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J/Q=0.042

E(r

20—

10

N

0.1

0! :
0 0.05

27
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J/Q=0.043

20—

10

E(r

N

0.1

0! :
0 0.05
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J/Q=0.044

20—

10

E(r

N

0.1

0! :
0 0.05
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J/Q=0.045

20—

10

E(r

N

0.1

0! :
0 0.05
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J/Q=0.046

E(r)

20

10

N

0

0

0.1

31
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logarithmic corrections
In(L/Lg)

Ps T

x~T[1+aln(1/T)] (L — o)

(T — 0)

Governed by the dynamic
exponent z (=1 in the theory)

Could the behavior indicate z#1?

¢~ T/2)
Y o~ T2/Z—1
ps ~ L7
§ gives z=0.82

e consistent with ps(L)
¢ inconsistent with x(T)
- demands x/T—0 for T—0

Most likely z=1

¢ |ogs also in impurity response
Banerjee, Damle, Alet, PRB 2010

e marginal operator causing logs?

AWS, PRL 104, 177201 (2010)

T ' T " ™1
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oo J/Q =0.044
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T>0 quantum-criticality - conventional O(3) case
Theory: Chakravarty, Halperin, Nelson (1989), Chubukov, Sachdev, Ye (1994)
Realized in various dimerized S=1/2 Heisenberg models

b Tttt o H:JZSZ..SJ.
(17)

‘s & e o o o9 o
G ¢ o ¢
/
*—',?7?7* *_I*T*T* DD
(i)

Neel - non-magnetic T=0 transition vs g=J’/J
e plain singlet-product (+ fluct) state for g>gc ' T>0 quantum-critical regime
cross-over “phase diagram” * magnons (S=1) remain as
A the elementary excitations
T high-T', lattice effects at the critical point
e dynamic exponent z=1
¢ scaling behavior:

OC Shroe e
e Ik
RC QD e

T = 0 Néel order non-magnetic g e confirmed by QMC
—. »

3D O(3) (Heisenberg) universality ® some issues remain in (c)
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Consequences of spinons at T>0 in the J-Q model?

A
. expected phases and cross-overs J-Q QMC results:
Standard QC forms
G oo ilas
QC — ha o il

RC VBS Specific heat obeys

0/J the standard form
Ehooe

1T=0 Neel

Phenomenological model of a spinon gas at T>0

e bosonic spinons, linearly dispersing at T=0; e(k)=ck

e thermal length &(T); assuming free spinons for momenta g>1/¢
» contributions to thermodynamics from these spinons

Infrared momentum cut-off 1/€ equivalent to thermal “gap” A=1/¢
e(k) = v/c2k2 + A2

J-Q model: critical § diverges faster than 1/T as T—0 (A/T—0) »
e infrared divergent integral leads to weak T—0 divergence (log) of x/T
e weaker correction to T? form of C

are weakly violated.
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Spin correlation lengths; J-J’ (columnar) and J-Q models
Critical-point estimates

J-J’ model: (J’/J)c=1.90948(4), (using J’/J=1.9095)

J-Q model: (J/Q):=0.04498(3), (using J/Q=0.0450)

T>0 critical spin correlation length
e | up to 512; converged to thermodynamic limit for T considered

) I T T - )
-~

i 1 S(Q 2T ,/’//
Ty . C N
S L 0

10 -

o—o J-Q model
[ .
2 o—eo ]-J’ model

cws §=230/T-1

4
/
= e od 22
e / C= 0.75/1 -0.1

E=(0.33/T)In(3.54/T)+0.61

] 1 1 L 1 1 1 1 L l
I 10

O/T

J-J’ model: expected 1/T divergence

J-Q model: faster than 1/T divergence

¢ |ogarithmic or power correction (data consistent with either form)
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Can we find relationships between the different anomalies?
e can this provide a fingerprint for spinons?

Gas of non-interacting spinons (S=1/2) or magnons (S=1) at T>0

er(k) = \/2k2 + A2+ uB = (k)= puB (B =magnetic field)
1= 1/2 (spinons), p =1 (magnons)

Magnetization to linear order (bosonic excitations)

1 1 d?k
M = uF —
. / (66—/T—1 e€+/T—1) (27)2

||
|
DO
7(:I\D
™
>y

o I'B [ rdx
p— ILL F 5
4mc? Jo  sinh?] 2\/22+ (A)T)?]
F is a degeneracy factor; F=2 (spinons/anti-spinons), F=1 (magnons)

Conventional guantum-criticality: A/T—-m=0.96 (Chubukov & Sachdev 1994)
e computed using large-N calculations (nonlinear o-model)

In the J-Q model (deconfined criticality?): A/T—0 (log(1/T) or T?)
e infrared divergent integral; significant consequences
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~ rdx 4p
= —41In(ef — 1 p=A/T
-/0 sinhQ(%\/gﬂ Tp2) l—e ( ) /

Using these gaps for spinon (S=1/2) and magnon (S=1) calculations:

Ayp/T = 1/(T€¢) = (T/mec)" (mc and a from J-Q QMC data)
A/T = m = 0.96 (Chubukov & Sachdev)
Gives the low-T magnetic susceptibility
x1 = (1.0760/7c*)T
ik _ mce 1 fh 2a]
X2 = ores H"’IH(T) Y (%)

Specific heat
B on(e) d*k
Cs = (28 + 1)F / () S 5

C1 = [36¢(3)/bmc]T? (Chubukov & Sachdev)

C

2 2a
Clry2 = = 6¢(3) — (Z) g—l—a—l—a(l + a)In <T)
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QMC data fits: J-J’ (magnon forms) and J-Q models (spinon forms)

e J-J’: velocity fitted in E/T2, polynomial fit for X/

(velocities agree to 2%)

e J-Q: only velocity is fitted; values from X/T and C agree within 2%

3
(E—Eq)/T /T
O qq L I § | 1 ’ I
o 0.048 0.048 |
®
o - 0.046
. o | 0.046F '
‘\\: ...0 . 0.044 |
= eo0® 1 X 0.042
= ' L 0.044 |
0.22 f -
‘ J-Q model 0.0421 J-Q model
0.20E . I : ! : - :
0 0.1 0.2 0.3 0 0.1
170
05() = ! g ! ! - 0 l 85 TH v
\ 0.180 ¢
0.54 | i _
0.180
S 0.52F 4 .
- “wy
a i |
2 050k 1 Toa7s 01701,
T
0.48 = I
f J-J” model O.170F 1.1 model
040 1 A 1 1 C 1 M | M 1 N [ B
0 0.1 0.2 0.3 0 0.1 0.2 03 0.4
177 177
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J-Q model: effective spin of the excitations
Under the assumption of spinons, S=1/2, y=1/2, F=2 (spinon/anti-spinon):

2F 25 +1)F ¢, = 2.60
Fo=tE cooms,  re=BEDE ges O
cy CZ cc = 2.99
Should have cy=cc. S#1/27 For both spinons (S=1/2) and magnons (S=1)
F, 52

=5, /5 Fo 25 +1

Treat S as continuous variable and find effective S given the J-Q data:

| . |

| | | The J-Q results are consistent

with S=1/2 (spinons) but not
G2 1 consistent with S=1 (magnons)

0.3

25 +1 _ | Could this be a coincidence?
e assumed A=1/¢

e may be A=d/¢, d=1

¢ results depend weakly on d

W ——————— —

0.1
Independent estimate of the

velocity would be good
e can be done
06 08 | - Imaginary time correlations

fann - A e e e e S . —
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