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Outline

• Insights from QMC simulations; SU(2) and SU(N) models

• Time permitting: Emergent U(1) symmetry of the near-critical VBS

• Antiferromagnet-paramagnet quantum phase transition 

• Valence-bonds-solid (VBS) order and “deconfined” criticality

• Microscopic realizations; J-Q model
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Conventional Neel-paramagnet quantum phase transition
Example: Dimerized S=1/2 Heisenberg models
• every spin belongs to a dimer (strongly-coupled pair)
• many possibilities, e.g., bilayer, dimerized single layer

⇒ 3D classical Heisenberg (O3) universality class; QMC confirmed

Singlet formation on strong bonds ➙ Neel - disordered transition
  Ground state (T=0) phases

� = spin gaps

weak interactions

strong interactions
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FIGURE 5. QMC results for the squared sublattice magnetization in the two-dimensional Heisenberg
model with columnar dimerization. (a) shows results versus the coupling ratio g for different lattice sizes
and (b) shows the size dependence for several values of g. A quantum phase transition where the Néel
order vanishes occurs at g≈ 1.9.

renormalization-group treatments of one such field theory—the nonlinear σ -model in
2+1 dimensions [5, 84]. Based on symmetry arguments alone, one would then expect
the transition to be in the universality class of the 3D classical Heisenberg model. There
are, however, subtle issues in the quantum-classical mapping, and QMC simulations are
therefore needed to test various predictions. We will see examples of such comparisons
between results of simulations and field theories in Sec. 5.While results for the transition
in the bilayer (a) [85] and columnar dimer (b) [86] systems in Fig. 4 (and several
other cases [87, 88]) are in good agreement with the expectations, recent studies of
the staggered dimers (c) show unexpected deviations [89] that are still not understood.

2.4.2. Frustrated systems

The prototypical example of frustration is a system with antiferromagnetic inter-
actions on a triangular lattice. Looking at this problem first within the Ising model,
the spins on a single triangle cannot simultaneously be anti-parallel to both their
neighbors—there are six configurations with minimum energy, and these all have one
“frustrated” bond (two parallel neighbors), as shown in Fig. 6. Being a consequence of
the lattice, this is often referred to as geometric frustration. Upon increasing the system
size, the ground-state degeneracy grows with the system size, and in the ensemble in-
cluding all these configurations there is no order of any kind [90, 91]. In the case of the
classical XY (planar vector) or Heisenberg (vectors in three dimensions) model, there is,
however, order at T = 0 (but not at T > 0, according to the Mermin-Wagner theorem).
The energy is minimized by arranging the spins in a plane at 120◦ angle with respect
to their neighbors on the same triangle, as shown for a single triangle in Fig. 6. This is
referred to as a three-sublattice Néel state. There have been many studies of the S = 1/2
variant of this model. This was, in fact, the system for which the RVB spin-liquid state
was initially proposed [92]. There is now, however, compelling numerical evidence for
the three-sublattice Néel order actually surviving the quantum fluctuations [93, 94].
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Example of QMC finite-size scaling scaling with QMC data
dimerized single-layer Heisenberg model

1.8 1.85 1.9 1.95
g

0.50

0.55

0.60

0.65

0.70

0.75

U
2  L = 8

 L = 16
 L = 32
 L =64
 L = 128

1.88 1.90 1.92 1.94
g

0.8

0.9

1.0

1.1

1.2

ρ sL

 L = 8
 L = 16
 L = 32
 L = 64
 L = 128

FIGURE 75. Binder cumulant (left) and spin stiffness (in the x direction) multiplied by the system
length (right) of the dimerized Heisenberg model. The crossing points of these curves for different L tend
toward the critical value of the coupling ratio g. Error bars are much smaller than the symbols.

quantities of interest. This approach is discussed for various dimerized systems in, e.g.,
Refs. [85, 88] (as well as in many older works). Another approach is to study systems
at inverse temperature β = Lz, where z is the dynamic critical exponent (which we dis-
cussed in Sec. 3.6) [231]. This is motivated in the following way, by a generalization of
the finite-size scaling hypothesis (64): In a quantum system the scaling function f (ξ/L)
should be replaced by a function with two arguments, f (ξ/L,ξτ/Lτ), where the correla-
tion length in the imaginary time dimension depends on the spatial correlation length ξ
according to ξτ ∼ ξ z (which defines the dynamic exponent) and the length of the system
in the imaginary time direction is Lτ = c/T ∼ β (where c is a velocity). If we choose
β ∝ Lz, then the scaling function can be written as f [ξ/L,(ξ/L)z], which is a function
of the single argument ξ/L. Thus, the finite-size scaling procedures can be used exactly
as in the classical systems discussed in Sec. (3.3.2). This is the case also if we take the
limit β → ∞ for each L (in practice finite β large enough for convergence to this limit),
because then ξτ/Lτ → 0, and there is again only one argument ξ/L left in the scaling
function.
There is plenty of evidence already that z = 1 in dimerized Heisenberg models, and

we will here use systems with β = L. This allows for studies of larger systems than in
the β → ∞ limit, although it is not a priori clear which approach is in the end better,
since the corrections to the leading finite-size scaling behavior can be different. Here we
use L up to L = 128. We will also test explicitly that systems with β = L exhibit behavior
consistent with z = 1, by studying quantities which depend on z.
We first locate the critical coupling by examining quantities that should be size

independent at gc. Fig. 75 shows the g dependence of both the Binder cumulant and the
spin stiffness, with the latter multiplied by L to compensate for the expected quantum
critical scaling form ρs ∼ 1/L, obtained the classical form (99) with d→ d + z = 3.
The Binder cumulant is defined according to (77), with the number of components

n = 3. Note, however, that (77) is defined with the full scalar product m2 = m ·m in
(75), whereas with the SSE method we here only compute the z component expectation
values 〈m2z 〉 and 〈m4z 〉 (the off-diagonal components being more difficult to evaluate
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• non-trivial non-magnetic ground states are possible, e.g.,
➡ resonating valence-bond (RVB) spin liquid
➡ valence-bond solid (VBS)

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·
More complex non-magnetic states; systems with 1 spin per unit cell

Non-magnetic states often have natural descriptions with valence bonds

= (⇥i⇤j � ⇤i⇥j)/
⌅

2
i j

• non-magnetic states dominated by short bonds

�

�

The basis including bonds of all lengths 
is overcomplete in the singlet sector
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Here, v is a spin-wave velocity, and s,u are parameters whose values
are adjusted to obtain Néel order in the ground state. In mean-field
theory, this happens for s < 0, where we have |h8i| = (�s)/(2u)
by minimization of the action S8. A standard computation of
the fluctuations about this saddle point shows that the low-energy
excitations are spin waves with two possible polarizations and an
energy ✏ that vanishes at small wavevectors k, ✏ = vk. These spin
waves correspond to local oscillations of 8 about an orientation
chosen by spontaneous breaking of the spin-rotation symmetry
in the Néel state, but which maintain low energy by fixing the
magnitude |8|. The spin waves also interact weakly with each other,
and the form of these interactions can also be described by S8.
All eVects of these interactions are completely captured by a single
energy scale, ⇢s, which is the ‘spin stiVness’, measuring the energy
required to slowly twist the orientation of the Néel order across a
large spatial region. At finite temperatures, the thermal fluctuations
of the interacting spin waves can have strong consequences. We
will not describe these here (because they are purely consequences
of classical thermal fluctuations), apart from noting4 that all these
thermal eVects can be expressed universally as functions of the
dimensionless ratio kBT/⇢s.

For future analysis, it is useful to have an alternative description
of the low-energy states above the Néel ordered state. For the
Néel state, this alternative description is, in a sense, a purely
mathematical exercise: it does not alter any of the low-energy
physical properties, and yields an identical low-temperature theory
for all observables when expressed in terms of kBT/⇢s. The key step
is to express the vector field 8 in terms of an S = 1/2 complex
spinor field z↵, where ↵ ="# by

8 = z⇤
↵� ↵�z� (3)

where � are the 2⇥2 Pauli matrices. Note that this mapping from
8 to z↵ is redundant. We can make a space-time-dependent change
in the phase of z↵ by the field ✓(x,⌧)

z↵ ! ei✓z↵ (4)

and leave 8 unchanged. All physical properties must therefore
also be invariant under equation (4), and so the quantum field
theory for z↵ has a U(1) gauge invariance, much like that found
in quantum electrodynamics. The eVective action for z↵ therefore
requires the introduction of an ‘emergent’ U(1) gauge field Aµ

(where µ = x,⌧ is a three-component space-time index). The field
Aµ is unrelated to the electromagnetic field, but is an internal
field that conveniently describes the couplings between the spin
excitations of the antiferromagnet. As we have noted above, in the
Néel state, expressing the spin-wave fluctuations in terms of z↵

and Aµ is a matter of choice, and the above theory for the vector
field 8 can serve us equally well. The distinction between the two
approaches appears when we move out of the Néel state across
quantum critical points into other phases (as we will see later):
in some of these phases, the emergent Aµ gauge field is no longer
optional, but an essential characterization of the ‘quantum order’ of
the phase. As we did for S8, we can write the quantum field theory
for z↵ and Aµ by the constraints of symmetry and gauge invariance,
which now yields

Sz =
Z

d2rd⌧


|(@µ � iAµ)z↵|2 + s|z↵|2 +u(|z↵|2)2

+ 1

2e2
0

(✏µ⌫l@⌫Al)
2

�
. (5)

For brevity, we have now used a ‘relativistically’ invariant notation,
and scaled away the spin-wave velocity v; the values of the couplings

s,u are diVerent from, but related to, those in S8. The Maxwell
action for Aµ is generated from short-distance z↵ fluctuations,
and it makes Aµ a dynamical field; its coupling e0 is unrelated
to the electron charge. The action Sz is a valid description of
the Néel state for s < 0 (the critical upper value of s will have
fluctuation corrections away from 0), where the gauge theory enters
a Higgs phase with hz↵i 6= 0. This description of the Néel state
as a Higgs phase has an analogy with the Weinberg–Salam theory
of weak interactions—in the latter case, it is hypothesized that
the condensation of a Higgs boson gives a mass to the W and Z
gauge bosons, whereas here the condensation of z↵ quenches the
Aµ gauge boson.
1. Triangular lattice. There have been numerous recent studies5 of
the spin excitations of the insulator Cs2CuCl4. Just as in La2CuO4,
the dominant spin excitations are S = 1/2 spins on the Cu ions,
but now they reside on the vertices of a triangular lattice, as
shown in Fig. 1b. Such an antiferromagnet is well described by
the hamiltonian H0, with a nearest-neighbour exchange J and i
on the sites of the triangular lattice. From numerical studies of
such spin systems6, and also from observations5 in Cs2CuCl4, the
ground state of H0 also has broken spin-rotation symmetry, but the
pattern of spin polarization is now quite diVerent. We now replace
equation (1) by

hSji = N1 cos(K · rj)+N2 sin(K · rj), (6)

where ri is the position of site i, and K = (4⇡/3a)(1,
p

3) for the
ordering pattern in Fig. 1b on a triangular lattice of spacing a. The
most important diVerence from equation (1) is that we now require
two orthogonal vectors N1,2 (N1 ·N2 = 0) to specify the degenerate
manifold of ground states. As for the square lattice, we can write
an eVective action for N1,2 constrained only by the symmetries of
the hamiltonian. Minimization of such an action shows that the
ordered state has N2

1 =N2
2 fixed to a value determined by parameters

in the hamiltonian, but are otherwise arbitrary. Moving on to
the analogue of the spinor representation in equation (3), we now
introduce another spinor w↵, which parameterizes N1,2 by7

N1 + iN2 = "↵� w�� ↵�w�, (7)

where "↵� is the antisymmetric tensor. It can be checked that w↵

transforms as an S = 1/2 spinor under spin rotations, and that
under translations by a lattice vector y w↵ ! e�iK ·y/2w↵. Apart
from these global symmetries, we also have the analogue of the
gauge invariance in equation (4). From the relationship of w↵ to
the physical observables in equation (7), we now find a Z2 gauge
transformation

w↵ ! ⌘w↵, (8)

where ⌘(r, ⌧) = ±1. This Z2 gauge invariance will play an
important role in the discussion in Section IID. The low-energy
theory of the antiferromagnetically ordered state described by
equation (6) can now be obtained from the eVective action for N1,2

or w↵. We will not write it out explicitly here, deferring it also to
Section IID.

B. COUPLED-DIMER ANTIFERROMAGNET

This spin model is shown in Fig. 2. We begin with the square-lattice
antiferromagnet in Fig. 1a, and weaken the bonds indicated by the
dashed lines to the value J/g . For g = 1, this model reduces to the
square-lattice model examined in Section IIA. For g > 1, the model
can be understood as a set of spin dimers, with the intra-dimer
exchange interaction J , and a weaker coupling between the dimers
of J/g . A number of Cu compounds, such as TlCuCl3 (refs 8,9)
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A is a U(1) symmetric gauge field • CP1 action (non-compact)

- proposed as critical theory separating Neel and VBS states
- describes VBS state when additional terms are added

= 〈!Si · !Sj〉

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·

VBS states and “deconfined” quantum criticality
Read, Sachdev (1989),....,Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

Neel-VBS transition in 2D
• generically continuous
• violating the “Landau rule”

stating 1st-order transition

Competing scenario: first-order transition (Kuklov et al., 2008)
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introduce another spinor w↵, which parameterizes N1,2 by7

N1 + iN2 = "↵� w�� ↵�w�, (7)

where "↵� is the antisymmetric tensor. It can be checked that w↵

transforms as an S = 1/2 spinor under spin rotations, and that
under translations by a lattice vector y w↵ ! e�iK ·y/2w↵. Apart
from these global symmetries, we also have the analogue of the
gauge invariance in equation (4). From the relationship of w↵ to
the physical observables in equation (7), we now find a Z2 gauge
transformation

w↵ ! ⌘w↵, (8)

where ⌘(r, ⌧) = ±1. This Z2 gauge invariance will play an
important role in the discussion in Section IID. The low-energy
theory of the antiferromagnetically ordered state described by
equation (6) can now be obtained from the eVective action for N1,2

or w↵. We will not write it out explicitly here, deferring it also to
Section IID.

B. COUPLED-DIMER ANTIFERROMAGNET

This spin model is shown in Fig. 2. We begin with the square-lattice
antiferromagnet in Fig. 1a, and weaken the bonds indicated by the
dashed lines to the value J/g . For g = 1, this model reduces to the
square-lattice model examined in Section IIA. For g > 1, the model
can be understood as a set of spin dimers, with the intra-dimer
exchange interaction J , and a weaker coupling between the dimers
of J/g . A number of Cu compounds, such as TlCuCl3 (refs 8,9)
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Description with spinor field 
(2-component complex vector) 

S!r · S!r+x̂ ! Re"!VBS#$− 1%x,

S!r · S!r+ŷ ! Im"!VBS#$− 1%y , $1.4%

and r= $x ,y% (here columnar states have !VBS
4 real and posi-

tive, while plaquette states have !VBS
4 real and negative). In

these states there is an energy gap for spin-carrying S=1
quasiparticle excitations; these “triplons”14 are quite distinct
from spin waves, and are instead adiabatically connected to
spin excitons in band insulators. A second class of more ex-
otic paramagnetic states is also possible15–19 in principle: in
these states the valence bond configurations resonate
amongst each other and form a “liquid.” The resulting state
has been argued to possess excitations with fractional spin
1/2 and interesting topological structure.
Our focus will be on the nature of the evolution of the

ground state between these various phases. Our primary ex-
ample is that between the ordered magnet and a valence
bond solid. We also discuss the phase transitions between
valence bond solid and “spin” liquid phases (see Sec. VIII).
Qualitatively similar phenomena will be shown to be ob-
tained at both these transitions.
Both the magnetic Néel state and the valence bond solid

are states of broken symmetry. The former breaks spin rota-
tion symmetry, and the latter the symmetry of lattice transla-
tions. The order parameters N! and !VBS associated with these
two different broken symmetries are very different. A LGW
picture of the evolution between these two distinct ground
states would be formulated in terms of an effective action
that is a functional of N! and !VBS. Such a construction would
suggest either a first-order transition, or passage through an
intermediate phase which breaks both kinds of symmetry or
an intermediate “disordered” state with neither order. A di-
rect second-order transition would be expected only by fur-
ther fine tuning to special multicritical points. Our central
thesis is that this expectation is wrong. A generic second-
order transition is possible between these two phases with
different broken symmetries. The resulting critical theory is,
however, unusual and not naturally described in terms of the
order-parameter fields of either phase. Instead, the natural
description is in terms of spin-1 /2 “spinon” or CP1 fields z"
("=1,2 is a spinor index). The Néel order parameter is bi-
linear in the spinons:

N! ! z†#! z . $1.5%

Here #! is the usual vector of Pauli matrices and multiplica-
tion of the spinor index is implied. The fields z" create single
spin-1 /2 quanta, “half” that of the spin-1 quanta created by
the Néel field N! .
Although we have proposed above that the critical theory

is naturally described in terms of the spinon fields and not
the order parameters of either phase, the reader may wonder
whether this is a unique theory, and that perhaps we have
overlooked some complicated formulation in terms of vari-
ables related to the two order parameters. It will become
clear from our analysis below that such a possibility is highly
unlikely, and we anticipate the main reasons here. As we

discuss below, a key point is that the topological defects
(namely the hedgehogs in space-time) of the Néel order pa-
rameter have the same quantum numbers of the order param-
eter of the VBS paramagnet. If we insisted on describing the
direct second-order transition between these phases in terms
of these order parameters, it would be necessary to associate
the VBS order parameter with the hedgehogs of the Néel
order parameter. This means that the two order-parameter
fields will have long-ranged “statistical” interactions with
each other. Consequently there will be no local theory which
includes only the two order-parameter fields (but no other
fields). It is these difficulties that force the necessity for an
alternate description which is conveniently provided by the
spinon degrees of freedom.
The spinon fields z" defined in Eq. (1.5) have a U$1%

“gauge” redundancy. Specifically the local phase rotation

z→ ei$$r,%%z $1.6%

leaves the Néel vector invariant and hence is a gauge degree
of freedom. Here % is the imaginary time coordinate. Thus
the spinons are coupled to a U$1% gauge field a&$r ,%% (we
will use the Greek indices & ,' , . . . to represent the three
space-time indices x ,y ,%). Our central thesis—substantiated
by a variety of arguments to follow—is that the critical field
theory for the Néel-VBS transition is just the simple con-
tinuum action Sz=&d2 rd% Lz, and

Lz ='
a=1

N

($!& − ia&%za(2 + s(z(2 + u$(z(2%2 + ($)&'(!'a(%2,

$1.7%

where N=2 is the number of z components (later we will
consider the case of general N), (z(2)'a=1

N (za(2, and the value
of s is to be tuned to a critical value s=sc so that Lz is at its
scale-invariant critical point. The same action with a simple
modification also describes the critical field theory for sys-
tems with easy-plane anisotropy, with the addition of the
simple term

Lep = w(z1(2(z2(2, $1.8%

with w*0. We will discuss in more detail later why these
would describe stable critical points—perhaps the most di-
rect evidence comes from the numerical simulations reported
in Ref. 23 of a lattice model of a CP1 field coupled to a
noncompact gauge field [a lattice version of Eq. (1.7)],
where a continuous transition was found in both the isotropic
and easy-plane cases.
How can this action describe the onset of VBS order

when it does not contain !VBS, and the z" are closely related
to the Néel order parameter? In writing Eq. (1.7), we have
tacitly assumed a& to be a single-valued continuous field. In
a more careful lattice implementation of Eq. (1.5), however,
the resulting gauge field that appears is compact, i.e., defined
only modulo 2+. This allows for the presence of topological
defects occurring at a single instant of space-time (“instan-
tons”) called monopoles, at which magnetic flux !xay−!yax is
created or destroyed in integer multiples of 2+. In general,
Eq. (1.7) should thus be supplemented by terms which create

QUANTUM CRITICALITY BEYOND THE LANDAU-… PHYSICAL REVIEW B 70, 144407 (2004)
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gauge redundancy:

• large-N calculations for CPN-1 theory
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The Heisenberg interaction is equivalent to a singlet-projector

Cij |�s
ij⇥ = |�s

ij⇥, Cij |�tm
ij ⇥ = 0 (m = �1, 0, 1)

Cij = 1
4 � ⇤Si · ⇤Sj

VBS states from multi-spin interactions (Sandvik, 2007)

• we can construct models with products of singlet projectors
• no frustration in the conventional sense (QMC can be used)
• correlated singlet projection reduces the antiferromagnetic order

+ all translations
   and rotations

The “J-Q2” model with two projectors is
H = �J

�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Has Néel-VBS transition, appears to be continuous
• Not a realistic microscopic model for materials
• Intended to study Néel-VBS transition (universal physics)

In what systems can Neel-VBS transition be studied with QMC?
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Néel-VBS transition in the J-Q model
T=0 projector QMC results (no approximations; finite size)
(Sandvik, 2007; Lou, Sandvik, Kawashima, 2009)

VBS vector order parameter (Dx,Dy) (x and y lattice orientations)

Dx =
1
N

N�

i=1

(�1)xiSi · Si+x̂, Dy =
1
N

N�

i=1

(�1)yiSi · Si+ŷ

M2 = ⇥ ⌅M · ⌅M⇤, D2 = ⇥D2
x + D2

y⇤
No symmetry-breaking in simulations; study the squares

Data “collapse” for different system 
sizes L of AL1+η graphed vs (q-qc)L1/ν

⌅M =
1
N

�

i

(�1)xi+yi ⌅Si

Néel order parameter (staggered magnetization)

Finite-size scaling: a critical squared order parameter (A) scales as

coupling ratioA(L, q) = L�(1+�)f [(q � qc)L1/⇥ ]

q =
Q

J +Q
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J-Q2 model; qc=0.961(1)

�s = 0.35(2)
�d = 0.20(2)
⇥ = 0.67(1)

J-Q3 model; qc=0.600(3)

�s = 0.33(2)
�d = 0.20(2)
⇥ = 0.69(2)

Exponents universal 
(same within error bars)

J �Q2

J �Q3
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Making connections with field theory
The non-compact CPN-1 model has been studied for large N
• large-N expansion, SU(N) symmetry

⌘s = 1� 32

⇡2N
+ . . .

Senthil et al. (2004), Kaul & Sachdev (2009)

• older results, using relationship between monopoles in the 
field theory and the VBS order parameter   Read & Sachdev (1989)

⌘d = 0.2492⇥N � 1 + . . .

How can we test these results?
QMC studies of spin hamiltonians with SU(N) spins

2D SU(N) Heisenberg model [Harada et al. (2003), Beach et al. (2010)]
• Fundamental and conjugate repr. of SU(N) on A,B sublattices
• No sign problem in QMC
• Same repr. used in analytical large-N calculations
• Neel ground state for N<5, VBS for N=5,6,... 

...➝

SU(2) ➝ SU(N)

10Wednesday, October 10, 12



the spin operators previously used in mean-field2 and QMC
calculations18 of the SU!N" Heisenberg model. We find con-
tinuous AF-VBS transitions also for N=3 and 4 !whereas for
N!4 the system is VBS ordered18,19 for all Q2!0".

An open problem in previous studies of the J-Q2 model
was that the order-parameter distribution inside the VBS
phase did not show the expected fourfold symmetry. Instead,
the distribution was always U!1" symmetric.7,9 An emergent
U!1" symmetry close to criticality is indeed predicted by the
field theory3 as a consequence of a dangerously irrelevant
operator, but deep inside the VBS phase the order parameter
should exhibit Z4 symmetry !which has been observed in
other quantum models19,20". With the J-Q3 model and the
N!2 versions of the J-Q2 model, we can now reach suffi-
ciently deep inside the VBS phase to observe the expected
U!1"−Z4 crossover. We present quantitative finite-size scal-
ing results for the exponent governing the crossover.

For all the models, we compute the square of the stag-
gered magnetization, M2= #M ·M$, where

M =
1
L2%

x,y
!− 1"x+ySx,y !5"

is the operator of the AF !spin" order parameter. We define
the columnar VBS order parameter in terms of nearest-
neighbor !dimer" correlators

Dx =
1
L2%

x,y
!− 1"xSx,y · Sx+1,y , !6"

and Dy defined analogously. We compute the square D2

= #Dx
2+Dy

2$ and also study the probability distribution
P!Dx ,Dy", with Dx and Dy evaluated in the configurations
generated in the QMC sampling !as in Ref. 7". To extract the
critical points and exponents, we use standard finite-size
scaling forms for the order parameters,

M2 = L1+"sFs!&q − qc'L1/#" , !7"

D2 = L1+"dFd!&q − qc'L1/#" , !8"

where "s and "d are the exponents governing the spin and
dimer correlation functions, respectively, at criticality !the
anomalous dimensions" and 1+"s,d=2$s,d /#. Here we as-
sume a dynamic exponent z=1, in accord with previous stud-
ies of the J-Q2 model,7,8 and use a single correlation length
exponent #, as in the theory.3

We first present results for the SU!2" models. Defining
coupling ratios q=Qp / !J+Qp", we find critical points
qc=0.961!1" for p=2 and qc=0.600!5" for p=3. The former
agrees with previous estimates.7–9 Standard data collapse
plots according to Eqs. !7" and !8" are shown in Fig. 2. The
critical exponents are listed on the first two lines of Table I.
Here it is very significant that all the exponents are the same
for the two models. This supports the notion of a universal
deconfined quantum-critical point. Note that the order pa-
rameters decay as L1+"s,d at the common critical point q=qc.
At a first-order transition, the order parameters should in-
stead be size independent at qc, due to phase coexistence.

Comparing with previous results for the J-Q2 model, the
results for smaller systems in Ref. 7 were consistent with

"s="d !with a value between those found here", but the
present results for larger systems clearly show that the spin
and dimer exponents are different. The theory does not make
any specific predictions for a relationship between "s and "d,
and they can be expected to be different. The exponents "s
and # are in good agreement with values obtained using
finite-temperature scaling8 !where "d was not determined".

Next, we discuss the J-Q2 model generalized to SU!N"
spins. Considering first the Heisenberg model, the Hamil-
tonian can be written as

HSU!N" =
J

N%
#ij$

Si
%$S j

$% = − J%
#ij$

Cij +
2JL2

N2 , !9"

where Si
%$ is the generator of the SU!N" algebra, with

% ,$=1,2 , . . . ,N the different “colors,” and Cij is the gener-
alization of Eq. !2" to SU!N". As in Ref. 18 we focus on the
simplest case, where the spins on sublattice A are expressed
in the fundamental representation !i.e., with a single-box
Young tableau". Spins on sublattice B are SU!N" conjugates
!dual representation" of those on A !a Young tableau with one
column and N−1 rows". The states in this representation can
be written in terms of permutations P of the boxes, with

TABLE I. Critical exponent for all the models studied. The
crossover exponent a4 cannot be determined for the SU!2" J-Q2
model because no crossover is observed for L&64.

Model, symmetry "s "d # a4

J-Q2, SU!2" 0.35!2" 0.20!2" 0.67!1"
J-Q3, SU!2" 0.33!2" 0.20!2" 0.69!2" 1.20!5"
J-Q2, SU!3" 0.38!3" 0.42!3" 0.65!3" 1.6!2"
J-Q2, SU!4" 0.42!5" 0.64!5" 0.70!2" 1.5!2"

FIG. 2. !Color online" Finite-size scaling of the squared AF and
VBS order parameters of the J-Q2 and J-Q3 models.

LOU, SANDVIK, AND KAWASHIMA PHYSICAL REVIEW B 80, 1!R" !2009"
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J-Q models with SU(N) spins
Lou, Sandvik, Kawashima, PRB (2009)

Heisenberg model (Q=0) has
Neel ground state for N=2,3,4 ⇒
Neel - VBS transition vs Q/J

⌘s = 1� 32

⇡2N
+ . . .

⌘d = 0.2492⇥N � 1 + . . .

How can we reach larger N to
really study the large-N limit? 

11Wednesday, October 10, 12



J1-J2 Heisenberg model with SU(N) spins

H =
�

�i,j⇥

Jij
⌅Si · ⌅Sj

= J1

= J2 < 0

> 0

Ferromagnetic 2nd-neighbor couplings enhance Neel order
(Kaul, Sandvik, PRL 2012)

2

phase transition, with no signs of discontinuities even on
the largest systems sizes studied (L ⇥ L spins with L
up to 128). Most remarkably, the anomalous dimensions
of the Néel and VBS correlation functions of the model
for large-N shows quantitative agreement with the ana-
lytically known [20–22] scaling dimensions from the 1/N
expansions of the non-compact CPN�1 model.

The J1-J2 model.—Our SU(N) symmetric model is de-
fined with a local Hilbert space of N states on each site of
the square lattice illustrated in Fig. 1(a). We adopt the
representation used previously in both analytic [4] and
numerical [18, 19] works on bipartite lattices, where the
sublattice-A states transform under rotations with the
fundamental representation of SU(N), and the B sub-
lattice states transform with the conjugate of this rep-
resentation; |↵iA ! U↵� |�iA, |↵iB ! U⇤

↵� |�iB . The
state

P
↵ |↵iA|↵iB is, thus, an SU(N) singlet. Pij is de-

fined to be the projector onto this singlet between two
sites i and j on di↵erent sublattices, i.e., Hij = �Pij/N
is the SU(N) generalization of the familiar Heisenberg
antiferromagnetic exchange (up to a constant). An-
other simple SU(N) invariant interaction is the permuta-
tion operator between two sites on the same sublattice,
⇧ij |↵�i = |�↵i, so that Hij = �⇧ij/N is the generaliza-
tion of the the familiar ferromagnetic Heisenberg inter-
action. The Hamiltonian we study here is given by

H = �J1

N

X

hiji

Pij � J2

N

X

hhijii

⇧ij , (1)

where hiji and hhijii denote first (A-B) and second (A-A
and B-B) neighbor sites, respectively.

With J2 = 0 it is now well known that the J1 model
is Néel ordered for N = 2, 3, 4 and develops VBS order
for N � 5 [18, 19]. On the other hand, with J1 = 0 each
sublattice forms a trivial ferromagnet. A small J1 ⌧ J2

will clearly lock the individual sublattice magnetizations
into a collective Néel ordered state. Thus, for each N > 5
there must be an intermediate value of g ⌘ J2/J1 at
which there is a quantum transition between these two
phases (as we do not expect any other intervening phase).

QMC simulations.—All o↵-diagonal matrix elements
in Eq. (1) are explicitly negative and, hence, the model
is free of QMC sign problems [and it also satisfies Mar-
shall’s sign criterion, ensuring an SU(N) singlet ground
state]. To obtain exact (within statistical errors) numer-
ical results for its properties on large L ⇥ L lattices, we
use the stochastic series expansion QMC method with
global loop updates [23–25]. Throughout this work, we
set J1 = 1 and the inverse temperature � = L/J1 (re-
flecting the expected [6] dynamic exponent z = 1).

We characterize the Néel phase as one with a finite spin
sti↵ness ⇢s (measured by the fluctuations of the winding
number W of world lines; �⇢s = hW 2i [25, 26]). In the
magnetic phase, the static (! = 0) Néel order-parameter
susceptibility �N diverges with the “quantum volume”

0 0.1 0.20

0.2

0.4

0.6

0.8 L=8
L=16
L=32
L=64
L=128

0 0.1 0.20

0.2

0.4

0.6

0.8

SU(5) SU(5)

⇠VBS

L
�⇢s

g g

FIG. 2. (Color online) Curve crossings used to locate the
critical point for magnetic [VBS] order in the SU(5) J1-J2

model are shown in the left [right] panel. The quantity �⇢s
[⇠VBS/L] diverges in the magnetic [VBS] phase and goes to
zero in the non-magnetic [non-VBS] phase when � = L/J1.
At a point where magnetic [VBS] fluctuations are critical, �⇢s
[⇠VBS/L] becomes L-independent. These properties result in
crossings of curves for di↵erent L at the critical point. The
width of the vertical line shows the range of estimates of the
common Néel-VBS critical point; gc = 1.615(10). Fig. 3 shows
the analysis of the crossing points giving this result.

of the system according to �N ⇠ �L2. We define the
SU(N) VBS correlation function using the operator P de-
fined above in Eq. (1); CV (r, ⌧) = hP

0,0+x

(0)P
r,r+x

(⌧)i�
hP

0,0+x

(0)i2. When Fourier transformed at ! = 0,q =
(⇡, 0) it gives �V . This quantity can be used to test
for VBS order since it diverges in the VBS phase as
�V ⇠ �L2. We also use the standard definition of the
correlation length of the VBS order ⇠V as the square root
of the second moment of the spatial correlation function
CV . Using these quantities we tested for long-range Néel
and VBS order as the ratio g = J2/J1 is varied for each
N and arrived at the phase diagram shown in Fig. 1(b).
We elaborate on the quantitative analysis below.
Nature of the phase transition.—Fig. 2 shows QMC

results for �⇢s and ⇠VBS/L as functions of the cou-
pling ratio g for the SU(5) model on lattices of size
L = 8, 16, 32, 64, and 128. The quantum-critical point for
the magnetic and VBS orders can be located by analysing
crossing points versus g in �⇢s and ⇠VBS/L, respectively,
computed on two di↵erent system sizes. As is clearly
evidenced directly from this raw data, there are cross-
ing points within a narrow window of g for both Néel
and VBS orders, and these crossing points drift toward
a common value gc with increasing L.

In Fig. 3 we have plotted the crossing points between
L and L/2 curves of �⇢s and ⇠VBS/L for SU(N) sys-
tems with N = 5, 6, 10, and 12. Numerical extrapola-
tions of the crossing data for both Néel and VBS orders
in the SU(5) and SU(6) cases (top two panels) provide
compelling evidence that in the thermodynamic limit
the crossing points for both order-parameters approach

Pij = SU(N) singlet projector
Πij = permutation operator

SU(N) generalization:
g = J2/J1

There is Neel order for all N>4
•Neel - VBS transition accessible 

with QMC for large N
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Comparing results: J1-J2, J-Q, NCCPN-1

Conclusion: Trends for large N show excellent agreement
• QMC results predict size of the next 1/N corrections
• Field-theory challenge: Compute the next correction
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Joint probability distribution P(Dx,Dy) of x and y VBS order

D2 = ⇤D2
x + D2

y⌅, Dx =
1
N

N�

i=1

(�1)xiSi · Si+x̂, Dy =
1
N

N�

i=1

(�1)yiSi · Si+ŷ

Dx Dx

Dy Dy

columnar plaquette
The squared order parameter cannot distinguish between: 

J-Q2 model, J=0, L=128

Magnitude of D has formed but
the VBS “angle” is fluctuating

Nature of the VBS fluctuations in the J-Q model - SU(2)
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VBS fluctuations in the theory of deconfined quantum-critical points
[Senthil et al., 2004]

➣ plaquette and columnar VBS are almost degenerate
➣ tunneling barrier seperating the two
• barrier increases with increasing system size L
• barrier decreases as the critical point is approached

➣ emergent U(1) symmetry
➣ ring-shaped distribution expected in the VBS phase for small systems
     L < Λ ∼ ξa,  a>1  (❨related to spinon confinement length)❩
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Creating a more rubust VBS order - the J-Q3 model

This model has a more robust VBS phase
• can the symmetry cross-over be detected?

q = 0.635
(qc � 0.60)

L = 32

q = 0.85

L = 32

J. Lou,  A.W. Sandvik,  N. Kawashima,  PRB (2009)

H = �J
�

�ij⇥

Cij �Q3

�

�ijklmn⇥

CijCklCmn Cij = 1
4 � ⇤Si · ⇤Sj

q =
Q3

J + Q3
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Analysis of the VBS symmetry cross-over   (J-Q3 model)
J. Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

Finite-size scaling gives U(1) length-scale

� ⇥ �1+a

⇥ (q � qc)�(1+a)�

D4 =
�

rdr

�
d�P (r, �) cos(4�)

 Z4-sensitive VBS order parameter

SU(3) : a = 0.6± 0.2

SU(4) : a = 0.5± 0.2

a = 0.20± 0.05

L1/(1+a)⌫(q � qc)/qc
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Signs of Z4 symmetry in the original J-Q model?

L=128, J=0
P(Dx,Dy)

L=32, L=64; J=0
Weak but statistically
significant angular
dependence consistent
with columnar VBS
(L=128 still too noisy)
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The simulations take a long time to rotate the VBS angle
L=128: 105 measurements require > 1 day of computation

building 100×105 measurements 105 measurements

19Wednesday, October 10, 12



Conclusions
Large-scale QMC calculations of the J-Q model
• scaling behavior consistent with a continuous Neel-VBS transition

- with weak scaling corrections; maybe logarithmic
• no signatures of first-order behavior

- cannot be ruled out as a matter of principle, but seems unlikely
• emergent U(1) symmetric VBS order parameter

Relation to deconfined quantum-criticality of Senthil et al.
• Main features in good agreement

- z=1 scaling
- “large” anomalous dimension ηspin
- emergent U(1) symmetry

• NCCPN-1 field theory for large N 
   [Senthil et al. (PRB 2004), Kaul & Sachdev (PRB 2008)]

- no log-corrections found analytically
- difficult to extend to N=2 (3,4) in analytical work
- could there be log-corrections for N=2 (or general “small” N)?

- claimed recently by Nogueira & Sudbo (arXiv 2011)

SU(N) J-Q model and J1-J2 Heisenberg model
• critical correlation exponents approach large-N results
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Jiang et a. (2008)

Linear divergence (first-order)?

Could the transition be first-order?
Jiang, Nyfeler, Chandrasekharan, Wiese, JSTAT, P02009 (2008)
From an antiferromagnet to a valence bond solid: evidence for a first order phase transition
Kuklov, Matsumoto, Prokof'ev, Svistunov, Troyer, PRL 101, 050405 (2008)
Deconfined Criticality: Generic First-Order Transition in the SU(2) Symmetry Case

One can never, strictly speaking, rule out a very weak first-order transition
• but are there any real signs of this in the J-Q model?
The above studies were based on scaling of winding numbers
• claimed signs of phase coexistence (finite spin stiffness and susceptibility)

�W 2⇥ = �W 2
x ⇥ + �W 2

y ⇥ + �W 2
� ⇥

= 2�⇥s +
4N

�
⇤

z = 1,� ⇥ L �
⇥s ⇥ L�1, ⇤ ⇥ L�1

� ⇤W 2⌅ = constant

At at a critical point
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Sandvik, PRL 104, 177201 (2010)Recent large-scale QMC results

� � L (� = L, � = L/4)

• Stochastic series expansion
• up to 256×256 lattices

Same finite-size definition 
of critical point as used by 
Kuklov et al. and Jiang et al.
• fixed probability of the 

generated configurations 
having Wx=Wy=Wτ=0

Logarithmic divergence of <W2>
• scaling correction (not 1st-order)
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U2 < 0 at a first-order
transition
• no signs of U2<0 in 

SSE QMC results for 
L up to 256

Let’s look at a well known signal of a first-order transition:

Q2 =
�m4⇥
�m2⇥2

Binder ratio

Binder cumulant

Size independent
(curve crossings) at
criticality

U2 = (5� 3Q2)/2

Example: Scalar order parameter at classical transition

Phase coexistence
leads to U2 → -∞
at 1st-order trans
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H = �J
�

�ij⇥

Cij �Q3

�

�ijklmn⇥

CijCklCmn Cij = 1
4 � ⇤Si · ⇤Sj

Example of a first-order Néel - VBS transition
[A. Sen, A. Sandvik, PRB (2010)]J-Q model with staggered VBS phase

• no local VBS fluctuations favoring emergent U(1) symmetry
VBS

• clear signs of phase coexistence 

Binder cumulant
of the Neel order
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J/Q=0.040

Any signs of coexistence in the standard J-Q VBS distributions?
• L=128 data close to the transition
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J/Q=0.041
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J/Q=0.042
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J/Q=0.043
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J/Q=0.044
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J/Q=0.045
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J/Q=0.046
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� � T [1 + a ln(1/T )] (L⇥⇤)

ξ gives z≈0.82
• consistent with ρs(L)
• inconsistent with χ(T)

- demands χ/T→0 for T→0

logarithmic corrections

Most likely z=1
• logs also in impurity response 
   Banerjee, Damle, Alet, PRB 2010
• marginal operator causing logs?

�s �
ln(L/L0)

L
(T ⇥ 0)

� = 0.60

AWS, PRL 104, 177201 (2010)

Could the behavior indicate z≠1?
� � T�(1/z)

⇤ � T 2/z�1

⇥s � L�z

Governed by the dynamic 
exponent z (=1 in the theory)
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T>0 quantum-criticality - conventional O(3) case 
Theory: Chakravarty, Halperin, Nelson (1989),  Chubukov, Sachdev, Ye (1994)
Realized in various dimerized S=1/2 Heisenberg models

Neel - non-magnetic T=0 transition vs g=J’/J
• plain singlet-product (+ fluct) state for g>gc

H = J
�

⇥ij⇤

Si · Sj

+ J �
�

⇥ij⇤�
Si · Sj

T>0 quantum-critical regime
• magnons (S=1) remain as
   the elementary excitations
   at the critical point
• dynamic exponent z=1
• scaling behavior:

� � T�1

⇥ � T

C � T 2

• confirmed by QMC
• some issues remain in (c)

T = 0 Néel order non-magnetic

high-T , lattice e�ects

cross-over “phase diagram”

3D O(3) (Heisenberg) universality
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Consequences of spinons at T>0 in the J-Q model?

Phenomenological model of a spinon gas at T>0
• bosonic spinons, linearly dispersing at T=0; ε(k)=ck
• thermal length ξ(T); assuming free spinons for momenta q>1/ξ
‣ contributions to thermodynamics from these spinons

Infrared momentum cut-off 1/ξ equivalent to thermal “gap” Δ=1/ξ
�(k) =

�
c2k2 + �2

J-Q model: critical ξ diverges faster than 1/T as T→0 (Δ/T→0) ➨
• infrared divergent integral leads to weak T→0 divergence (log) of χ/T 
• weaker correction to T2 form of C

� � T�1

⇥ � T

C � T 2

Standard QC forms

are weakly violated.
Specific heat obeys 
the standard form

J-Q QMC results:expected phases and cross-overs
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Critical-point estimates
J-J’ model: (J’/J)c=1.90948(4),  (using J’/J=1.9095)
J-Q model: (J/Q)c=0.04498(3),  (using J/Q=0.0450)

J-J’ model: expected 1/T divergence
J-Q model: faster than 1/T divergence 
• logarithmic or power correction (data consistent with either form)

T>0 critical spin correlation length 
• L up to 512; converged to thermodynamic limit for T considered

� =
1
q

�
S(Q)

S(Q� q)
� 1, q =

2⇥

L

Spin correlation lengths; J-J’ (columnar) and J-Q models 
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Can we find relationships between the different anomalies?
• can this provide a fingerprint for spinons?

M = µF

⇤ �
1

e��/T � 1
� 1

e�+/T � 1

⇥
d2k

(2⇤)2

= �2µ2FB

⇤
⇧n

⇧�

d2k

(2⇤)2

= µ2F
TB

4⇤c2

⇤ �

0

xdx

sinh2[ 12
⌅

x2 + (�/T )2]

Magnetization to linear order (bosonic excitations)

F is a degeneracy factor; F=2 (spinons/anti-spinons), F=1 (magnons)
Conventional quantum-criticality: Δ/T→m≈0.96 (Chubukov & Sachdev 1994)
• computed using large-N calculations (nonlinear σ-model)
In the J-Q model (deconfined criticality?): Δ/T→0 (log-1(1/T) or Ta )
• infrared divergent integral; significant consequences

Gas of non-interacting spinons (S=1/2) or magnons (S=1) at T>0

�±(k) =
�

c2k2 + �2 ± µB ⇥ �(k)± µB

µ = 1/2 (spinons), µ = 1 (magnons)

(B = magnetic field)
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� ⇥

0

xdx

sinh2( 1
2

⇥
x2 + p2)

=
4p

1� e�p
� 4 ln(ep � 1) p = �/T

⇥1 = (1.0760/�c2)T

⇥1/2 =
T

2�c2

⇧
1 + a ln

�mc

T

⇥
+

1
24

⇤
T

mc

⌅2a
⌃

Gives the low-T  magnetic susceptibility

Specific heat

CS = (2S + 1)F
�

�(k)
⇤n(�)
⇤T

d2k

(2⇥)2

C1 = [36�(3)/5⇥c2]T 2

C1/2 =
2T 2

⇥c2

⌥
6�(3)�

⇤
T

c

⌅2a ⇧
3
2

+ a + a(1 + a) ln
� c

T

⇥⌃�
(Chubukov & Sachdev)

Using these gaps for spinon (S=1/2) and magnon (S=1) calculations:

(mc and a from J-Q QMC data)
(Chubukov & Sachdev)

�1/2/T = 1/(T �) = (T/mc)a

�1/T = m = 0.96
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�/T

QMC data fits: J-J’ (magnon forms) and J-Q models (spinon forms)
• J-J’: velocity fitted in E/T3, polynomial fit for Χ/T (velocities agree to 2%)
• J-Q: only velocity is fitted; values from Χ/T and C agree within 2%

(E�E0)/T3
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F� =
µ2F

c2
�

� 0.074, FC =
(2S + 1)F

c2
C

� 0.615

J-Q model: effective spin of the excitations
Under the assumption of spinons, S=1/2, μ=1/2, F=2 (spinon/anti-spinon):

Should have cχ=cC.  S≠1/2? For both spinons (S=1/2) and magnons (S=1)

c� = 2.60
cC = 2.55

The J-Q results are consistent 
with S=1/2 (spinons) but not
consistent with S=1 (magnons)
Could this be a coincidence?
• assumed Δ=1/ξ
• may be Δ=d/ξ, d≈1
• results depend weakly on d
Independent estimate of the
velocity would be good
• can be done

- imaginary time correlations

Treat S as continuous variable and find effective S given the J-Q data: 

S2

2S + 1

J-Q

µ = S, F = 1/S � F�

FC
=

S2

2S + 1

39Wednesday, October 10, 12


