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the influence of disorder scattering in imperfect crystals.
Smit argued that the main source of the AHE currents
was asymmetric !skew" scattering from impurities caused
by the spin-orbit interaction !SOI" !Smit, 1955, 1958".
This AHE picture predicted that Rs#!xx !"=1". Berger,
on the other hand, argued that the main source of the
AHE current was the side jump experienced by quasi-
particles upon scattering from spin-orbit coupled impu-
rities. The side-jump mechanism could !confusingly" be
viewed as a consequence of a KL anomalous velocity
mechanism acting while a quasiparticle was under the
influence of the electric field due to an impurity. The
side-jump AHE current was viewed as the product of
the side jump per scattering event and the scattering rate
!Berger, 1970". One puzzling aspect of this semiclassical
theory was that all dependence on the impurity density
and strength seemingly dropped out. As a result, it pre-
dicted Rs#!xx

2 with an exponent " identical to that of
the KL mechanism. The side-jump mechanism therefore
yielded a contribution to the Hall conductivity which
was seemingly independent of the density or strength of
scatterers. In the decade 1970–1980, a lively AHE de-
bate was waged largely between the proponents of these
two extrinsic theories. The three main mechanisms con-
sidered in this early history are shown schematically in
Fig. 3.

Some of the confusion in experimental studies
stemmed from a hazy distinction between the KL
mechanism and the side-jump mechanism, a poor under-
standing of how the effects competed at a microscopic
level, and a lack of systematic experimental studies in a
diverse set of materials.

One aspect of the confusion may be illustrated by con-
trasting the case of a high-purity monodomain ferromag-
net, which produces a spontaneous AHE current pro-
portional to Mz, with the case of a material containing
magnetic impurities !e.g., Mn" embedded in a nonmag-
netic host such as Cu !the dilute Kondo system". In a
field H, the latter also displays an AHE current propor-

tional to the induced M=#H, with # as the susceptibility
!Fert and Jaoul, 1972". However, in zero H, time-
reversal invariance !TRI" is spontaneously broken in the
former but not in the latter. Throughout the period
1960–1989, the two Hall effects were often regarded as a
common phenomenon that should be understood micro-
scopically on the same terms. It now seems clear that
this view impeded progress.

In the mid-1980s, interest in the AHE problem had
waned significantly. The large body of the Hall data gar-
nered from experiments on dilute Kondo systems in the
previous two decades showed that !xy#! and therefore
appeared to favor the skew-scattering mechanism. The
points of controversy remained unsettled, however, and
the topic was still mired in confusion.

Since the 1980s, the quantum Hall effect in two-
dimensional !2D" electron systems in semiconductor
heterostructures has become a major field of research in
physics !Prange and Girvin, 1987". The accurate quanti-
zation of the Hall conductance is the hallmark of this
phenomenon. Both the integer !Thouless et al., 1982"
and fractional quantum Hall effects can be explained in
terms of the topological properties of the electronic
wave functions. For the case of electrons in a two-
dimensional crystal, it has been found that the Hall con-
ductance is connected to the topological integer !Chern
number" defined for the Bloch wave function over the
first-Brillouin zone !Thouless et al., 1982". This way of
thinking about the quantum Hall effect began to have a
deep impact on the AHE problem starting around 1998.
Theoretical interest in the Berry phase and in its relation
to transport phenomena, coupled with many develop-
ments in the growth of novel complex magnetic systems
with strong spin-orbit coupling !notably the manganites,
pyrochlores, and spinels", led to a strong resurgence of
interest in the AHE and eventually to deeper under-
standing.

Since 2003 many systematic studies, both theoretical
and experimental, have led to a better understanding of
the AHE in the metallic regime and to the recognition
of new unexplored regimes that present challenges to
future researchers. As it is often the case in condensed
matter physics, attempts to understand this complex and
fascinating phenomenon have motivated researchers to
couple fundamental and sophisticated mathematical
concepts to real-world material issues. The aim of this
review is to survey recent experimental progress in the
field and to present the theories in a systematic fashion.
Researchers are now able to understand the links be-
tween different views on the AHE previously thought to
be in conflict. Despite the progress in recent years, un-
derstanding is still incomplete. We highlight some in-
triguing questions that remain and speculate on the most
promising avenues for future exploration. In this paper,
we focus, in particular, on reports that have contributed
significantly to the modern view of the AHE. For previ-
ous reviews, see Pugh and Rostoker !1953" and Hurd
!1972". For more recent short overviews focused on the
topological aspects of the AHE, see Sinova, Jungwirth,
and Cerne !2004" and Nagaosa !2006". A review of the

a) Intrinsic deflection
Interband coherence induced by an
t l l t i fi ld i i t Eexternal electric field gives rise to a

velocity contribution perpendicular to
the field direction. These currents do
not sum to zero in ferromagnets.

Electrons have an anomalous velocity perpendicular to
the electric field related to their Berry’s phase curvaturenbEe

k
E

dt
rd

!"
#
#$

!
"

!

"

b) Side jump

The electron velocity is deflected in opposite directions by the opposite
electric fields experienced upon approaching and leaving an impurity.p p pp g g p y
The time-integrated velocity deflection is the side jump.

c) Skew scattering

Asymmetric scattering due toAsymmetric scattering due to
the effective spin-orbit coupling
of the electron or the impurity.

FIG. 3. !Color online" Illustration of the three main mecha-
nisms that can give rise to an AHE. In any real material all of
these mechanisms act to influence electron motion.
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and Lippert !1932" established that an empirical relation
between !xy, Hz, and Mz,

!xy = R0Hz + RsMz, !1.1"

applies to many materials over a broad range of external
magnetic fields. The second term represents the Hall-
effect contribution due to the spontaneous magnetiza-
tion. This AHE is the subject of this paper. Unlike R0,
which was already understood to depend mainly on the
density of carriers, Rs was found to depend subtly on a
variety of material specific parameters and, in particular,
on the longitudinal resistivity !xx=!.

In 1954, Karplus and Luttinger !KL" !Karplus and
Luttinger, 1954" proposed a theory for the AHE that, in
hindsight, provided a crucial step in unraveling the AHE
problem. KL showed that when an external electric field
is applied to a solid, electrons acquire an additional con-
tribution to their group velocity. KL’s anomalous velocity
was perpendicular to the electric field and therefore
could contribute to the Hall effects. In the case of ferro-
magnetic conductors, the sum of the anomalous velocity
over all occupied band states can be nonzero, implying a
contribution to the Hall conductivity "xy. Because this
contribution depends only on the band structure and is
largely independent of scattering, it has recently been
referred to as the intrinsic contribution to the AHE.
When the conductivity tensor is inverted, the intrinsic
AHE yields a contribution to !xy#"xy /"xx

2 and therefore
it is proportional to !2. The anomalous velocity is depen-
dent only on the perfect crystal Hamiltonian and can be
related to changes in the phase of Bloch state wave
packets when an electric field causes them to evolve in
crystal momentum space !Chang and Niu, 1996;
Sundaram and Niu, 1999; Bohm et al., 2003; Xiao and
Niu, 2009". As mentioned, the KL theory anticipated by
several decades the modern interest in the Berry phase
and the Berry curvature review here effects, particularly
in momentum space.

Early experiments to measure the relationship be-
tween !xy and ! generally assumed to be of the power-
law form, i.e., !xy$!#, mostly involved plotting !xy !or
Rs" vs !, measured in a single sample over a broad inter-
val of T !typically 77–300 K". As we explain below, com-

peting theories in metals suggested that either #=1 or 2.
A compiled set of results was published by Kooi !1954";
see Fig. 2. The subsequent consensus was that such plots
do not settle the debate. At finite T, the carriers are
strongly scattered by phonons and spin waves. These in-
elastic processes, difficult to treat microscopically even
today, lie far outside the purview of the early theories.
Smit suggested that, in the skew-scattering theory !see
below", phonon scattering increases the value # from 1
to values approaching 2. This was also found by other
investigators. A lengthy calculation by Lyo !1973"
showed that skew scattering at T$%D !the Debye tem-
perature" leads to !xy$!!2+a!", with a as a constant. In
an early theory by Kondo considering skew scattering
from spin excitations !Kondo, 1962", it may be seen that
!xy also varies as !2 at finite T.

The proper test of the scaling relation in comparison
with present theories involves measuring !xy and ! in a
set of samples at 4 K or lower !where impurity scattering
dominates". By adjusting the impurity concentration ni,
one may hope to change both quantities sufficiently to
determine accurately the exponent # and use this iden-
tification to tease out the underlying physics.

The main criticism of the KL theory centered on the
complete absence of scattering from disorder in the de-
rived Hall response contribution. The semiclassical
AHE theories by Smit and Berger focused instead on

FIG. 1. The Hall effect in Ni !data from Smith, 1910". From
Pugh and Rostoker, 1953.

FIG. 2. Extraordinary Hall constant as a function of resistivity.
The shown fit has the relation Rs$!1.9. From Kooi, 1954.
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To study the electron dynamics under spatial-
dependent perturbations, we turn to the semiclassical
formalism of Bloch electron dynamics, which has proven
to be a powerful tool to investigate the influence of
slowly varying perturbations on the electron dynamics.
In Sec. IV we discuss the construction of the electron
wave packet and show that the wave packet carries an
orbital magnetic moment. Two applications of the wave-
packet approach, the orbital magnetization and anoma-
lous thermoelectric transport in ferromagnet, are dis-
cussed. In Sec. V the wave-packet dynamics in the
presence of electromagnetic fields is studied. We show
that the Berry phase not only affects the equations of
motion but also modifies the electron density of states in
the phase space, which can be changed by applying a
magnetic field. The formula for orbital magnetization is
rederived using the modified density of states. We also
present a comprehensive study of the magnetotransport
in the presence of the Berry phase. The electron dynam-
ics under more general perturbations is discussed in Sec.
VI. We also present two applications: electron dynamics
in deformed crystals and polarization induced by inho-
mogeneity.

In the remaining part of the review we focus on the
requantization of the semiclassical formulation. In Sec.
VII the Bohr-Sommerfeld quantization is reviewed in
detail. With its help, one can incorporate the Berry
phase effect into the Wannier-Stark ladders and the Lan-
dau levels very easily. In Sec. VIII we show that the
same semiclassical approach can be applied to systems
subject to a very strong magnetic field. One only has to
separate the field into a quantization part and a pertur-
bation. The former should be treated quantum mechani-
cally to obtain the magnetic Bloch band spectrum while
the latter is treated perturbatively. Using this formalism,
the cyclotron motion, the splitting into magnetic sub-
bands, and the quantum Hall effect are discussed. In
Sec. IX we review recent advances on the non-Abelian
Berry phase in degenerate bands. The Berry connection
now plays an explicit role in spin dynamics and is deeply
related to the spin-orbit interaction. The relativistic
Dirac electrons and the Kane model in semiconductors
are cited as two applied examples. Finally, we discuss the
requantization of the semiclassical theory and the hier-
archy of effective quantum theories.

We do not attempt to cover all of the Berry phase
effects in this review. Interested readers can consult the
following: Shapere and Wilczek !1989"; Nenciu !1991";
Resta !1994, 2000"; Thouless !1998"; Bohm et al. !2003";
Teufel !2003"; Chang and Niu !2008". In this review, we
focus on a pedagogical and self-contained approach,
with the main focus on the semiclassical formalism of
Bloch electron dynamics !Chang and Niu, 1995, 1996;
Sundaram and Niu, 1999". We start with the simplest
case, then gradually expand the formalism as more com-
plicated physical situations are considered. Whenever a
new ingredient is added, a few applications are provided
to demonstrate the basic ideas. The vast number of ap-
plications we discuss is a reflection of the universality of
the Berry phase effect.

C. Basic concepts of the Berry phase

In this section we introduce the basic concepts of the
Berry phase. Following Berry’s original paper !Berry,
1984", we first discuss how the Berry phase arises during
the adiabatic evolution of a quantum state. We then in-
troduce the local description of the Berry phase in terms
of the Berry curvature. A two-level model is used to
demonstrate these concepts as well as some important
properties, such as the quantization of the Berry phase.
Our aim is to provide a minimal but self-contained in-
troduction. For a detailed account of the Berry phase,
including its mathematical foundation and applications
in a wide range of fields in physics, see Shapere and
Wilczek !1989" and Bohm et al. !2003", and references
therein.

1. Cyclic adiabatic evolution

Consider a physical system described by a Hamil-
tonian that depends on time through a set of param-
eters, denoted by R= !R1 ,R2 , . . . ", i.e.,

H = H!R", R = R!t" . !1.1"

We are interested in the adiabatic evolution of the sys-
tem as R!t" moves slowly along a path C in the param-
eter space. For this purpose, it is useful to introduce an
instantaneous orthonormal basis from the eigenstates of
H!R" at each value of the parameter R, i.e.,

H!R"#n!R"$ = !n!R"#n!R"$ . !1.2"

However, Eq. !1.2" alone does not completely determine
the basis function #n!R"$; it still allows an arbitrary
R-dependent phase factor of #n!R"$. One can make a
phase choice, also known as a gauge, to remove this
arbitrariness. Here we require that the phase of the basis
function is smooth and single valued along the path C in
the parameter space.2

According to the quantum adiabatic theorem !Kato,
1950; Messiah, 1962", a system initially in one of its
eigenstates #n„R!0"…$ will stay as an instantaneous eigen-
state of the Hamiltonian H„R!t"… throughout the pro-
cess. !A derivation can be found in the Appendix."
Therefore the only degree of freedom we have is the
phase of the quantum state. We write the state at time t
as

2Strictly speaking, such a phase choice is guaranteed only in
finite neighborhoods of the parameter space. In the general
case, one can proceed by dividing the path into several such
neighborhoods overlapping with each other, then use the fact
that in the overlapping region the wave functions are related
by a gauge transformation of form !1.7".
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!!n"t#$ = ei"n"t#exp%−
i
#
&

0

t

dt!$n„R"t!#…'!n„R"t#…$ ,

"1.3#

where the second exponential is known as the dynamical
phase factor. Inserting Eq. "1.3# into the time-dependent
Schrödinger equation

i#
!

!t
!!n"t#$ = H„R"t#…!!n"t#$ "1.4#

and multiplying it from the left by (n„R"t#…!, one finds
that "n can be expressed as a path integral in the param-
eter space

"n = &
C

dR · An"R# , "1.5#

where An"R# is a vector-valued function

An"R# = i(n"R#!
!

!R
!n"R#$ . "1.6#

This vector An"R# is called the Berry connection or the
Berry vector potential. Equation "1.5# shows that, in ad-
dition to the dynamical phase, the quantum state will
acquire an additional phase "n during the adiabatic evo-
lution.

Obviously, An"R# is gauge dependent. If we make a
gauge transformation

!n"R#$ → ei%"R#!n"R#$ , "1.7#

with %"R# an arbitrary smooth function and An"R# trans-
forms according to

An"R# → An"R# −
!

!R
%"R# . "1.8#

Consequently, the phase "n given by Eq. "1.5# will be
changed by %„R"0#…−%„R"T#… after the transformation,
where R"0# and R"T# are the initial and final points of
the path C. This observation has led Fock "1928# to con-
clude that one can always choose a suitable %"R# such
that "n accumulated along the path C is canceled out,
leaving Eq. "1.3# with only the dynamical phase. Because
of this, the phase "n has long been deemed unimportant
and it was usually neglected in the theoretical treatment
of time-dependent problems.

This conclusion remained unchallenged until Berry
"1984# reconsidered the cyclic evolution of the system
along a closed path C with R"T#=R"0#. The phase choice
we made earlier on the basis function !n"R#$ requires
ei%"R# in the gauge transformation )Eq. "1.7#* to be single
valued, which implies

%„R"0#… − %„R"T#… = 2& ' integer. "1.9#

This shows that "n can be only changed by an integer
multiple of 2& under the gauge transformation )Eq.
"1.7#* and it cannot be removed. Therefore for a closed
path, "n becomes a gauge-invariant physical quantity,

now known as the Berry phase or geometric phase in
general; it is given by

"n = +
C

dR · An"R# . "1.10#

From the above definition, we can see that the Berry
phase only depends on the geometric aspect of the
closed path and is independent of how R"t# varies in
time. The explicit time dependence is thus not essential
in the description of the Berry phase and will be
dropped in the following discussion.

2. Berry curvature

It is useful to define, in analogy to electrodynamics, a
gauge-field tensor derived from the Berry vector poten-
tial:

()*
n "R# =

!

!R)A*
n"R# −

!

!R*

A)
n"R#

= i%, !n"R#
!R) - !n"R#

!R* . − "* ↔ )#' . "1.11#

This field is called the Berry curvature. Then according
to Stokes’s theorem the Berry phase can be written as a
surface integral

"n = &
S

dR) ∧ dR* 1
2()*

n "R# , "1.12#

where S is an arbitrary surface enclosed by the path C. It
can be verified from Eq. "1.11# that, unlike the Berry
vector potential, the Berry curvature is gauge invariant
and thus observable.

If the parameter space is three dimensional, Eqs.
"1.11# and "1.12# can be recast into a vector form

!n"R# = "R ' An"R# , "1.11!#

"n = &
S

dS · !n"R# . "1.12!#

The Berry curvature tensor ()*
n and vector !n are re-

lated by ()*
n =+)*,"!n#, with +)*, the Levi-Cività anti-

symmetry tensor. The vector form gives us an intuitive
picture of the Berry curvature: it can be viewed as the
magnetic field in the parameter space.

Besides the differential formula given in Eq. "1.11#,
the Berry curvature can be also written as a summation
over the eigenstates:

()*
n "R# = i /

n!"n

(n!!H/!R)!n!$(n!!!H/!R*!n$ − "* ↔ )#
"$n − $n!#

2 .

"1.13#

The curvature can be obtained from Eq. "1.11# using
(n!!H /!R!n!$= (!n /!R !n!$"$n−$n!# for n!"n. The sum-
mation formula has the advantage that no differentia-
tion on the wave function is involved, therefore it can be
evaluated under any gauge choice. This property is par-
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!!n"t#$ = ei"n"t#exp%−
i
#
&

0

t

dt!$n„R"t!#…'!n„R"t#…$ ,

"1.3#

where the second exponential is known as the dynamical
phase factor. Inserting Eq. "1.3# into the time-dependent
Schrödinger equation

i#
!

!t
!!n"t#$ = H„R"t#…!!n"t#$ "1.4#

and multiplying it from the left by (n„R"t#…!, one finds
that "n can be expressed as a path integral in the param-
eter space

"n = &
C

dR · An"R# , "1.5#

where An"R# is a vector-valued function

An"R# = i(n"R#!
!

!R
!n"R#$ . "1.6#

This vector An"R# is called the Berry connection or the
Berry vector potential. Equation "1.5# shows that, in ad-
dition to the dynamical phase, the quantum state will
acquire an additional phase "n during the adiabatic evo-
lution.

Obviously, An"R# is gauge dependent. If we make a
gauge transformation

!n"R#$ → ei%"R#!n"R#$ , "1.7#

with %"R# an arbitrary smooth function and An"R# trans-
forms according to

An"R# → An"R# −
!

!R
%"R# . "1.8#

Consequently, the phase "n given by Eq. "1.5# will be
changed by %„R"0#…−%„R"T#… after the transformation,
where R"0# and R"T# are the initial and final points of
the path C. This observation has led Fock "1928# to con-
clude that one can always choose a suitable %"R# such
that "n accumulated along the path C is canceled out,
leaving Eq. "1.3# with only the dynamical phase. Because
of this, the phase "n has long been deemed unimportant
and it was usually neglected in the theoretical treatment
of time-dependent problems.

This conclusion remained unchallenged until Berry
"1984# reconsidered the cyclic evolution of the system
along a closed path C with R"T#=R"0#. The phase choice
we made earlier on the basis function !n"R#$ requires
ei%"R# in the gauge transformation )Eq. "1.7#* to be single
valued, which implies

%„R"0#… − %„R"T#… = 2& ' integer. "1.9#

This shows that "n can be only changed by an integer
multiple of 2& under the gauge transformation )Eq.
"1.7#* and it cannot be removed. Therefore for a closed
path, "n becomes a gauge-invariant physical quantity,

now known as the Berry phase or geometric phase in
general; it is given by

"n = +
C

dR · An"R# . "1.10#

From the above definition, we can see that the Berry
phase only depends on the geometric aspect of the
closed path and is independent of how R"t# varies in
time. The explicit time dependence is thus not essential
in the description of the Berry phase and will be
dropped in the following discussion.

2. Berry curvature

It is useful to define, in analogy to electrodynamics, a
gauge-field tensor derived from the Berry vector poten-
tial:

()*
n "R# =

!

!R)A*
n"R# −

!

!R*

A)
n"R#

= i%, !n"R#
!R) - !n"R#

!R* . − "* ↔ )#' . "1.11#

This field is called the Berry curvature. Then according
to Stokes’s theorem the Berry phase can be written as a
surface integral

"n = &
S

dR) ∧ dR* 1
2()*

n "R# , "1.12#

where S is an arbitrary surface enclosed by the path C. It
can be verified from Eq. "1.11# that, unlike the Berry
vector potential, the Berry curvature is gauge invariant
and thus observable.

If the parameter space is three dimensional, Eqs.
"1.11# and "1.12# can be recast into a vector form

!n"R# = "R ' An"R# , "1.11!#

"n = &
S

dS · !n"R# . "1.12!#

The Berry curvature tensor ()*
n and vector !n are re-

lated by ()*
n =+)*,"!n#, with +)*, the Levi-Cività anti-

symmetry tensor. The vector form gives us an intuitive
picture of the Berry curvature: it can be viewed as the
magnetic field in the parameter space.

Besides the differential formula given in Eq. "1.11#,
the Berry curvature can be also written as a summation
over the eigenstates:

()*
n "R# = i /

n!"n

(n!!H/!R)!n!$(n!!!H/!R*!n$ − "* ↔ )#
"$n − $n!#

2 .

"1.13#

The curvature can be obtained from Eq. "1.11# using
(n!!H /!R!n!$= (!n /!R !n!$"$n−$n!# for n!"n. The sum-
mation formula has the advantage that no differentia-
tion on the wave function is involved, therefore it can be
evaluated under any gauge choice. This property is par-
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!!n"t#$ = ei"n"t#exp%−

i
#
&

0

t

dt!$n„R"t!#…'!n„R"t#…$ ,

"1.3#

where the second exponential is known as the dynamical
phase factor. Inserting Eq. "1.3# into the time-dependent
Schrödinger equation

i#
!

!t
!!n"t#$ = H„R"t#…!!n"t#$ "1.4#

and multiplying it from the left by (n„R"t#…!, one finds
that "n can be expressed as a path integral in the param-
eter space

"n = &
C

dR · An"R# , "1.5#

where An"R# is a vector-valued function

An"R# = i(n"R#!
!

!R
!n"R#$ . "1.6#

This vector An"R# is called the Berry connection or the
Berry vector potential. Equation "1.5# shows that, in ad-
dition to the dynamical phase, the quantum state will
acquire an additional phase "n during the adiabatic evo-
lution.

Obviously, An"R# is gauge dependent. If we make a
gauge transformation

!n"R#$ → ei%"R#!n"R#$ , "1.7#

with %"R# an arbitrary smooth function and An"R# trans-
forms according to

An"R# → An"R# −
!

!R
%"R# . "1.8#

Consequently, the phase "n given by Eq. "1.5# will be
changed by %„R"0#…−%„R"T#… after the transformation,
where R"0# and R"T# are the initial and final points of
the path C. This observation has led Fock "1928# to con-
clude that one can always choose a suitable %"R# such
that "n accumulated along the path C is canceled out,
leaving Eq. "1.3# with only the dynamical phase. Because
of this, the phase "n has long been deemed unimportant
and it was usually neglected in the theoretical treatment
of time-dependent problems.

This conclusion remained unchallenged until Berry
"1984# reconsidered the cyclic evolution of the system
along a closed path C with R"T#=R"0#. The phase choice
we made earlier on the basis function !n"R#$ requires
ei%"R# in the gauge transformation )Eq. "1.7#* to be single
valued, which implies

%„R"0#… − %„R"T#… = 2& ' integer. "1.9#

This shows that "n can be only changed by an integer
multiple of 2& under the gauge transformation )Eq.
"1.7#* and it cannot be removed. Therefore for a closed
path, "n becomes a gauge-invariant physical quantity,

now known as the Berry phase or geometric phase in
general; it is given by

"n = +
C

dR · An"R# . "1.10#

From the above definition, we can see that the Berry
phase only depends on the geometric aspect of the
closed path and is independent of how R"t# varies in
time. The explicit time dependence is thus not essential
in the description of the Berry phase and will be
dropped in the following discussion.

2. Berry curvature

It is useful to define, in analogy to electrodynamics, a
gauge-field tensor derived from the Berry vector poten-
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Using ! /!q!=! /!k! and ! /!t=−!e /""E!! /!k!, the gen-
eral formula !2.5" for the velocity in a given state k be-
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where !n!k" is the Berry curvature of the nth band:

!n!k" = i#"kun!k"$ $ $"kun!k"% . !3.7"

We can see that, in addition to the usual band dispersion
contribution, an extra term previously known as an
anomalous velocity also contributes to vn!k". This veloc-
ity is always transverse to the electric field, which will
give rise to a Hall current. Historically the anomalous
velocity was obtained by Karplus and Luttinger !1954",
Kohn and Luttinger !1957", and Adams and Blount
!1959"; its relation to the Berry phase was realized much
later. In Sec. V we rederive this term using a wave-
packet approach.

B. Berry curvature: Symmetry considerations

The velocity formula !3.6" reveals that, in addition to
the band energy, the Berry curvature of the Bloch bands
is also required for a complete description of the elec-
tron dynamics. However, the conventional formula &Eq.
!3.1"' has much success in describing various electronic
properties in the past. It is thus important to know under
what conditions the Berry curvature term cannot be ne-
glected.

The general form of the Berry curvature !n!k" can be
obtained via symmetry analysis. The velocity formula
!3.6" should be invariant under time-reversal and spatial
inversion operations if the unperturbed system has these
symmetries. Under time reversal, vn and k change sign
while E is fixed. Under spatial inversion, vn, k, and E
change sign. If the system has time-reversal symmetry,
the symmetry condition on Eq. !3.6" requires that

!n!− k" = − !n!k" . !3.8"

If the system has spatial inversion symmetry, then

!n!− k" = !n!k" . !3.9"

Therefore, for crystals with simultaneous time-reversal
and spatial inversion symmetry the Berry curvature van-
ishes identically throughout the Brillouin zone. In this
case Eq. !3.6" reduces to the simple expression !3.1".
However, in systems with broken either time-reversal or
inversion symmetries, their proper description requires
the use of the full velocity formula !3.6".

There are many important physical systems where
both symmetries are not simultaneously present. For ex-
ample, in the presence of ferromagnetic or antiferro-
magnetic ordering the crystal breaks the time-reversal
symmetry. Figure 3 shows the Berry curvature on the
Fermi surface of fcc Fe. As shown the Berry curvature is
negligible in most areas in the momentum space and
displays sharp and pronounced peaks in regions where
the Fermi lines &intersection of the Fermi surface with

!010" plane' have avoided crossings due to spin-orbit
coupling. Such a structure has been identified in other
materials as well !Fang et al., 2003". Another example is
provided by single-layered graphene sheet with stag-
gered sublattice potential, which breaks inversion sym-
metry !Zhou et al., 2007". Figure 4 shows the energy
band and Berry curvature of this system. The Berry cur-
vature at valley K1 and K2 have opposite signs due to
time-reversal symmetry. We note that as the gap ap-
proaches zero, the Berry phase acquired by an electron
during one circle around the valley becomes exactly ±%.
This Berry phase of % has been observed in intrinsic
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!3.1"' has much success in describing various electronic
properties in the past. It is thus important to know under
what conditions the Berry curvature term cannot be ne-
glected.

The general form of the Berry curvature !n!k" can be
obtained via symmetry analysis. The velocity formula
!3.6" should be invariant under time-reversal and spatial
inversion operations if the unperturbed system has these
symmetries. Under time reversal, vn and k change sign
while E is fixed. Under spatial inversion, vn, k, and E
change sign. If the system has time-reversal symmetry,
the symmetry condition on Eq. !3.6" requires that

!n!− k" = − !n!k" . !3.8"

If the system has spatial inversion symmetry, then

!n!− k" = !n!k" . !3.9"

Therefore, for crystals with simultaneous time-reversal
and spatial inversion symmetry the Berry curvature van-
ishes identically throughout the Brillouin zone. In this
case Eq. !3.6" reduces to the simple expression !3.1".
However, in systems with broken either time-reversal or
inversion symmetries, their proper description requires
the use of the full velocity formula !3.6".

There are many important physical systems where
both symmetries are not simultaneously present. For ex-
ample, in the presence of ferromagnetic or antiferro-
magnetic ordering the crystal breaks the time-reversal
symmetry. Figure 3 shows the Berry curvature on the
Fermi surface of fcc Fe. As shown the Berry curvature is
negligible in most areas in the momentum space and
displays sharp and pronounced peaks in regions where
the Fermi lines &intersection of the Fermi surface with

!010" plane' have avoided crossings due to spin-orbit
coupling. Such a structure has been identified in other
materials as well !Fang et al., 2003". Another example is
provided by single-layered graphene sheet with stag-
gered sublattice potential, which breaks inversion sym-
metry !Zhou et al., 2007". Figure 4 shows the energy
band and Berry curvature of this system. The Berry cur-
vature at valley K1 and K2 have opposite signs due to
time-reversal symmetry. We note that as the gap ap-
proaches zero, the Berry phase acquired by an electron
during one circle around the valley becomes exactly ±%.
This Berry phase of % has been observed in intrinsic

-10
3

-10
2

-10
1

0

10
1

10
2

10
3

10
4

10
5

-3

-2

-1

0

1

2

3

4

5

H(100)!(000)

!(101)H(001)

FIG. 3. !Color online" Fermi surface in !010" plane !solid lines"
and the integrated Berry curvature −&z!k" in atomic units
!color map" of fcc Fe. From Yao et al., 2004.

!
(e
V)

"
(a

2 )
13
12

16
12

19
12

13
12

#16
12

#19
12

#

( / )xk a$

−80

−40

0

40

80

~ ~
~ ~−1

− 0.5

0

0.5

1

(a)

(b)

FIG. 4. !Color online" Energy bands !top panel" and Berry
curvature of the conduction band !bottom panel" of a
graphene sheet with broken inversion symmetry. The first Bril-
louin zone is outlined by the dashed lines, and two inequiva-
lent valleys are labeled as K1 and K2. Details are presented in
Xiao, Yao, and Niu !2007".

1972 Xiao, Chang, and Niu: Berry phase effects on electronic properties

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010

graphene sheet !Novoselov et al., 2005; Zhang et al.,
2005".

C. The quantum Hall effect

The quantum Hall effect was discovered by Klitzing et
al. !1980". They found that in a strong magnetic field the
Hall conductivity of a two-dimensional !2D" electron gas
is exactly quantized in the units of e2 /h. The exact quan-
tization was subsequently explained by Laughlin !1981"
based on gauge invariance and was later related to a
topological invariance of the energy bands !Thouless et
al., 1982; Avron et al., 1983; Niu et al., 1985". Since then
it has blossomed into an important research field in
condensed-matter physics. In this section we focus only
on the quantization aspect of the quantum Hall effect
using the formulation developed so far.

Consider a two-dimensional band insulator. It follows
from Eq. !3.6" that the Hall conductivity of the system is
given by

!xy =
e2

"
#

BZ

d2k
!2#"2$kxky

, !3.10"

where the integration is over the entire Brillouin. Once
again we encounter the situation where the Berry curva-
ture is integrated over a closed manifold. Here !xy is the
Chern number in the units of e2 /h, i.e.,

!xy = n
e2

h
. !3.11"

Therefore the Hall conductivity is quantized for a two-
dimensional band insulator of noninteracting electrons.

Historically the quantization of the Hall conductivity
in a crystal was first shown by Thouless et al. !1982" for
magnetic Bloch bands !see also Sec. VIII". It was shown
that, due to the magnetic translational symmetry, the
phase of the wave function in the magnetic Brillouin
zone carries a vortex and leads to a nonzero quantized
Hall conductivity !Kohmoto, 1985". However, it is clear
from the above derivation that for the quantum Hall
effect to occur the only condition is that the Chern num-
ber of the bands must be nonzero. It is possible that in
some materials the Chern number can be nonzero even
in the absence of an external magnetic field. Haldane
!1988" constructed a tight-binding model on a honey-
comb lattice which displays the quantum Hall effect with
zero net flux per unit cell. Another model is proposed
for semiconductor quantum well where the spin-orbit
interaction plays the role of the magnetic field !Qi et al.,
2006; Liu et al., 2008" and leads to a quantized Hall con-
ductance. The possibility of realizing the quantum Hall
effect without a magnetic field is attractive in device de-
sign.

Niu et al. !1985" further showed that the quantized
Hall conductivity in two-dimensions is robust against
many-body interactions and disorder $see also Avron
and Seiler !1985"%. Their derivation involves the same
technique discussed in Sec. II.B.2. A two-dimensional
many-body system is placed on a torus by assuming pe-

riodic boundary conditions in both directions. One can
then thread the torus with magnetic flux through its
holes !Fig. 5" and make the Hamiltonian H!%1 ,%2" de-
pend on the flux %1 and %2. The Hall conductivity is
calculated using the Kubo formula

!H = ie2" &
n&0

''0(v1('n)''n(v2('0) − !1 ↔ 2"
!(0 − (n"2 , !3.12"

where 'n is the many-body wave function with ('0) the
ground state. In the presence of flux, the velocity opera-
tor is given by vi=!H!)1 ,)2" /!!")i" with )i= !e /""%i /Li
and Li the dimensions of the system. We recognize that
Eq. !3.12" is the summation formula !1.13" for the Berry
curvature $)1)2

of the state ('0). The existence of a bulk
energy gap guarantees that the Hall conductivity re-
mains unchanged after thermodynamic averaging, which
is given by

!H =
e2

"
#

0

2#/L1

d)1#
0

2#/L2

d)2$)1)2
. !3.13"

Note that the Hamiltonian H!)1 ,)2" is periodic in )i
with period 2# /Li because the system returns to its
original state after the flux is changed by a flux quantum
h /e !and )i changed by 2# /Li". Therefore the Hall con-
ductivity is quantized even in the presence of many-
body interaction and disorder. Due to the high precision
of the measurement and the robustness of the quantiza-
tion, the quantum Hall resistance is now used as the
primary standard of resistance.

The geometric and topological ideas developed in the
study of the quantum Hall effect has a far-reaching im-
pact on modern condensed-matter physics. The robust-
ness of the Hall conductivity suggests that it can be used
as a topological invariance to classify many-body phases
of electronic states with a bulk energy gap !Avron et al.,
1983": states with different topological orders !Hall con-
ductivities in the quantum Hall effect" cannot be adia-
batically transformed into each other; if that happens, a
phase transition must occur. The Hall conductivity has
important applications in strongly correlated electron
systems, such as the fractional quantum Hall effect !Wen
and Niu, 1990", and most recently the topological quan-
tum computing $for a review, see Nayak et al. !2008"%.
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C. The quantum Hall effect

The quantum Hall effect was discovered by Klitzing et
al. !1980". They found that in a strong magnetic field the
Hall conductivity of a two-dimensional !2D" electron gas
is exactly quantized in the units of e2 /h. The exact quan-
tization was subsequently explained by Laughlin !1981"
based on gauge invariance and was later related to a
topological invariance of the energy bands !Thouless et
al., 1982; Avron et al., 1983; Niu et al., 1985". Since then
it has blossomed into an important research field in
condensed-matter physics. In this section we focus only
on the quantization aspect of the quantum Hall effect
using the formulation developed so far.

Consider a two-dimensional band insulator. It follows
from Eq. !3.6" that the Hall conductivity of the system is
given by
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where the integration is over the entire Brillouin. Once
again we encounter the situation where the Berry curva-
ture is integrated over a closed manifold. Here !xy is the
Chern number in the units of e2 /h, i.e.,

!xy = n
e2

h
. !3.11"

Therefore the Hall conductivity is quantized for a two-
dimensional band insulator of noninteracting electrons.

Historically the quantization of the Hall conductivity
in a crystal was first shown by Thouless et al. !1982" for
magnetic Bloch bands !see also Sec. VIII". It was shown
that, due to the magnetic translational symmetry, the
phase of the wave function in the magnetic Brillouin
zone carries a vortex and leads to a nonzero quantized
Hall conductivity !Kohmoto, 1985". However, it is clear
from the above derivation that for the quantum Hall
effect to occur the only condition is that the Chern num-
ber of the bands must be nonzero. It is possible that in
some materials the Chern number can be nonzero even
in the absence of an external magnetic field. Haldane
!1988" constructed a tight-binding model on a honey-
comb lattice which displays the quantum Hall effect with
zero net flux per unit cell. Another model is proposed
for semiconductor quantum well where the spin-orbit
interaction plays the role of the magnetic field !Qi et al.,
2006; Liu et al., 2008" and leads to a quantized Hall con-
ductance. The possibility of realizing the quantum Hall
effect without a magnetic field is attractive in device de-
sign.

Niu et al. !1985" further showed that the quantized
Hall conductivity in two-dimensions is robust against
many-body interactions and disorder $see also Avron
and Seiler !1985"%. Their derivation involves the same
technique discussed in Sec. II.B.2. A two-dimensional
many-body system is placed on a torus by assuming pe-

riodic boundary conditions in both directions. One can
then thread the torus with magnetic flux through its
holes !Fig. 5" and make the Hamiltonian H!%1 ,%2" de-
pend on the flux %1 and %2. The Hall conductivity is
calculated using the Kubo formula

!H = ie2" &
n&0

''0(v1('n)''n(v2('0) − !1 ↔ 2"
!(0 − (n"2 , !3.12"

where 'n is the many-body wave function with ('0) the
ground state. In the presence of flux, the velocity opera-
tor is given by vi=!H!)1 ,)2" /!!")i" with )i= !e /""%i /Li
and Li the dimensions of the system. We recognize that
Eq. !3.12" is the summation formula !1.13" for the Berry
curvature $)1)2

of the state ('0). The existence of a bulk
energy gap guarantees that the Hall conductivity re-
mains unchanged after thermodynamic averaging, which
is given by

!H =
e2
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Note that the Hamiltonian H!)1 ,)2" is periodic in )i
with period 2# /Li because the system returns to its
original state after the flux is changed by a flux quantum
h /e !and )i changed by 2# /Li". Therefore the Hall con-
ductivity is quantized even in the presence of many-
body interaction and disorder. Due to the high precision
of the measurement and the robustness of the quantiza-
tion, the quantum Hall resistance is now used as the
primary standard of resistance.

The geometric and topological ideas developed in the
study of the quantum Hall effect has a far-reaching im-
pact on modern condensed-matter physics. The robust-
ness of the Hall conductivity suggests that it can be used
as a topological invariance to classify many-body phases
of electronic states with a bulk energy gap !Avron et al.,
1983": states with different topological orders !Hall con-
ductivities in the quantum Hall effect" cannot be adia-
batically transformed into each other; if that happens, a
phase transition must occur. The Hall conductivity has
important applications in strongly correlated electron
systems, such as the fractional quantum Hall effect !Wen
and Niu, 1990", and most recently the topological quan-
tum computing $for a review, see Nayak et al. !2008"%.
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C. The quantum Hall effect

The quantum Hall effect was discovered by Klitzing et
al. !1980". They found that in a strong magnetic field the
Hall conductivity of a two-dimensional !2D" electron gas
is exactly quantized in the units of e2 /h. The exact quan-
tization was subsequently explained by Laughlin !1981"
based on gauge invariance and was later related to a
topological invariance of the energy bands !Thouless et
al., 1982; Avron et al., 1983; Niu et al., 1985". Since then
it has blossomed into an important research field in
condensed-matter physics. In this section we focus only
on the quantization aspect of the quantum Hall effect
using the formulation developed so far.

Consider a two-dimensional band insulator. It follows
from Eq. !3.6" that the Hall conductivity of the system is
given by

!xy =
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where the integration is over the entire Brillouin. Once
again we encounter the situation where the Berry curva-
ture is integrated over a closed manifold. Here !xy is the
Chern number in the units of e2 /h, i.e.,

!xy = n
e2

h
. !3.11"

Therefore the Hall conductivity is quantized for a two-
dimensional band insulator of noninteracting electrons.

Historically the quantization of the Hall conductivity
in a crystal was first shown by Thouless et al. !1982" for
magnetic Bloch bands !see also Sec. VIII". It was shown
that, due to the magnetic translational symmetry, the
phase of the wave function in the magnetic Brillouin
zone carries a vortex and leads to a nonzero quantized
Hall conductivity !Kohmoto, 1985". However, it is clear
from the above derivation that for the quantum Hall
effect to occur the only condition is that the Chern num-
ber of the bands must be nonzero. It is possible that in
some materials the Chern number can be nonzero even
in the absence of an external magnetic field. Haldane
!1988" constructed a tight-binding model on a honey-
comb lattice which displays the quantum Hall effect with
zero net flux per unit cell. Another model is proposed
for semiconductor quantum well where the spin-orbit
interaction plays the role of the magnetic field !Qi et al.,
2006; Liu et al., 2008" and leads to a quantized Hall con-
ductance. The possibility of realizing the quantum Hall
effect without a magnetic field is attractive in device de-
sign.

Niu et al. !1985" further showed that the quantized
Hall conductivity in two-dimensions is robust against
many-body interactions and disorder $see also Avron
and Seiler !1985"%. Their derivation involves the same
technique discussed in Sec. II.B.2. A two-dimensional
many-body system is placed on a torus by assuming pe-

riodic boundary conditions in both directions. One can
then thread the torus with magnetic flux through its
holes !Fig. 5" and make the Hamiltonian H!%1 ,%2" de-
pend on the flux %1 and %2. The Hall conductivity is
calculated using the Kubo formula

!H = ie2" &
n&0

''0(v1('n)''n(v2('0) − !1 ↔ 2"
!(0 − (n"2 , !3.12"

where 'n is the many-body wave function with ('0) the
ground state. In the presence of flux, the velocity opera-
tor is given by vi=!H!)1 ,)2" /!!")i" with )i= !e /""%i /Li
and Li the dimensions of the system. We recognize that
Eq. !3.12" is the summation formula !1.13" for the Berry
curvature $)1)2

of the state ('0). The existence of a bulk
energy gap guarantees that the Hall conductivity re-
mains unchanged after thermodynamic averaging, which
is given by
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Note that the Hamiltonian H!)1 ,)2" is periodic in )i
with period 2# /Li because the system returns to its
original state after the flux is changed by a flux quantum
h /e !and )i changed by 2# /Li". Therefore the Hall con-
ductivity is quantized even in the presence of many-
body interaction and disorder. Due to the high precision
of the measurement and the robustness of the quantiza-
tion, the quantum Hall resistance is now used as the
primary standard of resistance.

The geometric and topological ideas developed in the
study of the quantum Hall effect has a far-reaching im-
pact on modern condensed-matter physics. The robust-
ness of the Hall conductivity suggests that it can be used
as a topological invariance to classify many-body phases
of electronic states with a bulk energy gap !Avron et al.,
1983": states with different topological orders !Hall con-
ductivities in the quantum Hall effect" cannot be adia-
batically transformed into each other; if that happens, a
phase transition must occur. The Hall conductivity has
important applications in strongly correlated electron
systems, such as the fractional quantum Hall effect !Wen
and Niu, 1990", and most recently the topological quan-
tum computing $for a review, see Nayak et al. !2008"%.
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n=Chern	  number	  

be seen by noting that !!n"q#$ and !!n"q+G#$ satisfy the
same boundary condition in Eq. "1.23#; therefore, they
can at most differ by a phase factor. The torus topology
is realized by making the phase choice !!n"q#$= !!n"q
+G#$. Consequently, !un"q#$ and !un"q+G#$ satisfy the
following phase relation:

unq"r# = eiG·runq+G"r# . "1.28#

This gauge choice is called the periodic gauge "Resta,
2000#.

In this case, the Berry phase across the Brillouin zone
is called Zak’s phase "Zak, 1989#

"n = %
BZ

dq · &un"q#!i!q!un"q#$ . "1.29#

This phase plays an important role in the formation of
Wannier-Stark ladders "Wannier, 1962#; see Sec. VII.B.
We note that this phase is entirely due to the torus to-
pology of the Brillouin zone, and it is the only way to
realize a closed path in a one-dimensional parameter
space. By analyzing the symmetry properties of Wannier
functions "Kohn, 1959# of a one-dimensional crystal, Zak
"1989# showed that "n is either 0 or # in the presence of
inversion symmetry; a simple argument is given in Sec.
II.C. If the crystal lacks inversion symmetry, "n can as-
sume any value. Zak’s phase is also related to macro-
scopic polarization of an insulator "King-Smith and
Vanderbilt, 1993; Resta, 1994; Sipe and Zak, 1999#; see
Sec. II.C.

II. ADIABATIC TRANSPORT AND ELECTRIC
POLARIZATION

One of the earlier examples of the Berry phase effect
in crystals is the adiabatic transport in a one-
dimensional band insulator, first considered by Thouless
"1983#. He found that if the potential varies slowly in
time and returns to itself after some time, the particle
transport during the time cycle can be expressed as a
Berry phase and it is an integer. This idea was later gen-
eralized to many-body systems with interactions and dis-
order provided that the Fermi energy always lies in a
bulk energy gap during the cycle "Niu and Thouless,
1984#. Avron and Seiler "1985# studied the adiabatic
transport in multiply connected systems. The scheme of
adiabatic transport under one or several controlling pa-
rameters has proven very powerful and opened the door
to the field of parametric charge pumping "Niu, 1990;
Talyanskii et al., 1997; Brouwer, 1998; Switkes et al.,
1999; Zhou et al., 1999#. It also provides a firm founda-
tion to the modern theory of polarization developed in
the early 1990s "King-Smith and Vanderbilt, 1993; Ortiz
and Martin, 1994; Resta, 1994#.

A. Adiabatic current

Consider a one-dimensional band insulator under a
slowly varying time-dependent perturbation. We assume

the perturbation is periodic in time, i.e., the Hamiltonian
satisfies

H"t + T# = H"t# . "2.1#

Since the time-dependent Hamiltonian still has the
translational symmetry of the crystal, its instantaneous
eigenstates have the Bloch form eiqx!un"q , t#$. It is con-
venient to work with the q-space representation of the
Hamiltonian H"q , t# 'see Eq. "1.24#( with eigenstates
!un"q , t#$. We note that under this parametrization the
wave vector q and time t are put on an equal footing as
both are independent coordinates of the parameter
space.

We are interested in the adiabatic current induced by
the variation in external potentials. Apart from an un-
important overall phase factor and up to first order in
the rate of the change in the Hamiltonian, the wave
function is given by "see the Appendix#

!un$ − i$ )
n!!n

!un!$&un!!"un/"t$
%n − %n!

. "2.2#

The velocity operator in the q representation has the
form v"q , t#="H"q , t# /""$q#.6 Hence, the average veloc-
ity in a state of given q is found to first order as

vn"q# =
"%n"q#

$"q

− i )
n!!n

*&un!"H/"q!un!$&un!!"un/"t$
%n − %n!

− c.c.+ ,

"2.3#

where c.c. denotes the complex conjugate. Using the fact
that &un!"H /"q!un!$= "%n−%n!#&"un /"q !un!$ and the iden-
tity )n!!un!$&un!!=1, we find

vn"q# =
"%n"q#

$"q
− i,- "un

"q
. "un

"t / − - "un

"t
. "un

"q /0 .

"2.4#

The second term is exactly the Berry curvature &qt
n de-

fined in the parameter space "q , t# 'see Eq. "1.11#(.
Therefore Eq. "2.4# can be recast into a compact form

vn"q# =
"%n"q#

$"q
− &qt

n . "2.5#

Upon integration over the Brillouin zone, the zeroth-
order term given by the derivative of the band energy
vanishes, and only the first-order term survives. The in-
duced adiabatic current is given by

6The velocity operator is defined by v1 ṙ= "i /$#'H ,r(. In
the q representation, it becomes v"q#=e−iq·r"i /$#'r ,H(eiq·r

="H"q , t# /""$q#.
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Kubo	  formula	  

(Thouless	  et	  al.,	  1982)	  



Using ! /!q!=! /!k! and ! /!t=−!e /""E!! /!k!, the gen-
eral formula !2.5" for the velocity in a given state k be-
comes

vn!k" =
!#n!k"

"!k
−

e
"

E $ !n!k" , !3.6"

where !n!k" is the Berry curvature of the nth band:

!n!k" = i#"kun!k"$ $ $"kun!k"% . !3.7"

We can see that, in addition to the usual band dispersion
contribution, an extra term previously known as an
anomalous velocity also contributes to vn!k". This veloc-
ity is always transverse to the electric field, which will
give rise to a Hall current. Historically the anomalous
velocity was obtained by Karplus and Luttinger !1954",
Kohn and Luttinger !1957", and Adams and Blount
!1959"; its relation to the Berry phase was realized much
later. In Sec. V we rederive this term using a wave-
packet approach.

B. Berry curvature: Symmetry considerations

The velocity formula !3.6" reveals that, in addition to
the band energy, the Berry curvature of the Bloch bands
is also required for a complete description of the elec-
tron dynamics. However, the conventional formula &Eq.
!3.1"' has much success in describing various electronic
properties in the past. It is thus important to know under
what conditions the Berry curvature term cannot be ne-
glected.

The general form of the Berry curvature !n!k" can be
obtained via symmetry analysis. The velocity formula
!3.6" should be invariant under time-reversal and spatial
inversion operations if the unperturbed system has these
symmetries. Under time reversal, vn and k change sign
while E is fixed. Under spatial inversion, vn, k, and E
change sign. If the system has time-reversal symmetry,
the symmetry condition on Eq. !3.6" requires that

!n!− k" = − !n!k" . !3.8"

If the system has spatial inversion symmetry, then

!n!− k" = !n!k" . !3.9"

Therefore, for crystals with simultaneous time-reversal
and spatial inversion symmetry the Berry curvature van-
ishes identically throughout the Brillouin zone. In this
case Eq. !3.6" reduces to the simple expression !3.1".
However, in systems with broken either time-reversal or
inversion symmetries, their proper description requires
the use of the full velocity formula !3.6".

There are many important physical systems where
both symmetries are not simultaneously present. For ex-
ample, in the presence of ferromagnetic or antiferro-
magnetic ordering the crystal breaks the time-reversal
symmetry. Figure 3 shows the Berry curvature on the
Fermi surface of fcc Fe. As shown the Berry curvature is
negligible in most areas in the momentum space and
displays sharp and pronounced peaks in regions where
the Fermi lines &intersection of the Fermi surface with

!010" plane' have avoided crossings due to spin-orbit
coupling. Such a structure has been identified in other
materials as well !Fang et al., 2003". Another example is
provided by single-layered graphene sheet with stag-
gered sublattice potential, which breaks inversion sym-
metry !Zhou et al., 2007". Figure 4 shows the energy
band and Berry curvature of this system. The Berry cur-
vature at valley K1 and K2 have opposite signs due to
time-reversal symmetry. We note that as the gap ap-
proaches zero, the Berry phase acquired by an electron
during one circle around the valley becomes exactly ±%.
This Berry phase of % has been observed in intrinsic
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J. Phys.: Condens. Matter 22, 025701 (2010); P. D. Sacramento and
M. A. N. Araújo, Eur. Phys. J. B 76, 251 (2010); P. D. Sacramento,
L. C. Fernandes Silva, G. S. Nunes, M. A. N. Araújo, and V. R.
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Figure 3. The Hall conductance for nc = 4, 10 as a function of� for the two methods considered:
the diagonal approximation (DA) and leading-order perturbation theory (PT). The two points at
nc + 1 are the � = 0 result (normal phase).

3. Conclusions

In summary, we have calculated the Hall conductance of a pinned vortex lattice in a high
magnetic field using theKubo formula and the solution of theBogoliubov–deGennes equations
for the wave-function amplitudes expanded in the Landau basis. We compared the diagonal
approximation with the leading-order perturbation theory recently introduced [7]. The Hall
conductance decreases from the normal-state value due to the presence of the low-lying states
immediately above the Fermi energy. As � grows, the spread in energy increases and σ

decreases. We limited the study to the region of validity of the PT. We suggest that σ may be
used as an order parameter to detect the transition from the gapless regime (finite σ ) to the
gapped region (zero σ ) where a tight-binding description should be appropriate.
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!1
!"q! #→"g!!$n"1,n"q! #!,

!2
!"q! #→"1"g!!$n"1,n"q! #!.

The unoccupied energies can be obtained from the
dual set of Bogoliubov–de Gennes equations corre-
sponding to (u% ,! , v% ,"). Here we find again the same
type of behavior as in the previous example, namely,
that the two normal-state Landau sublevels &n ,"#"g
and &n"1,"#"1"g broaden into magnetic bands, which
break into subbands by the pair potential. The density of
states vanishes linearly with the energy distance from
the band centers, i.e., D(!)'!!$g!→0, or '!!$1$g!
→0, due to the first-order zeros of $n"1,n(q! ). Note,
however, that in contrast to the previous case in which
the pairing was ‘‘diagonal in the Landau levels,’’ in the
present case it is ‘‘off diagonal.’’ The reason in the
present case is, of course, the location of the chemical
potential in the cyclotron gap between two Landau sub-
levels.

The problem becomes much more complicated in
cases of lower symmetry, e.g., when the chemical poten-
tial is shifted from the Landau level or from the center
of the cyclotron gap, or when the strength of the pair
potential is not small compared to this gap. In these
cases more distant Landau levels should be taken into
account and the problem quickly becomes very cumber-
some due to the presence of many significant matrix el-
ements far from the diagonal.

However, numerical diagonalizations carried out by
Norman and MacDonald (1996), as well as by Tesanovic
and Sacramento (1998) for cases when $0 is no longer
small compared to ()c (see Figs. 9 and 10), confirmed
the general pattern of the quasiparticle density of states
obtained above.

Specifically they found that as long as $̃0#$0 /()c

does not exceed some critical value $̃0,c , the supercon-
ducting quasiparticle spectrum for a 2D electron system,
with the chemical potential in a symmetrical electron-
hole position, consists of broadened Landau levels, each
of which splits into two subbands separated by a
pseudogap. In this region the broadened levels do not
show any apparent shift with respect to the correspond-
ing free-electron Landau levels, implying the absence of

a superconducting energy gap. The critical value $̃0,c
was found to be significantly larger than unity, but its
dependence on relevant parameters, such as, for ex-
ample, nF , could not be reliably determined from these
numerical calculations (see Sec. V for more details).

No result for the quasiparticle density of states for
asymmetrical position of the chemical potential has been
reported so far. Such a calculation is particularly cum-
bersome since the quasiparticle spectrum in the super-
conducting state obeys particle-hole symmetry [see the
remark following Eqs. (19)], whereas the normal-state
Landau-level representation used above lacks this sym-
metry at all magnetic fields; discrete values when nF is
integral or half integral are exceptions.

In light of Eq. (21), which is identical (in its general
structure) to the well-known formula derived for a gas
of normal-state quasiparticles (see, for example, Shoen-
berg, 1984b), one can readily understand the implica-
tions of the main features of the quasiparticle density of
states shown above. It is, of course, quite obvious that
the broadening of the Landau levels into bands leads to
superconducting-induced damping of the dHvA ampli-
tude. The splitting of each Landau band into two sub-
bands is reminiscent of the Zeeman spin splitting. This
observation has a deeper origin than may appear at first
sight. Indeed, as discussed in Sec. I.B.3, the extremal
cyclotron orbit near the Fermi surface, which constitutes
the dominant contribution to the dHvA oscillations,
consists of many small sectors around the vortex cores
where the current density has a paramagnetic nature, in
contrast to the diamagnetic character of the intervortex
current density (see Fig. 11). These small current loops,
which are ‘‘attached’’ to the large diamagnetic cyclotron
loop near many vortex cores, can be regarded as spin-1/2
quantum paramagnets.

The quantum analogy to the spin-1/2 case can be de-
scribed as follows: a paramagnetic current loop is gener-
ated by the quasielectron-quasihole (Andreev) mixture
rotating in opposite directions around the core in its
close vicinity. The corresponding angular momenta
along the z axis, equal in magnitude but opposite in
direction, may be regarded as the two quantized projec-
tions of the ‘‘spin’’ along this axis. Furthermore, the

FIG. 9. Quasiparticle density of states calculated numerically
by Tesanovic and Sacramento (1998) for a 2D system in which
$̃0#$0 /()c#0.5 and nF#40. The chemical potential position
is at the center of the Landau band.

FIG. 10. A result similar to Fig. 9 for $̃0#1 and nF#20 calcu-
lated by Norman and MacDonald (1996), showing the opening
of pseudogaps in all Landau bands.
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where $ 'z represents the third component of the vector. The
topological aspects of the quantity in Eq. %3.17& were exten-
sively studied in the context of integer quantum Hall effect
%see e.g., Ref. 37& and it is a well known fact that

1
2#i! dk$“k"Â%k&'z!C1 , %3.18&

where C1 is a first Chern number that is an integer. There-
fore, a contribution of each filled band to !xy

s is

!xy
s ,m!

"

8#
N , %3.19&

where N is an integer. The assumption that the band must be
separated from the rest of the spectrum can be relaxed. If two
or more fully filled bands cross each other the sum total of
their contributions to spin Hall conductance is quantized
even though nothing guarantees the quantization of the indi-
vidual contributions. The quantization of the total spin Hall
conductance requires a gap in the single particle spectrum at
the Fermi energy. As discussed in Sec. V, the general single
particle spectrum of the d-wave superconductor in the vortex
state with inversion-symmetric vortex lattice is gapped and
therefore the quantization of !xy

s is guaranteed.

IV. THERMAL CONDUCTIVITY

Before discussing the nature of the quasiparticle spec-
trum, we will establish a Wiedemann–Franz law between
spin conductivity and thermal conductivity for a d-wave su-
perconductor. This relation is naturally expected to hold for a
very general system in which the quasiparticles form a de-
generate assembly, i.e., it holds even in the presence of elas-
tically scattering impurities.
Following Luttinger,32 and Smrčka and Středa34 we intro-

duce a pseudo-gravitational potential (!x•g/c2 into the
Hamiltonian Eq. %2.6& where g is a constant vector. The pur-
pose is to include a coupling to the energy density on the
Hamiltonian level. This formal trick allows us to equate sta-
tistical (T)(1/T)) and mechanical (g) forces so that the
thermal current jQ, in the long wavelength limit given by

jQ!LQ%T &" T)
1
T #)( # , %4.1&

will vanish in equilibrium. Therefore it is enough to consider
only the dynamical force g to calculate the phenomenologi-
cal coefficient L*+

Q . Note that thermal conductivity ,xy is

,*+%T &!
1
T L*+

Q %T &. %4.2&

When the BCS Hamiltonian H introduced in Eq.%2.1& be-
comes perturbed by the pseudo-gravitational field, the result-
ing Hamiltonian HT has the form

HT!H$F , %4.3&

where F incorporates the interaction with the perturbing
field:

F!
1
2! dx-†%x&%Ĥ0($(Ĥ0&-%x&. %4.4&

Since ( is a small perturbation, to the first order in ( the
Hamiltonian HT can be written as

HT!! dx" 1$
(

2 #-†%x&Ĥ0" 1$
(

2 #-%x&, %4.5&

i.e., the application of the pseudo-gravitational field results in
rescaling of the fermion operators:

-→-̃!" 1$
(

2 #- . %4.6&

If we measure the energy relative to the Fermi level, the
transport of heat is equivalent to the transport of energy. In
analogy with the Sec. III A, we define the heat current jQ
through diffusion of the energy-density hT . From conserva-
tion of the energy-density the continuity equation follows:

ḣT$)•jQ!0. %4.7&

In the limit of q→0 the thermal current is

j*
Q!

i
2 %-̃†V*-̇̃#-̇̃†V*-̃&. %4.8&

For details see Appendix C. Note that the quantum statistical
average of the current has two contributions, both linear in ( ,

. j*
Q/!. j0*

Q /$. j1*
Q /0#%K*+

Q $M*+
Q &1+( . %4.9&

The first term is the usual Kubo contribution to L*+
Q while the

second term is related to magnetization of the sample38 for
transverse components of ,*+ and vanishes for the longitu-
dinal components. In Appendix C we show that at T!0 the
term related to magnetization cancels the Kubo term and
therefore the transverse component of ,*+ is zero at T!0.
To obtain finite temperature response, we perform Sommer-
feld expansion and derive Wiedemann–Franz law for spin
and thermal Hall conductivity.
As shown in Appendix C
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Q %T &!#" 2" # 2! d222

d f %2&
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where
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Note that !̃*+
s (2!0)!!*+

s (T!0). For a superconductor at
low temperature the derivative of the Fermi–Dirac distribu-
tion function is

#
d f %2&
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d22
5%2&$••• %4.12&

QUASIPARTICLE HALL TRANSPORT OF d-WAVE . . . PHYSICAL REVIEW B 64 224508

224508-7

over, B-dependence of !xy comes entirely from the spin con-
ductivity "xy

s (B). That is:

!xy!
4#2

3 ! kB$ " 2T"%&
s 'B (. '6.1(

Curiously, if the above equation is naively combined with
Simon and Lee scaling7

!xy'T ,B (!T2Fxy!!BT " , '6.2(

the scaling function would be determined up to a proportion-
ality constant C:

!xy'T ,B (!CT!B . '6.3(

In the recent experiments of Ong et al.6 this is precisely the
scaling seen in the temperature range up to )25 K.
While the above arguments are tempting in their simplic-

ity, one must hesitate before proclaiming that they provide
the explanation for the scaling observed by Ong et al.6 First,
the experiments are done at rather high temperatures and it is
unlikely that the ultimate low temperature scaling regime, in
which we expect our Eq. '6.1( to be rigorously satisfied, has
been reached. Second, and even more glaring, is an intrinsic
theoretical problem: once the low temperature scaling regime
is reached and Eq. '6.1( holds we have argued that "xy

s 'and
therefore !xy as well( will be quantized as a function of
magnetic field, rather than obeying "xy

s *!B required for the

scaling form Eq. '6.3( to hold. Furthermore, the Simon and
Lee scaling form Eq. '6.2(, derived under the assumption of
linear, massless Dirac dispersion at the nodes, will itself be-
come suspect in presence of a small mass gap necessary for
the low temperature quantization. Still, one should never risk
dismissing experimentally observed scaling laws, particu-
larly not the one so simple as Eq. '6.3(. It is conceivable that
the ‘‘staircase’’ structure of quantized and oscillating "xy

s (B)
has a guiding ‘‘envelope’’ exhibiting an approximate !B de-
pendence and that the Simon and Lee scaling form Eq. '6.2(
holds to a good approximation at temperatures low enough
for linear dispersion at the nodes to become apparent while
still high or comparable to the much lower energy scale of
the Dirac mass gap. If this were the case, the experimentally
observed scaling Eq. '6.3( would still hold to a good ap-
proximation. Further investigation of these issues is left for
future study.

VII. CONTINUUM VERSUS LATTICE THEORY

The previous discussion concentrated on the tight-binding
formulation of the problem which is important if the mag-
netic field is relatively large and if there is a strong interac-
tion between the underlying ionic lattice and the quasiparti-
cles. In usual experimental situations, however, the magnetic
length is much longer than the inter-ionic spacing and we
would expect that the length-scale associated with the ionic
lattice becomes unimportant at low energies. This leads to a
continuum formulation of the theory 'see Sec. I(.

A. Linearized continuum theory

On the basis of the B!0 problem, we expect that the low
energy physics is confined in k-space around four nodal
points on the Fermi surface. In order to treat the effect of the
magnetic field and of the vortex lattice on the low energy

FIG. 3. The upper panel displays spin Hall conductivity "xy
s as a

function of the maximum superconducting order parameter +0. The
lower panel shows the magnetic field induced gap in the quasipar-
ticle spectrum. The change in the spin Hall conductivity occurs at
those values of +0 at which the gap closes. The parameters for the
above calculation were: square vortex lattice, magnetic length l
!4, , %!2.2t .

FIG. 2. The mechanism for changing the quantized spin Hall
conductivity is through exchanging the topological quanta via '‘‘ac-
cidental’’( gap closing. The upper panel displays spin Hall conduc-
tivity "xy

s as a function of the chemical potential % . The lower panel
shows the magnetic field induced gap +m in the quasiparticle spec-
trum. Note that the change in the spin Hall conductivity occurs
precisely at those values of chemical potential at which the gap
closes. Hence the mechanism behind the changes of "xy

s is the ex-
change of the topological quanta at the band crossings. The param-
eters for the above calculation were: square vortex lattice, magnetic
length l!4, , +!0.1t or equivalently the Dirac anisotropy -D
!10.
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VI. CONCLUSIONS

In the presence of impurities, the gap symmetry of a
d-wave superconductor yields the generation of impurity-
induced quasiparticles at the gap nodes. The transport prop-
erties of the resulting system are quite unique since such
quasiparticles are both generated and scattered by impurities.
In the !→0, T→0 limit, bare bubble calculations indicate
that transport coefficients are ‘‘universal,’’ independent of
the impurity density or scattering rate. However, once the
contributions of vertex corrections and Fermi liquid correc-
tions are included, we find that "putting in the #’s$ the elec-
trical, thermal, and spin conductivities in this universal limit
take the form

%0!
e2

#&2

v f

v2
'VC(FL

s 2, "6.1a$

)0
T !

*"&2/3$kB
2 +

#&2 ! v f

v2
"

v2
v f

" , "6.1b$

%0
s!

s2

#&2 ! v f

v2
"

v2
v f

"(FL
a 2, "6.1c$

where 'VC is a scattering-dependent vertex correction "3.23$
and (FL

s and (FL
a are spin-symmetric and spin-antisymmetric

Fermi-liquid factors "3.36$,"5.18$. Note that these are the 2D
conductivities of a single CuO2 plane. To obtain 3D conduc-
tivities, they must be multiplied by the number of CuO2
planes per unit length stacked along the c axis.
The ‘‘law’’ of Wiedemann and Franz suggests that the

transport coefficients should be related such that
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However, examination of the expressions above yields three
sources of Wiedemann-Franz violation: current operator
definition corrections, vertex corrections, and Fermi-liquid
corrections. First of all, since the electrical current has only a
Fermi term while the thermal and spin currents include both
a Fermi term and a gap term, %0 is proportional to the ratio
v f /v2 while )0 and %0

s involve an extra v2 /v f term. These
extra terms arise when the thermal and spin current operators
are corrected to account for the anisotropy of the order pa-
rameter. However, since v f /v2,14 for YBCO,13 this type of
violation is of more qualitative than quantitative importance.
Secondly, unless impurity scattering is completely isotropic
in k space, the electrical conductivity contains a scattering-
dependent vertex correction 'VC , which cannot be neglected
even to zeroth order in impurity density. However, analo-
gous corrections to the thermal and spin conductivities van-
ish in the small impurity density limit. Thus we expect a
scattering-dependent enhancement of %0 that is absent in )0
and %0

s . Finally, due to underlying Fermi-liquid interactions,
the electrical and spin conductivities gain spin-symmetric
and spin-antisymmetric correction factors, respectively. Cor-
responding corrections to the thermal current cancel due to
particle-hole symmetry. Hence, while Fermi-liquid interac-
tions modify %0 and %0

s , the value of )0 is unaffected.

The physical origin of the first two corrections lies with
the velocity dependence of the current operators. Although
somewhat obscured in the Nambu formalism, when our cur-
rent operators "3.7$,"4.17$,"5.10$ are rewritten in the quasi-
particle basis, it is clear that the electrical current is propor-
tional to the Fermi velocity vf!-.k /-k, while the thermal
and spin currents are proportional to the group velocity vG
!-Ek /-k. This difference arises because quasiparticles
carry definite energy and spin but do not carry definite
charge. Since energy and spin are well defined in the quasi-
particle basis, thermal and spin currents are proportional to
the group velocity, the derivative of the quasiparticle disper-
sion. By contrast, the electron and hole parts of each quasi-
particle have opposite charge and opposite velocity. There-
fore each part carries the same electrical current,
proportional to the normal state Fermi velocity. This point
was emphasized in Ref. 8. For a d-wave superconductor
where both .k and /k are momentum dependent, the group
velocity will have both a vf component and a v2 component
while the Fermi velocity can only have a vf component "see
Fig. 2$. This is the source of the extra gap terms in the
thermal and spin conductivities. "Similar conclusions were
drawn by Moreno and Coleman.25$
The role of vertex corrections can be understood by con-

FIG. 2. Schematic depictions of the "a$ electrical current and "b$
thermal/spin current in the vicinity of the four gap nodes. Electrical
current is proportional to the Fermi velocity vf!-.k /-k, whereas
thermal/spin current is proportional to the group velocity vG
!-Ek /-k. The ellipses drawn at each node denote "at a very exag-
gerated scale$ the regions of k space within which impurity-induced
quasiparticles are generated in the universal limit. *Note that in the
small impurity density regime with which we are concerned (00
#/0), these nodal regions are pointlike on the scale of the Bril-
louin zone.+
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We present a theory of quasiparticle Hall transport in strongly type-II superconductors within their vortex
state. We establish the existence of integer quantum spin Hall effect in clean unconventional dx2!y2 supercon-
ductors in the vortex state from a general analysis of the Bogoliubov–de Gennes equation. The spin Hall
conductivity #xy

s is shown to be quantized in units of $/8%. This result does not rest on linearization of the BdG
equations around Dirac nodes and therefore includes inter-nodal physics in its entirety. In addition, this result
holds for a generic inversion-symmetric lattice of vortices as long as the magnetic field B satisfies Hc1"B
"Hc2. We then derive the Wiedemann–Franz law for the spin and thermal Hall conductivity in the vortex
state. In the limit of T→0, the thermal Hall conductivity satisfies &xy#(4%2/3)(kB /$)2T#xy

s . The transitions
between different quantized values of #xy

s as well as relation to conventional superconductors are discussed.
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I. INTRODUCTION

One of the fundamental characteristics of high tempera-
ture superconductors !HTS" is the apparent applicability of
the d-wave1 BCS based phenomenology to the broad range
of quasiparticle properties in the superconducting state.2 This
is far from trivial property for materials known to exhibit
strong electron correlations. Although the horizon is still not
entirely clear and there remain few unresolved issues, ex-
amples being the temperature dependence of quasiparticle
lifetimes or the penetration depth in the underdoped
regime,2,3 the cumulative weight of evidence indicates that
the low energy properties of cuprate superconductors are in-
deed governed by nodal quasiparticles with Dirac-like dis-
persion, as seen in assorted spectroscopic4 and transport
measurements.5 These and other experiments serve as the
foundation for the ‘‘BCS-like d-wave paradigm’’ as it is cur-
rently used in both theory and interpretation of experiments.
A natural question is how does this picture hold together

in a mixed phase, in the presence of an external magnetic
field and an array of superconducting vortices and, if it does,
are there some special features of the d-wave quasiparticle
phenomenology which could be used to deepen our under-
standing of high temperature superconductivity? Recent ac-
tivity on the experimental front appears most encouraging in
this regard. In particular, measurements of the thermal Hall
conductivity &xy in cuprate superconductors are currently
viewed as especially informative probes of quasiparticle dy-
namics. These measurements provide a clean way of extract-
ing quasiparticle contribution to &xy since phonons, the other
source of significant thermal conduction, do not couple to the
magnetic field by virtue of being neutral. In addition, con-
trary to what takes place in an ordinary electrical Hall con-
ductivity experiment, vortices do not experience strong Lo-
renz force since there is only heat current and no net
electrical supercurrent to which vortices are strongly
coupled. Thus, vortices tend to remain stationary and their
transport does not serve as a significant channel for heat
conduction.
Recently, measurements of &xy were conducted by Ong’s

group6 on YBCO samples with a very long mean free path.

These experiments were carried out over a wide range of
magnetic fields !up to '14 T" and at temperatures from
T'12.5 K to above the superconducting transition Tc
'90 K. Unfortunately, the experiments are resolution lim-
ited below 12.5 K as signal becomes too weak. At tempera-
tures up to 25 K and for a (T dependent" range of magnetic
fields !H/Tesla$T/25K the experiments seem to suggest a
rather simple scaling form7 for &xy :

&xy!H ,T "#const.%!HT . !1.1"

We will return later to this simple scaling form and its pos-
sible relation to the theory presented here.
On the theoretical front, the initial interest, largely in-

spired by Gorkov and Schrieffer8 and, in a somewhat differ-
ent context, by Anderson,9 was directed at the formation of
‘‘Dirac Landau levels’’ and their signatures in the quasipar-
ticle thermodynamics and transport.10,11 This picture of Dirac
Landau level quantization, while theoretically elegant and
appealing, relies on the minimal coupling of the nodal BCS-
like quasiparticles to the electromagnetic vector potential, A.
The assumption of such minimal coupling seems innocent
but it is not, on fundamental grounds. The physics behind the
interaction of nodal quasiparticles with the external magnetic
field and vortices was elucidated by Franz and Tešanović.12
These authors devised a singular gauge transformation which
allows one to recast the original problem of BCS-like quasi-
particles, moving under the combined influence of an exter-
nal magnetic field and a superflow arising from vortex array,
into that of Bloch particles moving in an effective nonuni-
form and periodic magnetic field, the spatial average of
which equals zero. This approach clearly demonstrates that
the low energy portion of the quasiparticle spectrum can be
described as that of a relativistic Dirac particle minimally
coupled to a fictitious U(1) gauge potential, i.e., the ‘‘Berry’’
gauge field a, which supplies the needed &% winding in the
quantum mechanical phase of a quasiparticle as it encircles a
vortex. Such half-flux Aharonov–Bohm scattering arises en-
tirely through interaction of quasiparticles with vortices and
it does not involve the external magnetic field explicitly.
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FIG. 4. (Color online) Spin-triplet superconductor calculated self-consistently. Left, d̃ as a function of hz and λso. Right, Hall conductance
along cuts of constant magnetization as a function of the SO coupling.

In the unitary case, the energy spectrum has a gap at the
Fermi energy. This gap decreases as λso increases. As λso
grows, the gap between the first and the second bands seems
to decrease slightly, and then it increases. In general, one can
expect that small gaps between the bands will lead to large
contributions for the Hall conductance. In the nonunitary case,
the energy spectrum also has a gap at the Fermi surface, which
is small for small λs0, increases for slightly larger SO coupling,
but vanishes when λso exceeds λso ∼ 0.7. As λso grows further,
the gap between the first and the second bands increases.

In the case in which the superconductivity is intrinsic to
the material, we have to solve the Bogoliubov–de Gennes
equations self-consistently. We look for a situation of the type,

"↑,↑ = d̃(− sin kx + sin ky), "↑,↓ = "↓,↑ = 0,

"↓,↓ = d̃(sin kx + sin ky), qx = 0, (13)

qy = 0, qz = d̃2

2
(−4 sin kx sin ky),

where amplitude d̃ is determined self-consistently for a given
magnetization, taking into account that

d̃ = g

N

∑

%k

(− sin kx + sin ky)〈ψ%k↑ψ−%k↑〉, (14)

where g is the pairing interaction. The corresponding numer-
ical results are shown in Fig. 4. As the left panel shows, the
superconductivity is destroyed for a large enough SO coupling.
In the right panel, we see that the Hall conductance (as a
function of λso) decreases with increasing λso, and as the
transition to the normal phase appears, there are oscillations
of the Hall conductance with relatively large amplitudes.

III. AHE IN A CONVENTIONAL SUPERCONDUCTOR
WITH MAGNETIC IMPURITY

Now, consider a classical spin immersed in a 2D s-wave
conventional superconductor. We now use a description of
the system in real space. In the center of the system %r =
%lc = (xc,yc), we place a classical spin along the z direction.
The kinetic-energy part is described by a tight-binding model
with hopping amplitude t , similar to the case of triplet
superconductivity. The superconductor pairing is taken as s
wave, and the SO interaction58 is assumed as in the preceding
section. The electron operator is written in terms of the
Bogoliubov operators,

ψ(%r,σ ) =
∑

n

[un(%r,σ )γn − σvn(%r,σ )∗γ †
n ]. (15)

The zero-momentum charge current in the µ = x,y di-
rection can be written as jµ =

∑
%r ψ̄

†
%r V

µψ̄%r , where ψ̄%r =
(ψ%r,↑ ψ%r,↓)T and the velocity-matrix operators are given
by

V x = e

h̄
(itηx

−I + λsoη
x
+σy),

(16)
V y = e

h̄
(itηy

−I − λsoη
y
+σx).

Here, f (%r)ηµ
+g(%r) = f (%r + %δµ)g(%r) + f (%r)g(%r + %δµ) and

f (%r)ηµ
−g(%r) = f (%r + %δµ)g(%r) − f (%r)g(%r + %δµ), where %δµ

is a displacement between nearest neighbors along the µ
direction, while σx,σy are Pauli matrices, as above.

The real-space wave functions obey the Bogoliubov–de
Gennes equations for the energy excitations εn,





−h − εF − J δ%r,%lc "%r λso(−ηx + iηy) 0
"∗

%r h + εF − J δ%r,%lc 0 λso(ηx − iηy)
λso(ηx + iηy) 0 −h − εF + J δ%r,%lc "%r

0 λso(−ηx − iηy) "∗
%r h + εF + J δ%r,%lc









un(%r, ↑)
vn(%r, ↓)
un(%r, ↓)
vn(%r, ↑)




= εn





un(%r, ↑)
vn(%r, ↓)
un(%r, ↓)
vn(%r, ↑)




, (17)

where h = t ŝ%δ with ŝ%δf (%r) = f (%r + %δ). Furthermore, ηx = ±1 if the neighbor along x is ix + 1 (ix − 1) and ηy = ±1 if the
neighbor along y is iy + 1 (iy − 1). Parameter J describes the coupling between the impurity spin and the spin density of the
conduction electrons. Note that the solution to this problem requires diagonalization of a 4N × 4N matrix, where N is the
number of lattice sites. This is in contrast to the problem of the triplet superconductor described in the previous section where a
partial diagonalization was possible due to the translational invariance. Owing to this symmetry, the problem could be reduced to
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heterostructure.45 In particular, the so-called ! junctions,
where the Josephson current vanishes, have received atten-
tion in the literature.50,51 In the second case of a distribution
of magnetic dots in the close vicinity of the superconductor,
it has been shown that if the magnetic moments coupled are
oriented via an external field, they act as very effective pin-
ning centers for vortices present in the superconductor52

originating so-called frozen flux superconductors.53 The in-
sertion of magnetic rods in the superconductor is also
interesting.54–56

Now, the interest to the superconductivity on a magnetic
profile arises on a quite different ground. It was found that
electronic properties of magnetic nanostructures can be used
in various magnetoelectronic devices, in which the magnetic
state can be effectively controlled by the magnetic field or
electric current and, in turn, the variation of the magnetic
state changes strongly the electronic characteristics of de-
vices !and vice versa".57,58 More recently, the semiconduct-
ing magnetic materials are included into consideration,59–62

and the superconductors are also used as some elements of
the hybrid structures for magnetoelectronic applications.63 It
seems therefore worthwhile to consider the same type of
phenomena in a superconductor with magnetic impurities
disposed in some form of ordering that may be controllable
from the outside.64–66 In particular, we have in mind finite
systems to which we may attach leads through which we
may insert currents that go through a superconducting mate-
rial with classical spins immersed with their spins oriented in
such a way that they form domain walls. These may be
achieved, for instance, by imposing different boundary con-
ditions between two sides of the material. Therefore, in this
work, we have in mind systems that are finite and with non-
periodic boundary conditions.

While it is interesting to consider the effect the supercon-
ducting state may have on the magnetic profile in view of
possible spintronics applications, it is also interesting to see
the effect of the patterned magnetization profile on the su-
perconducting properties. In this work, we focus on the latter
aspect of the problem imposing a fixed magnetic pattern.
Usually, people consider, say, a semiconductor in a potential
quantum well or a metal in a magnetic profile but not a
superconductor in a magnetic profile. We find that the impu-
rities affect the properties in a very local way and the pattern
of interferences between the impurity induced states is rather
complex. We also find quantum phase transitions in these
situations. Even though we present our results for a fixed
magnetic profile, we also study the stability of the magnetic
profile, taking as the stabilizing factor a possible RKKY in-
teraction between the impurities mediated by the quasiparti-
cles of the superconductor.

In Sec. II, we introduce the model that describes the mag-
netic impurities inserted in the BCS s-wave superconductor.
In Sec. III, we consider the quantum phase transitions origi-
nated by the change of the coupling between the classical
impurity spins and the conduction electron spin density re-
vealed in the structure of the energy levels, local spin den-
sity, local gap function, and global spin density. In Sec. IV,
we study the nature of the quasiparticle states revealed in the
local density of states and the local kinetic energy. In Sec. V,
we consider the stability of the domain wall, taking into ac-

count an effective interaction between the impurity spins that
may originate in a RKKY interaction, and in Sec. VI we
study the effect of a finite temperature, particularly on the
quantum phase transition. We conclude in Sec. VII.

II. MODEL

Consider a set of classical spins immersed in a two-
dimensional s-wave conventional superconductor. We con-
sider a two-dimensional system for computational simplicity
and because it is easier to experimentally control either the
location of the magnetic impurities or the local magnetic
fields induced by the vicinity of, for instance, magnetic dots.
We use a lattice description of the system. In some sites, we
place classical spins parametrized like

S! l

S
= cos "le!x + sin "le!z, !1"

where S is the modulus of the spin. Thus, we assume that the
spins lie in the x-z plane. The Hamiltonian of the system is
given by

H = − #
$i,j%,#

ti,jci#
† cj# − $#

i#
ci#

† ci# + #
i

!%ici↑
† ci↓

† + %i
*ci↓ci↑"

− #
i,,l,#,#!

Ji,l!cos "lci#
† ##,#!

x ci#! + sin "lci#
† ##,#!

z ci#!" , !2"

where the first term describes the hopping of electrons be-
tween different sites on the lattice, the second term includes
the chemical potential $, the third one corresponds to the
superconducting s pairing with the site-dependent order pa-
rameter %i, and the last term is the exchange interaction of an
electron at site i with the magnetic impurity located at site l.
The hopping matrix is given by ti,j = t& j,i+&+ t!& j,i+&!, where &
is a vector to a nearest-neighbor site and &! to a next-nearest
site. Most of our calculations will be performed taking t=1,
t!=0, and $=−1. For this value of the chemical potential, the
band is between quarter and half-filling. The effects of intro-
ducing a next-nearest-neighbor hopping or varying the
chemical potential are discussed below. Note that both the
indices l and i , j specify sites on a two-dimensional system.
The indices i , j=1, . . . ,N, where N is the number of lattice
sites. We take Ji,l=J&i,l and therefore the last sum is over the
sites, l, where a spin is located. We assume that the spin
configuration is fixed and static. Later on, we will study the
stability of the spin configuration.

The diagonalization of this Hamiltonian is performed us-
ing the Bogoliubov transformation in the form

ci↑ = #
n

&un!i,↑"'n − vn
*!i,↑"'n

†' ,

ci↓ = #
n

&un!i,↓"'n + vn
*!i,↓"'n

†' . !3"

Here, n is a complete set of states, un and vn are related to the
eigenfunctions of Hamiltonian !2", and the new fermionic
operators 'n are the quasiparticle operators. These are chosen
such that in terms of new operators,

MAGNETIC IMPURITIES IN A SUPERCONDUCTOR:… PHYSICAL REVIEW B 76, 014512 !2007"
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a simple diagonalization of a 4 × 4 matrix for each momentum value. Since the effect of the magnetic impurity is rather local, a
system of 15 × 15 lattice sites is sufficient to have small finite-size effects as we have shown previously.47 We solve the problem
self-consistently, as in a previous paper (see Ref. 47 for details).

As in the case of triplet superconductivity studied in Sec. II, the Hall conductance can be obtained from a Kubo-like formula,
which now reads

Re(σxy) = i
h̄

V

∑

"r1,"r2

∑

α,β

∑

γ ,δ

∑

n,m

fn − fm

(εn − εm + i0+)2

[
V x

"r1;α,β V̄
y
"r2;γ ,δun("r1,α)∗un("r2,δ)um("r1,β)um("r2,γ )∗

−V x
"r1;α,βV

y
"r2;γ ,δγ δun("r1,α)∗vn("r2,γ )um("r1,β)vm("r2,δ)∗

]
. (18)

In this expression, V̄ is the complex conjugate, and V
µ
"ri

means
that the operator acts on the coordinate "ri .

The corresponding numerical results are presented in Fig. 5
where we show the total magnetization, order parameter at
the impurity site, and the anomalous Hall conductance as a
function of J and λso for a system of 15 × 15 lattice sites.
The case with no SO coupling (λso = 0) was studied before.45

Note, that the SO interaction shifts the critical value Jc, at
which the quantum-phase transition to a magnetic state occurs
for higher values. However, if λso is large enough, the transition
is washed out. Note also that the various quantities reveal the
quantum-phase transition when fixing λso and plotting them as
a function of J . At the transition point, the impurity captures
one electron and breaks a Cooper pair. Note that there still is a
transition when we introduce the SO coupling, but one needs
larger coupling parameter J as the SO increases. If we increase
the SO coupling further, superconductivity is destroyed, and
the Hall conductance exhibits strong oscillations as in the case
of the triplet superconductor.

In order to emphasize the connection between the behavior
of the Hall conductance and the quantum-phase transition,
in Fig. 6 (for different SO couplings), we show the Hall

conductance, amplitude of the order parameter at the impurity
location, and the total magnetization of the conduction
electrons as a function of the coupling between the spin
density of the conduction electrons and the impurity spin. At
the quantum-phase transition, both the amplitude of the order
parameter and the total magnetization have discontinuities.
At this critical coupling, the Hall conductance has a sharp
minimum, which therefore, signals the phase transition.

IV. SUMMARY

We have analyzed the AHE in superconductors, considering
only the intrinsic mechanism that results from the interplay of
the Rashba SO interaction and magnetization. In the normal
phase, the effect appears when both the SO term and the
magnetization are nonzero. In a conventional spin-singlet
superconductor of s-wave symmetry, an extended magneti-
zation destroys the superconductivity. As we have shown,
to have a nonvanishing anomalous Hall conductance in the
superconducting phase, it then is sufficient to assume a single
magnetic impurity in the presence of SO interaction. However,
vanishing coupling between the conduction electrons and the

FIG. 5. (Color online) In the top panels from left to right, total magnetization, order parameter at the impurity site, and anomalous Hall
conductance for the conventional superconductor with a magnetic impurity, calculated for a finite system including 15 × 15 lattice points as a
function of J and λso. In the lower panel, we show some cuts of the Hall conductance for J fixed and varying SO coupling.
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FIG. 6. (Color online) Order parameter at the impurity site, total
magnetization, and anomalous Hall conductance for the conven-
tional superconductor as a function of coupling strength for the
impurity spin, calculated for the SO coupling corresponding to
λso = 0.8, λso = 1.1, and λso = 1.4 as indicated. The first two values
cross the quantum-phase transition, and for the highest value, the
transition turns into a crossover.

magnetic impurity or vanishing SO coupling, lead to zero Hall
conductance.

The case of a spin-triplet superconductor is qualitatively
different. An extended magnetization does not destroy the
superconducting order. The magnetization, generally, either
can be induced by an adjacent ferromagnet owing to the
proximity effect (we also may consider the superconducting
order as a proximity effect in heterostructures where some
metal is coupled to a magnet and a superconductor), or it
may be an intrinsic property of the material (described by
a self-consistent solution for the pairing amplitude). In the
first case, two pairing forms lead to different results. If the

pairing is unitary, the results are similar to those for the normal
phase, and both magnetization and SO coupling are required
for a finite-Hall conductance. The superconducting case also
is very similar to the normal phase when !d is parallel to !s. In
the nonunitary case, however, there is a polarization associated
with the pairing amplitude, and the Hall conductance is finite
as long as the SO coupling is finite (a nonunitary pairing leads
to a finite magnetization as in the case of 3He).

Since the SO interaction generates spin flips, its moderate
values destroy superconductivity in both the conventional
and the triplet superconductors. In the case of s-wave su-
perconductors, critical values of the spin coupling J in the
presence of SO coupling are larger than those for zero SO
coupling, thus, shifting the point at which the quantum-phase
transition appears. In the case of spin-triplet superconductors
with the pairing amplitude determined self-consistently, the
SO coupling leads to suppression of the superconductivity
through a continuous-phase transition. Finally, we have shown
that the Hall conductance tracks the quantum-phase transition
induced by magnetic impurities in conventional supercon-
ductors. This provides transport measurement as a possible
tool to detect the transition, related to earlier predictions
that transport properties are affected by the presence of
magnetic impurities in a superconductor.59 We note that
one of the interests of the AHE is that it can easily be
measured.
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of conduction electrons is strong enough, the system becomes
magnetized through a first-order quantum-phase transition46,47

that leads to discontinuities in various physical quantities.48 In
both cases, we calculate the anomalous Hall conductance. We
show that the Hall conductance of a superconductor with a
magnetic impurity can be used to reveal the quantum-phase
transition. We consider the case of a system close to the
equilibrium with the chemical potential within the gap. As
we show, the energy spectrum in the state with both magnetic
and triplet superconducting orderings is generally gapped.
Therefore, possible isolated gapless points at the Fermi surface
only can give negligibly small contributions related to the side
jump or skew-scattering mechanisms from possible impurities.
Finally, we conclude with Sec. IV.

II. AHE IN A TRIPLET SUPERCONDUCTOR

First, we consider a superconductor with a uniform mag-
netization. Since magnetism and superconductivity compete,

a spin-singlet superconductor is not stable due to Cooper pair
breaking. Therefore, we consider a spin-triplet superconductor
where magnetism and superconductivity can coexist. The
system is described by the tight-binding model in 2D, to which
we add a superconducting-pairing term with the appropriate
symmetry. Additionally, we include the Rashba SO term,15

which generally is allowed in noncentrosymmetric materials.
Due to the SO term, a spin-singlet component !s generally
is induced, and therefore, there is a pairing mixture in the
system.49

We write the electron operators ψ!k,σ in terms of the
Bogoliubov operators γn,!k as

ψ!k,σ =
∑

n

(un(!k,σ )γn,!k − σvn(!k,σ )∗γ †
n,−!k), (1)

where !k,n label the eigenstates of the system. The wave
functions and energy eigenvalues satisfy the Bogoliubov–de
Gennes equations,50 which can be written as





ε!k − hz α(sin ky + i sin kx) −dx + idy dz + !s

α(sin ky − i sin kx) ε!k + hz dz − !s dx + idy

−dx − idy dz − !s −ε!k + hz α(sin ky − i sin kx)

dz + !s dx − idy α(sin ky + i sin kx) −ε!k − hz









un(!k, ↑)

un(!k, ↓)

vn(−!k, ↑)

vn(−!k, ↓)




= ε!k,n





un(!k, ↑)

un(!k, ↓)

vn(−!k, ↑)

vn(−!k, ↓)




.

(2)

Here, ε!k = −2t(cos kx + cos ky) − εF is the kinetic part,
where t denotes the hopping parameter set in the following
as the energy scale t = 1, εF is the chemical potential, chosen
in the following as εF = −1, !k is a wave vector in the xy
plane, and we have taken the lattice constant to be unity a = 1.
Furthermore, hz in Eq. (2) is the magnetization, in energy
units, along the z direction, while the vector !d = (dx,dy,dz)
is the vector representation of the superconducting pairing
(p wave). Finally, the Rashba SO term is written as HR =
!s · !σ = α(sin kyσx − sin kxσy), where α is measured in the
energy units, and σx,σy are the Pauli matrices.

The pairing matrix can be written as51

! =
(

!↑,↑ !↑,↓

!↓,↑ !↓,↓

)

=
(−dx + idy dz

dz dx + idy

)
. (3)

Thus, we can write dx = (!↓,↓ − !↑,↑)/2, dy = −i(!↓,↓ +
!↑,↑)/2, and dz = !↑,↓, whereas, the vector !q = i !d × !d∗

is given by qx = Re[(!↓,↓ + !↑,↑)!∗
↑,↓], qy = Im[(!↓,↓ −

!↑,↑)!∗
↑,↓], and qz = 1

2 [|!↑,↑|2 − |!↓,↓|2]. When this vector
vanishes, the pairing is called unitary. We have verified that
considering the s-wave component generally has a very small
effect on our results, and therefore, we assume !s = 0 in the
following.

The energy eigenvalues of Eq. (2) can be written (for !s =
0) as

ε!k,α1,α2
= α1

√
z1 + α22

√
z2, (4)

where

z1 = !d · !d + !s · !s + ε2
!k + h2

z,
(5)

z2 = ( !d · !s)2 +
(
ε2

!k + d2
z

)(
!s · !s + h2

z

)
,

and α1,α2 = ±.
In the normal phase ( !d = 0), the SO coupling lifts the spin

degeneracy of the energy bands in the tight-binding model,
except at !k = (0,0), (π,π ), and (0,π ) (and equivalent points).
These remaining degeneracies are lifted when including the
magnetization. This is shown in Fig. 1 where the two energy
bands are shown as a function of momentum for λso = α/2 =
2 and various values of hz. As can be seen from Eq. (4), the
lowest band is gapless at the points where

(
!s · !s + h2

z

)
+ ε2

!k = 2
√(

!s · !s + h2
z

)
ε2

!k . (6)

In a general case ( !d (= 0), the lowest band has gapless points
that are solutions of the equation z1 = 2

√
z2, which yields

!d · !d + !s · !s + ε2
!k + h2

z

= 2
√

( !d · !s)2 +
(
ε2

!k + d2
z

)(
!s · !s + h2

z

)
. (7)

Thus, in the superconducting phase, the system generally is
gapped. In particular, without the SO interaction, the gapless
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FIG. 1. (Color online) Energy bands in units of the hopping t as a function of momenta kx,ky in the normal phase for λso = 2 and various
values of the magnetization: From left to right, hz = 0 and hz = 0.5 (top); hz = 1 and hz = 1.2 (bottom).

points are obtained by !d · !d + ε2
!k = 0, which implies particular

values for the chemical potential.
The charge current along a link in the lattice can be obtained

by adding a vector potential to the kinetic and SO terms
and taking a functional derivative of the Hamiltonian with
respect to the vector potential,50,52 or through its definition in
the charge continuity equation.53 The zero-momentum charge
current in the µ = x,y direction can be written as

jµ =
∑

!k

ψ̄
†
!kV

µ
!k ψ̄!k, (8)

where ψ̄!k = ( ψ!k,↑ ψ!k,↓ )
T

and

V x = 2e

h̄

(
−tηx

!k,−I + λsoη
x
!k,+σy

)
,

(9)
V y = 2e

h̄

(
−tη

y
!k,−I − λsoη

y
!k,+σx

)

is a velocity matrix operator.54 Here, η
µ
!k,+ = cos(!k · !δµ) and

η
µ
!k,− = sin(!k · !δµ), where !δµ is a vector displacement (in units

of the lattice constant) between nearest neighbors along the µ
direction. In turn, I is the 2 × 2 unit matrix.

The Hall conductance now can be calculated using a Kubo-
like formula,55 which in the limit of uniform and stationary
currents !q → 0 and ω → 0, is given by

Re(σxy) = −i
h̄

N

∑

!k

∑

α,β

∑

γ ,δ

∑

n,m

fn,!k − fm,!k
(εn,!k − εm,!k + i0+)2

[
V x

!k;α,β
V

y
!k;γ ,δ

u∗
n(!k,α)un(!k,δ)um(!k,β)u∗

m(!k,γ )

−V x
!k;α,β

V
y

−!k;γ ,δ
γ δu∗

n(!k,α)vn(−!k,γ )um(!k,β)v∗
m(−!k,δ)

]
. (10)

where N is the number of sites and fn,!k is the Fermi function
for the state described by n and !k. In the normal phase,
the wave functions u and v are decoupled. The presence of
superconducting pairing mixes the particle and hole characters
and, as already mentioned above, the charge no longer is a good
quantum number. Then, the results for the Hall conductance
depend on the choice of the pairing matrix.51,56

Let us now assume that the pairing amplitude is
a free parameter. This describes the situations where

superconductivity is induced by proximity, and therefore,
no self-consistent solution is implied. This also applies to
a situation where σxy is measured on a normal sample in
which superconductivity pairing exists due to the proximity
effect in the presence of a nearby triplet superconductor. We
consider both unitary and nonunitary cases. Then, we consider
the case where the pairing amplitude is determined by solving
the Bogoliubov–de Gennes equations self-consistently. In the
latter case, we consider a nonunitary situation, for which the
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of conduction electrons is strong enough, the system becomes
magnetized through a first-order quantum-phase transition46,47

that leads to discontinuities in various physical quantities.48 In
both cases, we calculate the anomalous Hall conductance. We
show that the Hall conductance of a superconductor with a
magnetic impurity can be used to reveal the quantum-phase
transition. We consider the case of a system close to the
equilibrium with the chemical potential within the gap. As
we show, the energy spectrum in the state with both magnetic
and triplet superconducting orderings is generally gapped.
Therefore, possible isolated gapless points at the Fermi surface
only can give negligibly small contributions related to the side
jump or skew-scattering mechanisms from possible impurities.
Finally, we conclude with Sec. IV.

II. AHE IN A TRIPLET SUPERCONDUCTOR

First, we consider a superconductor with a uniform mag-
netization. Since magnetism and superconductivity compete,

a spin-singlet superconductor is not stable due to Cooper pair
breaking. Therefore, we consider a spin-triplet superconductor
where magnetism and superconductivity can coexist. The
system is described by the tight-binding model in 2D, to which
we add a superconducting-pairing term with the appropriate
symmetry. Additionally, we include the Rashba SO term,15

which generally is allowed in noncentrosymmetric materials.
Due to the SO term, a spin-singlet component !s generally
is induced, and therefore, there is a pairing mixture in the
system.49

We write the electron operators ψ!k,σ in terms of the
Bogoliubov operators γn,!k as

ψ!k,σ =
∑

n

(un(!k,σ )γn,!k − σvn(!k,σ )∗γ †
n,−!k), (1)

where !k,n label the eigenstates of the system. The wave
functions and energy eigenvalues satisfy the Bogoliubov–de
Gennes equations,50 which can be written as





ε!k − hz α(sin ky + i sin kx) −dx + idy dz + !s

α(sin ky − i sin kx) ε!k + hz dz − !s dx + idy

−dx − idy dz − !s −ε!k + hz α(sin ky − i sin kx)

dz + !s dx − idy α(sin ky + i sin kx) −ε!k − hz









un(!k, ↑)

un(!k, ↓)

vn(−!k, ↑)

vn(−!k, ↓)




= ε!k,n





un(!k, ↑)

un(!k, ↓)

vn(−!k, ↑)

vn(−!k, ↓)




.

(2)

Here, ε!k = −2t(cos kx + cos ky) − εF is the kinetic part,
where t denotes the hopping parameter set in the following
as the energy scale t = 1, εF is the chemical potential, chosen
in the following as εF = −1, !k is a wave vector in the xy
plane, and we have taken the lattice constant to be unity a = 1.
Furthermore, hz in Eq. (2) is the magnetization, in energy
units, along the z direction, while the vector !d = (dx,dy,dz)
is the vector representation of the superconducting pairing
(p wave). Finally, the Rashba SO term is written as HR =
!s · !σ = α(sin kyσx − sin kxσy), where α is measured in the
energy units, and σx,σy are the Pauli matrices.

The pairing matrix can be written as51

! =
(

!↑,↑ !↑,↓

!↓,↑ !↓,↓

)

=
(−dx + idy dz

dz dx + idy

)
. (3)

Thus, we can write dx = (!↓,↓ − !↑,↑)/2, dy = −i(!↓,↓ +
!↑,↑)/2, and dz = !↑,↓, whereas, the vector !q = i !d × !d∗

is given by qx = Re[(!↓,↓ + !↑,↑)!∗
↑,↓], qy = Im[(!↓,↓ −

!↑,↑)!∗
↑,↓], and qz = 1

2 [|!↑,↑|2 − |!↓,↓|2]. When this vector
vanishes, the pairing is called unitary. We have verified that
considering the s-wave component generally has a very small
effect on our results, and therefore, we assume !s = 0 in the
following.

The energy eigenvalues of Eq. (2) can be written (for !s =
0) as

ε!k,α1,α2
= α1

√
z1 + α22

√
z2, (4)

where

z1 = !d · !d + !s · !s + ε2
!k + h2

z,
(5)

z2 = ( !d · !s)2 +
(
ε2

!k + d2
z

)(
!s · !s + h2

z

)
,

and α1,α2 = ±.
In the normal phase ( !d = 0), the SO coupling lifts the spin

degeneracy of the energy bands in the tight-binding model,
except at !k = (0,0), (π,π ), and (0,π ) (and equivalent points).
These remaining degeneracies are lifted when including the
magnetization. This is shown in Fig. 1 where the two energy
bands are shown as a function of momentum for λso = α/2 =
2 and various values of hz. As can be seen from Eq. (4), the
lowest band is gapless at the points where

(
!s · !s + h2

z

)
+ ε2

!k = 2
√(

!s · !s + h2
z

)
ε2

!k . (6)

In a general case ( !d (= 0), the lowest band has gapless points
that are solutions of the equation z1 = 2

√
z2, which yields

!d · !d + !s · !s + ε2
!k + h2

z

= 2
√

( !d · !s)2 +
(
ε2

!k + d2
z

)(
!s · !s + h2

z

)
. (7)

Thus, in the superconducting phase, the system generally is
gapped. In particular, without the SO interaction, the gapless
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of conduction electrons is strong enough, the system becomes
magnetized through a first-order quantum-phase transition46,47

that leads to discontinuities in various physical quantities.48 In
both cases, we calculate the anomalous Hall conductance. We
show that the Hall conductance of a superconductor with a
magnetic impurity can be used to reveal the quantum-phase
transition. We consider the case of a system close to the
equilibrium with the chemical potential within the gap. As
we show, the energy spectrum in the state with both magnetic
and triplet superconducting orderings is generally gapped.
Therefore, possible isolated gapless points at the Fermi surface
only can give negligibly small contributions related to the side
jump or skew-scattering mechanisms from possible impurities.
Finally, we conclude with Sec. IV.

II. AHE IN A TRIPLET SUPERCONDUCTOR

First, we consider a superconductor with a uniform mag-
netization. Since magnetism and superconductivity compete,

a spin-singlet superconductor is not stable due to Cooper pair
breaking. Therefore, we consider a spin-triplet superconductor
where magnetism and superconductivity can coexist. The
system is described by the tight-binding model in 2D, to which
we add a superconducting-pairing term with the appropriate
symmetry. Additionally, we include the Rashba SO term,15

which generally is allowed in noncentrosymmetric materials.
Due to the SO term, a spin-singlet component !s generally
is induced, and therefore, there is a pairing mixture in the
system.49

We write the electron operators ψ!k,σ in terms of the
Bogoliubov operators γn,!k as

ψ!k,σ =
∑

n

(un(!k,σ )γn,!k − σvn(!k,σ )∗γ †
n,−!k), (1)

where !k,n label the eigenstates of the system. The wave
functions and energy eigenvalues satisfy the Bogoliubov–de
Gennes equations,50 which can be written as





ε!k − hz α(sin ky + i sin kx) −dx + idy dz + !s

α(sin ky − i sin kx) ε!k + hz dz − !s dx + idy

−dx − idy dz − !s −ε!k + hz α(sin ky − i sin kx)

dz + !s dx − idy α(sin ky + i sin kx) −ε!k − hz









un(!k, ↑)

un(!k, ↓)

vn(−!k, ↑)

vn(−!k, ↓)




= ε!k,n





un(!k, ↑)

un(!k, ↓)

vn(−!k, ↑)

vn(−!k, ↓)




.

(2)

Here, ε!k = −2t(cos kx + cos ky) − εF is the kinetic part,
where t denotes the hopping parameter set in the following
as the energy scale t = 1, εF is the chemical potential, chosen
in the following as εF = −1, !k is a wave vector in the xy
plane, and we have taken the lattice constant to be unity a = 1.
Furthermore, hz in Eq. (2) is the magnetization, in energy
units, along the z direction, while the vector !d = (dx,dy,dz)
is the vector representation of the superconducting pairing
(p wave). Finally, the Rashba SO term is written as HR =
!s · !σ = α(sin kyσx − sin kxσy), where α is measured in the
energy units, and σx,σy are the Pauli matrices.

The pairing matrix can be written as51

! =
(

!↑,↑ !↑,↓

!↓,↑ !↓,↓

)

=
(−dx + idy dz

dz dx + idy

)
. (3)

Thus, we can write dx = (!↓,↓ − !↑,↑)/2, dy = −i(!↓,↓ +
!↑,↑)/2, and dz = !↑,↓, whereas, the vector !q = i !d × !d∗

is given by qx = Re[(!↓,↓ + !↑,↑)!∗
↑,↓], qy = Im[(!↓,↓ −

!↑,↑)!∗
↑,↓], and qz = 1

2 [|!↑,↑|2 − |!↓,↓|2]. When this vector
vanishes, the pairing is called unitary. We have verified that
considering the s-wave component generally has a very small
effect on our results, and therefore, we assume !s = 0 in the
following.

The energy eigenvalues of Eq. (2) can be written (for !s =
0) as

ε!k,α1,α2
= α1

√
z1 + α22

√
z2, (4)

where

z1 = !d · !d + !s · !s + ε2
!k + h2

z,
(5)

z2 = ( !d · !s)2 +
(
ε2

!k + d2
z

)(
!s · !s + h2

z

)
,

and α1,α2 = ±.
In the normal phase ( !d = 0), the SO coupling lifts the spin

degeneracy of the energy bands in the tight-binding model,
except at !k = (0,0), (π,π ), and (0,π ) (and equivalent points).
These remaining degeneracies are lifted when including the
magnetization. This is shown in Fig. 1 where the two energy
bands are shown as a function of momentum for λso = α/2 =
2 and various values of hz. As can be seen from Eq. (4), the
lowest band is gapless at the points where

(
!s · !s + h2

z

)
+ ε2

!k = 2
√(

!s · !s + h2
z

)
ε2

!k . (6)

In a general case ( !d (= 0), the lowest band has gapless points
that are solutions of the equation z1 = 2

√
z2, which yields

!d · !d + !s · !s + ε2
!k + h2

z

= 2
√

( !d · !s)2 +
(
ε2

!k + d2
z

)(
!s · !s + h2

z

)
. (7)

Thus, in the superconducting phase, the system generally is
gapped. In particular, without the SO interaction, the gapless
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of conduction electrons is strong enough, the system becomes
magnetized through a first-order quantum-phase transition46,47

that leads to discontinuities in various physical quantities.48 In
both cases, we calculate the anomalous Hall conductance. We
show that the Hall conductance of a superconductor with a
magnetic impurity can be used to reveal the quantum-phase
transition. We consider the case of a system close to the
equilibrium with the chemical potential within the gap. As
we show, the energy spectrum in the state with both magnetic
and triplet superconducting orderings is generally gapped.
Therefore, possible isolated gapless points at the Fermi surface
only can give negligibly small contributions related to the side
jump or skew-scattering mechanisms from possible impurities.
Finally, we conclude with Sec. IV.

II. AHE IN A TRIPLET SUPERCONDUCTOR

First, we consider a superconductor with a uniform mag-
netization. Since magnetism and superconductivity compete,

a spin-singlet superconductor is not stable due to Cooper pair
breaking. Therefore, we consider a spin-triplet superconductor
where magnetism and superconductivity can coexist. The
system is described by the tight-binding model in 2D, to which
we add a superconducting-pairing term with the appropriate
symmetry. Additionally, we include the Rashba SO term,15

which generally is allowed in noncentrosymmetric materials.
Due to the SO term, a spin-singlet component !s generally
is induced, and therefore, there is a pairing mixture in the
system.49

We write the electron operators ψ!k,σ in terms of the
Bogoliubov operators γn,!k as

ψ!k,σ =
∑

n

(un(!k,σ )γn,!k − σvn(!k,σ )∗γ †
n,−!k), (1)

where !k,n label the eigenstates of the system. The wave
functions and energy eigenvalues satisfy the Bogoliubov–de
Gennes equations,50 which can be written as





ε!k − hz α(sin ky + i sin kx) −dx + idy dz + !s

α(sin ky − i sin kx) ε!k + hz dz − !s dx + idy

−dx − idy dz − !s −ε!k + hz α(sin ky − i sin kx)

dz + !s dx − idy α(sin ky + i sin kx) −ε!k − hz









un(!k, ↑)

un(!k, ↓)

vn(−!k, ↑)

vn(−!k, ↓)




= ε!k,n





un(!k, ↑)

un(!k, ↓)

vn(−!k, ↑)

vn(−!k, ↓)




.

(2)

Here, ε!k = −2t(cos kx + cos ky) − εF is the kinetic part,
where t denotes the hopping parameter set in the following
as the energy scale t = 1, εF is the chemical potential, chosen
in the following as εF = −1, !k is a wave vector in the xy
plane, and we have taken the lattice constant to be unity a = 1.
Furthermore, hz in Eq. (2) is the magnetization, in energy
units, along the z direction, while the vector !d = (dx,dy,dz)
is the vector representation of the superconducting pairing
(p wave). Finally, the Rashba SO term is written as HR =
!s · !σ = α(sin kyσx − sin kxσy), where α is measured in the
energy units, and σx,σy are the Pauli matrices.

The pairing matrix can be written as51

! =
(

!↑,↑ !↑,↓

!↓,↑ !↓,↓

)

=
(−dx + idy dz

dz dx + idy

)
. (3)

Thus, we can write dx = (!↓,↓ − !↑,↑)/2, dy = −i(!↓,↓ +
!↑,↑)/2, and dz = !↑,↓, whereas, the vector !q = i !d × !d∗

is given by qx = Re[(!↓,↓ + !↑,↑)!∗
↑,↓], qy = Im[(!↓,↓ −

!↑,↑)!∗
↑,↓], and qz = 1

2 [|!↑,↑|2 − |!↓,↓|2]. When this vector
vanishes, the pairing is called unitary. We have verified that
considering the s-wave component generally has a very small
effect on our results, and therefore, we assume !s = 0 in the
following.

The energy eigenvalues of Eq. (2) can be written (for !s =
0) as

ε!k,α1,α2
= α1

√
z1 + α22

√
z2, (4)

where

z1 = !d · !d + !s · !s + ε2
!k + h2

z,
(5)

z2 = ( !d · !s)2 +
(
ε2

!k + d2
z

)(
!s · !s + h2

z

)
,

and α1,α2 = ±.
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Thus, in the superconducting phase, the system generally is
gapped. In particular, without the SO interaction, the gapless
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FIG. 2. (Color online) Anomalous Hall conductance in units of
e2/h in the normal phase as a function of hz and λso.

amplitudes "↑,↑ and "↓,↓ are real, to simplify. This, in turn,
implies that dy is imaginary. In all cases, we take "↑,↓ = 0
(dz = 0), which means that only the qz component may be
nonvanishing.

In Fig. 2, the anomalous Hall conductance in the normal
phase (zero-pairing amplitude) is plotted as a function of the
magnetization hz and SO coupling λso. The Hall conductance
vanishes if either the magnetization or the SO coupling
vanishes. Then, the absolute value of the Hall conductance
increases as either parameter increases. Dependence on hz

is more complex, as the conductance reaches a minimum
around hz = 1 ∼ −εF , which shifts if we change the chemical
potential. The minimum in the Hall conductance as a function
of the magnetization hz (keeping the SO constant, for instance,
λso = 2) is associated with the gaplessness of the spectrum at
the point (0,π ) and the equivalent points (see also Fig. 1).

Now, we consider the superconducting phase. Since the
SO coupling renders the type of pairing undefined (with the
mixture of spin-triplet and spin-singlet pairings), the strength
of the triplet pairing is expected to be weakened in comparison
to the same superconductor with a vanishing SO coupling.

However, it was shown before57 that the amplitude of the triplet
pairing was not affected by the SO term when vector %d was
parallel to the SO vector %s. We have found that this pairing
choice leads to results for the anomalous Hall conductance,
which are very similar to those for the Hall conductance in the
normal phase. This indicates that, for this particular case, the
superconducting order does not change the Hall conductance
significantly, and therefore, we do not show the corresponding
results. We also have considered other choices of pairing, for
which vector %d is not parallel to the SO vector %s. We have
considered both unitary and nonunitary cases. It is already
known for a unitary case57 that, even though the amplitude of
the triplet coupling is somewhat weakened with respect to the
case of vanishing SO term, it is still finite.

In Fig. 3, we show the anomalous Hall conductance in
the superconducting phase for the two choices of the triplet
pairing. We consider a unitary choice given by

"↑,↑ = d(− sin ky + i sin kx),"↑,↓ = "↓,↑ = 0,

"↓,↓ = d(sin ky + i sin kx)

qx = 0, qy = 0, qz = 0. (11)

and a nonunitary choice given by

"↑,↑ = d sin kx, "↑,↓ = "↓,↑ = 0, "↓,↓ = 0,
(12)

qx = 0, qy = 0, qz = d2

2
sin2 kx.

In the case of unitary coupling (top panels of Fig. 3), σxy = 0 if
either λso = 0 or hz = 0. However, in the case of a nonunitary
coupling (bottom panels of Fig. 3), σxy = 0 if λso = 0, but for
a nonzero SO coupling, there is a finite Hall conductance even
if hz = 0. In this nonunitary case, there is a magnetization
induced by the pairing, which leads to a finite σxy in a similar
way as in 3He.

FIG. 3. (Color online) Anomalous Hall conductance for a spin-triplet superconductor. Left panels present a Hall conductance as a function
of hz and λso for d = 1, whereas, right panels present it as a function of d and λso for hz = 0.5. Top figures correspond to the unitary case, see
Eq. (11), while bottom figures correspond to the nonunitary case, Eq. (12).
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define our model on the square lattice, though the following
argument does not rely on the particular choice of the crystal
structure. Then the model Hamiltonian is

H = !
k,!

"kck!
† ck! − #BHz!

k,!
"!z#!!!ck!

† ck!!

+ $ !
k,!,!!

L0"k# · !!!!ck!
† ck!! +

1
2 !

k!!!

%!!!"k#ck!
† c−k!!

†

+
1
2 !

k!!!

%!!!
! "k#c−k!ck!!, "1#

where ck!
† "ck!# is a creation "an annihilation# operator for an

electron with momentum k= "kx ,ky# and spin !. The energy-
band dispersion is "k=−2t"cos kx+cos ky#−#, with the hop-
ping parameter t and the chemical potential #, and the

Rashba SO coupling is L0"k#= "sin ky ,−sin kx#. For simplic-
ity, we assume that t&0 and #'0. Because of parity mixing
of Cooper pairs, the gap function %"k# has both a spin-triplet
component d"k# and a spin-singlet one ("k# at the same time,
%"k#= i("k#!y + id"k#!!y. Due to the strong SO coupling,
the spin-triplet component d"k# is aligned with the
Rashba coupling, d"k#=%tL0"k#.29 For the spin-singlet
component (, we assume an s-wave pairing, ("k#=%s. The
amplitudes %t,s are chosen as real. The Zeeman coupling
#BHz!k"ck↑

† ck↑−ck↓
† ck↓# with Hz as a magnetic field in the z

direction has been also introduced for later use.
Before going to study topological properties of the sys-

tem, we first examine the bulk spectrum of the system. To-
pological nature of the system changes only when the gap of
the bulk spectrum closes. The bulk spectrum E"k# of the
system is obtained by diagonalizing the following matrix:

H"k# = $"k − #BHz!z + $L0"k# · ! i%s!y + i%tL0"k# · !!y

− i%s!y − i%tL0"k#!y · ! − "k + #BHz!z + $L0"k# · !!% , "2#

and we have

E"k# = ) &"k
2 + "$2 + %t

2#L0"k#2 + #B
2Hz

2 + %s
2 ) 2&""k$ + %s%t#2L0"k#2 + ""k

2 + %s
2##B

2Hz
2. "3#

The gap of the system closes only when

"k
2 + "$2 + %t

2#L0"k#2 + #B
2Hz

2 + %s
2

= 2&""k$ + %s%t#2L0"k#2 + ""k
2 + %s

2##B
2Hz

2, "4#

which is equivalent to

"k
2 + %s

2 = #B
2Hz

2 + "$2 + %t
2#L0"k#2, "k%tL0"k# = %s$L0"k# .

"5#

When %t!0, Eq. "5# is met when either

"k =
%s

%t
$, $1 +

$2

%t
2%'%t

2L0"k#2 − %s
2( + #B

2Hz
2 = 0 "6#

or

"k
2 + %s

2 = #B
2Hz

2, L0"k# = 0. "7#

In the absence of the magnetic field, only the equations in
Eq. "6# can be met and they are rewritten in simpler forms,

"k
2 = $2L0"k#2, %t

2L0"k#2 = %s
2. "8#

Topological nature of the system does not change unless Eq.
"6# or "7# 'or Eq. "8# when Hz=0( is satisfied.

A. Z2 topological number

When Hz=0, the system is time-reversal invariant, and
the topological property is characterized by the Z2

invariant.11,40–45 We will show that if the spin-triplet pairing
is stronger than the spin-singlet one, the Z2 number is non-
trivial.

To calculate the Z2 number, we adiabatically deform the
Hamiltonian of the system without gap closing. This process
does not change the Z2 topological number since it changes
only when the gap closes. From Eq. "8#, it is found that if the
spin-triplet amplitude %tL0"k# is larger than the spin-singlet
one %s on the Fermi surface given by "k=$L0"k#, we can
take %s→0, then $→0 without gap closing. 'If "k=0 at one
of the time-reversal momenta k= "0,0# , "* ,0# , "0,*# , "* ,*#,
the gap closes when %s=0. However, this undesirable gap
closing can be avoided by changing # or t slightly.( Thus, its
Z2 number is the same as that of the pure spin-triplet SC with
d"k#=%tL0"k#.

As was shown in Ref. 47, the Z2 topological number
"−1#+ for a pure spin-triplet SC is determined by its disper-
sion "k in the normal state,

"− 1#+ = )
k="0,0#,"0,*#,"*,0#,"*,*#

sgn "k. "9#

From this formula, it is easily shown that the Z2 number is
always nonzero "mod 2# for the square lattice system. There-
fore, from the argument above, if the spin-triplet pairing is
stronger than the singlet one, the NCS is a topological insu-
lator with a nontrivial Z2 number. This topological supercon-
ductor belongs to the same class as one discussed in Refs.
37, 48, and 49.
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heterostructure.45 In particular, the so-called ! junctions,
where the Josephson current vanishes, have received atten-
tion in the literature.50,51 In the second case of a distribution
of magnetic dots in the close vicinity of the superconductor,
it has been shown that if the magnetic moments coupled are
oriented via an external field, they act as very effective pin-
ning centers for vortices present in the superconductor52

originating so-called frozen flux superconductors.53 The in-
sertion of magnetic rods in the superconductor is also
interesting.54–56

Now, the interest to the superconductivity on a magnetic
profile arises on a quite different ground. It was found that
electronic properties of magnetic nanostructures can be used
in various magnetoelectronic devices, in which the magnetic
state can be effectively controlled by the magnetic field or
electric current and, in turn, the variation of the magnetic
state changes strongly the electronic characteristics of de-
vices !and vice versa".57,58 More recently, the semiconduct-
ing magnetic materials are included into consideration,59–62

and the superconductors are also used as some elements of
the hybrid structures for magnetoelectronic applications.63 It
seems therefore worthwhile to consider the same type of
phenomena in a superconductor with magnetic impurities
disposed in some form of ordering that may be controllable
from the outside.64–66 In particular, we have in mind finite
systems to which we may attach leads through which we
may insert currents that go through a superconducting mate-
rial with classical spins immersed with their spins oriented in
such a way that they form domain walls. These may be
achieved, for instance, by imposing different boundary con-
ditions between two sides of the material. Therefore, in this
work, we have in mind systems that are finite and with non-
periodic boundary conditions.

While it is interesting to consider the effect the supercon-
ducting state may have on the magnetic profile in view of
possible spintronics applications, it is also interesting to see
the effect of the patterned magnetization profile on the su-
perconducting properties. In this work, we focus on the latter
aspect of the problem imposing a fixed magnetic pattern.
Usually, people consider, say, a semiconductor in a potential
quantum well or a metal in a magnetic profile but not a
superconductor in a magnetic profile. We find that the impu-
rities affect the properties in a very local way and the pattern
of interferences between the impurity induced states is rather
complex. We also find quantum phase transitions in these
situations. Even though we present our results for a fixed
magnetic profile, we also study the stability of the magnetic
profile, taking as the stabilizing factor a possible RKKY in-
teraction between the impurities mediated by the quasiparti-
cles of the superconductor.

In Sec. II, we introduce the model that describes the mag-
netic impurities inserted in the BCS s-wave superconductor.
In Sec. III, we consider the quantum phase transitions origi-
nated by the change of the coupling between the classical
impurity spins and the conduction electron spin density re-
vealed in the structure of the energy levels, local spin den-
sity, local gap function, and global spin density. In Sec. IV,
we study the nature of the quasiparticle states revealed in the
local density of states and the local kinetic energy. In Sec. V,
we consider the stability of the domain wall, taking into ac-

count an effective interaction between the impurity spins that
may originate in a RKKY interaction, and in Sec. VI we
study the effect of a finite temperature, particularly on the
quantum phase transition. We conclude in Sec. VII.

II. MODEL

Consider a set of classical spins immersed in a two-
dimensional s-wave conventional superconductor. We con-
sider a two-dimensional system for computational simplicity
and because it is easier to experimentally control either the
location of the magnetic impurities or the local magnetic
fields induced by the vicinity of, for instance, magnetic dots.
We use a lattice description of the system. In some sites, we
place classical spins parametrized like

S! l

S
= cos "le!x + sin "le!z, !1"

where S is the modulus of the spin. Thus, we assume that the
spins lie in the x-z plane. The Hamiltonian of the system is
given by

H = − #
$i,j%,#

ti,jci#
† cj# − $#

i#
ci#

† ci# + #
i

!%ici↑
† ci↓

† + %i
*ci↓ci↑"

− #
i,,l,#,#!

Ji,l!cos "lci#
† ##,#!

x ci#! + sin "lci#
† ##,#!

z ci#!" , !2"

where the first term describes the hopping of electrons be-
tween different sites on the lattice, the second term includes
the chemical potential $, the third one corresponds to the
superconducting s pairing with the site-dependent order pa-
rameter %i, and the last term is the exchange interaction of an
electron at site i with the magnetic impurity located at site l.
The hopping matrix is given by ti,j = t& j,i+&+ t!& j,i+&!, where &
is a vector to a nearest-neighbor site and &! to a next-nearest
site. Most of our calculations will be performed taking t=1,
t!=0, and $=−1. For this value of the chemical potential, the
band is between quarter and half-filling. The effects of intro-
ducing a next-nearest-neighbor hopping or varying the
chemical potential are discussed below. Note that both the
indices l and i , j specify sites on a two-dimensional system.
The indices i , j=1, . . . ,N, where N is the number of lattice
sites. We take Ji,l=J&i,l and therefore the last sum is over the
sites, l, where a spin is located. We assume that the spin
configuration is fixed and static. Later on, we will study the
stability of the spin configuration.

The diagonalization of this Hamiltonian is performed us-
ing the Bogoliubov transformation in the form

ci↑ = #
n

&un!i,↑"'n − vn
*!i,↑"'n

†' ,

ci↓ = #
n

&un!i,↓"'n + vn
*!i,↓"'n

†' . !3"

Here, n is a complete set of states, un and vn are related to the
eigenfunctions of Hamiltonian !2", and the new fermionic
operators 'n are the quasiparticle operators. These are chosen
such that in terms of new operators,
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heterostructure.45 In particular, the so-called ! junctions,
where the Josephson current vanishes, have received atten-
tion in the literature.50,51 In the second case of a distribution
of magnetic dots in the close vicinity of the superconductor,
it has been shown that if the magnetic moments coupled are
oriented via an external field, they act as very effective pin-
ning centers for vortices present in the superconductor52

originating so-called frozen flux superconductors.53 The in-
sertion of magnetic rods in the superconductor is also
interesting.54–56

Now, the interest to the superconductivity on a magnetic
profile arises on a quite different ground. It was found that
electronic properties of magnetic nanostructures can be used
in various magnetoelectronic devices, in which the magnetic
state can be effectively controlled by the magnetic field or
electric current and, in turn, the variation of the magnetic
state changes strongly the electronic characteristics of de-
vices !and vice versa".57,58 More recently, the semiconduct-
ing magnetic materials are included into consideration,59–62

and the superconductors are also used as some elements of
the hybrid structures for magnetoelectronic applications.63 It
seems therefore worthwhile to consider the same type of
phenomena in a superconductor with magnetic impurities
disposed in some form of ordering that may be controllable
from the outside.64–66 In particular, we have in mind finite
systems to which we may attach leads through which we
may insert currents that go through a superconducting mate-
rial with classical spins immersed with their spins oriented in
such a way that they form domain walls. These may be
achieved, for instance, by imposing different boundary con-
ditions between two sides of the material. Therefore, in this
work, we have in mind systems that are finite and with non-
periodic boundary conditions.

While it is interesting to consider the effect the supercon-
ducting state may have on the magnetic profile in view of
possible spintronics applications, it is also interesting to see
the effect of the patterned magnetization profile on the su-
perconducting properties. In this work, we focus on the latter
aspect of the problem imposing a fixed magnetic pattern.
Usually, people consider, say, a semiconductor in a potential
quantum well or a metal in a magnetic profile but not a
superconductor in a magnetic profile. We find that the impu-
rities affect the properties in a very local way and the pattern
of interferences between the impurity induced states is rather
complex. We also find quantum phase transitions in these
situations. Even though we present our results for a fixed
magnetic profile, we also study the stability of the magnetic
profile, taking as the stabilizing factor a possible RKKY in-
teraction between the impurities mediated by the quasiparti-
cles of the superconductor.

In Sec. II, we introduce the model that describes the mag-
netic impurities inserted in the BCS s-wave superconductor.
In Sec. III, we consider the quantum phase transitions origi-
nated by the change of the coupling between the classical
impurity spins and the conduction electron spin density re-
vealed in the structure of the energy levels, local spin den-
sity, local gap function, and global spin density. In Sec. IV,
we study the nature of the quasiparticle states revealed in the
local density of states and the local kinetic energy. In Sec. V,
we consider the stability of the domain wall, taking into ac-

count an effective interaction between the impurity spins that
may originate in a RKKY interaction, and in Sec. VI we
study the effect of a finite temperature, particularly on the
quantum phase transition. We conclude in Sec. VII.

II. MODEL

Consider a set of classical spins immersed in a two-
dimensional s-wave conventional superconductor. We con-
sider a two-dimensional system for computational simplicity
and because it is easier to experimentally control either the
location of the magnetic impurities or the local magnetic
fields induced by the vicinity of, for instance, magnetic dots.
We use a lattice description of the system. In some sites, we
place classical spins parametrized like

S! l

S
= cos "le!x + sin "le!z, !1"

where S is the modulus of the spin. Thus, we assume that the
spins lie in the x-z plane. The Hamiltonian of the system is
given by

H = − #
$i,j%,#

ti,jci#
† cj# − $#

i#
ci#

† ci# + #
i

!%ici↑
† ci↓

† + %i
*ci↓ci↑"

− #
i,,l,#,#!

Ji,l!cos "lci#
† ##,#!

x ci#! + sin "lci#
† ##,#!

z ci#!" , !2"

where the first term describes the hopping of electrons be-
tween different sites on the lattice, the second term includes
the chemical potential $, the third one corresponds to the
superconducting s pairing with the site-dependent order pa-
rameter %i, and the last term is the exchange interaction of an
electron at site i with the magnetic impurity located at site l.
The hopping matrix is given by ti,j = t& j,i+&+ t!& j,i+&!, where &
is a vector to a nearest-neighbor site and &! to a next-nearest
site. Most of our calculations will be performed taking t=1,
t!=0, and $=−1. For this value of the chemical potential, the
band is between quarter and half-filling. The effects of intro-
ducing a next-nearest-neighbor hopping or varying the
chemical potential are discussed below. Note that both the
indices l and i , j specify sites on a two-dimensional system.
The indices i , j=1, . . . ,N, where N is the number of lattice
sites. We take Ji,l=J&i,l and therefore the last sum is over the
sites, l, where a spin is located. We assume that the spin
configuration is fixed and static. Later on, we will study the
stability of the spin configuration.

The diagonalization of this Hamiltonian is performed us-
ing the Bogoliubov transformation in the form

ci↑ = #
n

&un!i,↑"'n − vn
*!i,↑"'n

†' ,

ci↓ = #
n

&un!i,↓"'n + vn
*!i,↓"'n

†' . !3"

Here, n is a complete set of states, un and vn are related to the
eigenfunctions of Hamiltonian !2", and the new fermionic
operators 'n are the quasiparticle operators. These are chosen
such that in terms of new operators,
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heterostructure.45 In particular, the so-called ! junctions,
where the Josephson current vanishes, have received atten-
tion in the literature.50,51 In the second case of a distribution
of magnetic dots in the close vicinity of the superconductor,
it has been shown that if the magnetic moments coupled are
oriented via an external field, they act as very effective pin-
ning centers for vortices present in the superconductor52

originating so-called frozen flux superconductors.53 The in-
sertion of magnetic rods in the superconductor is also
interesting.54–56

Now, the interest to the superconductivity on a magnetic
profile arises on a quite different ground. It was found that
electronic properties of magnetic nanostructures can be used
in various magnetoelectronic devices, in which the magnetic
state can be effectively controlled by the magnetic field or
electric current and, in turn, the variation of the magnetic
state changes strongly the electronic characteristics of de-
vices !and vice versa".57,58 More recently, the semiconduct-
ing magnetic materials are included into consideration,59–62

and the superconductors are also used as some elements of
the hybrid structures for magnetoelectronic applications.63 It
seems therefore worthwhile to consider the same type of
phenomena in a superconductor with magnetic impurities
disposed in some form of ordering that may be controllable
from the outside.64–66 In particular, we have in mind finite
systems to which we may attach leads through which we
may insert currents that go through a superconducting mate-
rial with classical spins immersed with their spins oriented in
such a way that they form domain walls. These may be
achieved, for instance, by imposing different boundary con-
ditions between two sides of the material. Therefore, in this
work, we have in mind systems that are finite and with non-
periodic boundary conditions.

While it is interesting to consider the effect the supercon-
ducting state may have on the magnetic profile in view of
possible spintronics applications, it is also interesting to see
the effect of the patterned magnetization profile on the su-
perconducting properties. In this work, we focus on the latter
aspect of the problem imposing a fixed magnetic pattern.
Usually, people consider, say, a semiconductor in a potential
quantum well or a metal in a magnetic profile but not a
superconductor in a magnetic profile. We find that the impu-
rities affect the properties in a very local way and the pattern
of interferences between the impurity induced states is rather
complex. We also find quantum phase transitions in these
situations. Even though we present our results for a fixed
magnetic profile, we also study the stability of the magnetic
profile, taking as the stabilizing factor a possible RKKY in-
teraction between the impurities mediated by the quasiparti-
cles of the superconductor.

In Sec. II, we introduce the model that describes the mag-
netic impurities inserted in the BCS s-wave superconductor.
In Sec. III, we consider the quantum phase transitions origi-
nated by the change of the coupling between the classical
impurity spins and the conduction electron spin density re-
vealed in the structure of the energy levels, local spin den-
sity, local gap function, and global spin density. In Sec. IV,
we study the nature of the quasiparticle states revealed in the
local density of states and the local kinetic energy. In Sec. V,
we consider the stability of the domain wall, taking into ac-

count an effective interaction between the impurity spins that
may originate in a RKKY interaction, and in Sec. VI we
study the effect of a finite temperature, particularly on the
quantum phase transition. We conclude in Sec. VII.

II. MODEL

Consider a set of classical spins immersed in a two-
dimensional s-wave conventional superconductor. We con-
sider a two-dimensional system for computational simplicity
and because it is easier to experimentally control either the
location of the magnetic impurities or the local magnetic
fields induced by the vicinity of, for instance, magnetic dots.
We use a lattice description of the system. In some sites, we
place classical spins parametrized like

S! l

S
= cos "le!x + sin "le!z, !1"

where S is the modulus of the spin. Thus, we assume that the
spins lie in the x-z plane. The Hamiltonian of the system is
given by

H = − #
$i,j%,#

ti,jci#
† cj# − $#
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Ji,l!cos "lci#
† ##,#!
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where the first term describes the hopping of electrons be-
tween different sites on the lattice, the second term includes
the chemical potential $, the third one corresponds to the
superconducting s pairing with the site-dependent order pa-
rameter %i, and the last term is the exchange interaction of an
electron at site i with the magnetic impurity located at site l.
The hopping matrix is given by ti,j = t& j,i+&+ t!& j,i+&!, where &
is a vector to a nearest-neighbor site and &! to a next-nearest
site. Most of our calculations will be performed taking t=1,
t!=0, and $=−1. For this value of the chemical potential, the
band is between quarter and half-filling. The effects of intro-
ducing a next-nearest-neighbor hopping or varying the
chemical potential are discussed below. Note that both the
indices l and i , j specify sites on a two-dimensional system.
The indices i , j=1, . . . ,N, where N is the number of lattice
sites. We take Ji,l=J&i,l and therefore the last sum is over the
sites, l, where a spin is located. We assume that the spin
configuration is fixed and static. Later on, we will study the
stability of the spin configuration.

The diagonalization of this Hamiltonian is performed us-
ing the Bogoliubov transformation in the form

ci↑ = #
n

&un!i,↑"'n − vn
*!i,↑"'n

†' ,

ci↓ = #
n

&un!i,↓"'n + vn
*!i,↓"'n

†' . !3"

Here, n is a complete set of states, un and vn are related to the
eigenfunctions of Hamiltonian !2", and the new fermionic
operators 'n are the quasiparticle operators. These are chosen
such that in terms of new operators,
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Detec8on	  through	  conductance	  or	  tunneling:	  subtract	  supercurrents	  

Entanglement spectra of quantum Heisenberg ladders

Didier Poilblanc
1

1 Laboratoire de Physique Théorique UMR5152, CNRS and Université de Toulouse, F-31062 France
(Dated: June 30, 2010)

Bipartite entanglement measures are fantastic tools to investigate quantum phases of correlated electrons.

Here, I analyze the entanglement spectrum of gapped two-leg quantum Heisenberg ladders on a periodic ribbon

partitioned into two identical periodic chains. Comparison of various entanglement entropies proposed in the

literature is given. The entanglement spectrum is shown to closely reflect the low-energy gapless spectrum of

each individual edge, for any sign of the exchange coupling constants. This extends the conjecture initially

drawn for Fractional Quantum Hall systems to the field of quantum magnetism, stating a direct correspondence

between the low-energy entanglement spectrum of a partitioned system and the true spectrum of the virtual
edges. A mapping of the reduced density matrix to a thermodynamic density matrix is also proposed via the

introduction of an effective temperature.

PACS numbers: 75.10.Jm,05.30.-d,05.30.Rt

Introduction – The recent application of quantum informa-

tion concepts to several domains of condensed matter [1] has

proven to be extremely successful, giving new type of phys-

ical insights on exotic quantum phases. Upon partitioning a

many-body quantum system into two parts A and B, quantum

entanglement can be characterized by the properties of the

groundstate reduced density matrix of either one of the two

parts, ρA or ρB . For example, entanglement entropies such

as the Von Neumann entropy −Tr{ρA ln ρA} or the family of

Rényi entropies offer an extraordinary tool to identify a one-

dimensional conformal invariant system [2] and provides e.g.

a direct (numerical) calculation of its central charge [3].

Furthermore, the entanglement spectrum (ES) defined by

the eigenvalues of a fictitious Hamiltonian H, where ρA is

written as exp (−H), has been shown to provide much more

complete information on the system. In one dimension, un-

derlying conformal field theory (CFT) leads to universal scal-

ings of the ES (Ref. 4) and topological properties of the

groundstate (GS) can be reflected by specific degeneracies [5].

Choosing a partition corresponding to a very non-local real-

space cut, the ES has also been used to define non-local order

in gapless spin chains [6].

Many-particle quantum entanglement is also a powerful

tool to characterize topological features of two-dimensional

GS (Ref. 7) as e.g. in dimer liquids on a cylinder geometry [8].

Also, bipartite ES have been shown to provide valuable infor-

mations on the edge states of fractional quantum Hall states

on spherical [9] and torus geometries [11] upon partition into

two (identical) subsystems. Interestingly, the ES of the incom-

pressible GS of a generic Landau-level-projected Coulomb

Hamiltonian arranges into a low-energy CFT spectrum, a fin-

gerprint of topological order, separated by an ‘entanglement

gap’ from the high energy levels [9, 10].

Such advanced insightful analysis of the ES has not how-

ever been fully exploited in low dimensional quantum mag-

nets. In particular, the conjecture by Haldane of a precise cor-

respondence between the entanglement spectrum and the true

spectrum in reduced space, e.g. the spectrum of the subsystem

A, is of very high interest and so far only supported by limited

FIG. 1: (Color online) (a) Ribbon made of two coupled periodic

Heisenberg chains (2-leg ladder). The partition into two identical

A and B subsystems is made by cutting the rungs along the dashed

line. (b) Phase diagram of the two-leg ladder mapped onto a circle

assuming Jleg = cos θ and Jrung = sin θ.

calculations on quantum Hall systems. [9, 11] Low dimen-

sional quantum magnets offer a completely different class of

many-body systems where new aspects of this correspondence

can be investigated, giving further insights on this fascinating

scenario.

Model and System – In this manuscript, I consider a 2-

leg ladder made of two quantum Heisenberg spin-1/2 chains

coupled via a ”rung” exchange coupling Jrung, as shown in

Fig. 1(a). Such a quantum magnetic ladder [12] offers an

attractive although still simple system with three non-trivial

phases, as shown in the phase diagram of Fig. 1(b), depending

on the signs of the leg (i.e. within the chains) and rung Heisen-

berg exchange couplings, parametrized as Jleg = cos θ and

Jrung = sin θ respectively. I shall not consider here the case

when both couplings are ferromagnetic leading to a trivial

fully polarized ferromagnet (lower-left quadrant). The physics

of the other two phases (occupying the three remaining quad-

rants) can be easily understood starting from the strong rung

coupling limit, i.e. when |Jrung| � Jleg. When Jleg = 0 spin

singlets or triplets form on the rungs depending whether the

rung coupling is antiferromagnetic (AFM) or ferromagnetic
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Nontrivial	  topology	  in	  normal	  phase	  

Change of an insulator’s topological properties by a Hubbard interaction

Miguel A. N. Araújo1,2,3, Eduardo V. Castro1,3, and Pedro D. Sacramento1,3
1 CFIF, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

2 Departamento de F́ısica, Universidade de Évora, P-7000-671, Évora, Portugal and
3 Beijing Computational Science Research Center, Beijing 100089, China

We introduce two dimensional fermionic band models with two orbitals per lattice site, or one

spinful orbital, and which have a non-zero topological Chern number that can be changed by varying

the ratio of hopping parameters. A topologically non-trivial insulator is then realized if there is one

fermion per site. When interactions in the framework of the Hubbard model are introduced, the

effective hopping parameters are renormalized and the system’s topological number can change at

a certain interaction strength, U = Ū , smaller than that for the Mott transition. Two different

situations may then occur: either the anomalous Hall conductivity σxy changes abruptly at Ū , as

the system undergoes a transition from one topologically non-trivial insulator to another, or the

transition is through an anomalous Hall metal, and σxy changes smoothly between two different

quantized values as U grows. Restoring time-reversal symmetry by adding spin to spinless models,

the half-filled system becomes a Z2 topological insulator. The topological number ν then changes

at a critical coupling Ū and the quantized spin Hall response changes abruptly.

PACS numbers: 71.10Fd, 71.27.+a, 73.43.-f

Recent interest in non-trivial topological properties of
insulators [1, 2] has spurred intensive search for band
models with non-trivial topology. This is because of the
possibility that electron interactions in fractionally filled
topologically non-trivial bands may lead to the realiza-
tion of highly correlated fractional quantum Hall states
[3–6]. On the other hand, cold atomic gases in optical
lattices with tunable interaction strength open the pos-
sibility to physically realize topological insulators [7, 8].
It is then natural to ask about the effects that electron
correlations can have on the topological properties for
proposed models.

Indeed, non-interacting topological phases are fairly
well understood, so a great deal of attention has recently
been given to the effect of interactions [9–12]. A local re-
pulsive interaction, such as that in the Hubbard model,
drives the system to the Mott insulating state for in-
creasing interaction strength. Studies of the Kane-Mele-
Hubbard model [13, 14] have recently been carried out,
showing that the topological insulator survives until the
Mott insulating phase is attained [15–18]. A topological
phase can also arise from interactions added to a triv-
ial band model, leading to a topological Mott insulator
[19–22].

In the present paper we show that yet another possibil-
ity exists. Namely, local interactions can drive the sys-
tem from one topologically non-trivial insulating phase
into another by changing its topological number, while
keeping it finite. This mechanism is particularly relevant
for proposed band models with Chern number C larger
than one. We present band models which break time-
reversal symmetry explicitly, a situation analogous to the
one considered by Haldane for the honeycomb lattice [13].
The system is a quantum anomalous Hall insulator when
the lowest band is filled. If a Hubbard repulsive inter-

action is also present, the topological Chern number C,
hence the number of chiral edge states, changes at criti-
cal values of the Hubbard interaction strength, Ū , before
a Mott insulator phase is attained at higher Uc > Ū .
Such transition is signaled by a change in the quantized
Hall response. This effect occurs because the interaction
effectively renormalizes the Hamiltonian parameters for
the fermions, decreasing the longer ranged hopping with
respect to the short ranged. Such changes in the effective
hopping parameters induces a change of the topological
number of the bands for the fermions.

The following example models describe electrons in a
square lattice with two orbitals per site. The Pauli ma-
trices τµ and σµ (µ = 0, 1, 2, 3) act on the orbital (or
sub-lattice) space and spin space, respectively, and the
subscript “0” refers to the identity matrix. The Hamil-
tonian has the general form:

Ĥ(h) = h(k) · τ + h0(k)τ0 , (1)

where h = (hx, hy, hz) and k = (kx, ky) denotes the
momentum vector. The Chern number for the bands
in Hamiltonian Eq. (1) is independent of the choice for
h0(k), as computed from the usual expression

C =
1

4π

�
dkx dky

∂ĥ

∂kx
× ∂ĥ

∂ky
· ĥ , (2)

and we therefore neglect h0(k) for the time being, and
comment on it later. Time-reversal symmetry (TRS) re-
quires hx(z) to be a even function of k and hy to be odd.
In order to have nonzero C, TRS must not be present.
The operation of spatial inversion [I : hx(k) −→ hx(−k),
hy(z)(k) −→ −hy(z)(−k)] does not change C.

Model for spinless fermions with Z topological
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where x0 is a density of the condensate of the boson field
at zero momentum and frequency. The summation in
Eq. (8) excludes the point (iν,k) = (0,0). The action
for the bosons then reads

SX =
1

T

�

iν,k

|X(iν,k)|2
�
ν
2

U
+ J1γ1(k) + J2γ2(k) + iλ

�
.

(9)

with γ1(k) = 2 cos(kx) + 2 cos(ky) and γ2(k) =
4 cos(kx) cos(ky). Assuming a spatially constant iλj , the
constraint |Xj |2 = 1 can be implemented on average in
imaginary time and space as

1 = x0 +

√
U

2

1

Ns

�

k

1�
J1γ1(k) + J2γ2(k) + iλ

(10)

If the interaction is not strong enough to enter in
the Mott regime, the condensate density is finite and
this requires the dispersion relation for the bosons�

J1γ1(k) + J2γ2(k) + iλ to vanish at k = 0. The La-
grange multiplier is then fixed to the value iλ = −4(J1+
J2). The instantaneous boson spatial correlation func-
tion reads

�XiX
∗
j � = 1−

√
U

2

1

Ns

�

k

1− e
ik·(rj−rj)

�
J1γ1(k) + J2γ2(k) + iλ

.

(11)

The result in Eq. (11) must be inserted back into the f -
fermion Hamiltonian Hf , until convergence is attained.

A simulation with t1 = 1, t2 = 0.7, t
�
1 = 0.8t2 and

δ = 0, yields a transition from the Chern number C = 2
at U < Ū to C = 1 at U > Ū where Ū ≈ 1.4. The critical
interaction for the Mott transition obtained is Uc ≈ 2.9.
For U > Ū we then expect a discontinuous change in the
Hall conductivity. At U = Ū the f -fermion bands touch
and close the gap. As long as t2 > t

�
1 − δ/4, there is a

Ū < Uc. If t2 < t
�
1 − δ/4, then C = 1 for all U < Uc.

On the Mott insulating side, U > Uc, the condensate
x0 vanishes and the boson correlation function is propor-
tional to

√
U , so that the ratio between first and second

neighbors, �XiX
∗
i+x̂�/�XiX

∗
i+x̂+ŷ�, is independent of U .

Therefore, the above mechanism is not effective inside
the Mott phase.

The physical electron’s Green’s function has a coherent
part where the boson condensate x0 is the quasi-particle
weight and the excitations are those of the Hamiltonian
Hf . We have checked that the Chern number obtained
from Hf and Eq. (2) agrees with that obtained from the
physical electron’s full Green’s function for an interacting
system (equation (6) in Ref. [26]). In the Green’s function
point of view, the change in the topological number oc-
curs because a pole of the Green’s function moves across
zero energy [27].

Some of the models for flat bands that have been pro-
posed in the literature, with the purpose of realizing the

0 0.2 0.4 0.6
U/U

c

-2

-1.5

-1

-0.5

0
Energy Gap

Hall Conductance

C=-2 AH Metal C=-1

FIG. 2: (color online). Topological transition between two

topologically different regimes through an anomalous Hall

(metallic) phase as a function of U/Uc. The parameters are:

t = 1, t1 = 1.5, t2 = 1.6, δ = 0, α = 5. For these parameters

Uc = 12.6t. The Hall conductance is expressed in units of

e2/h. The energy gap is the indirect gap between the two

bands.

fractional anomalous quantum Hall effect, have topolog-
ical numbers similarly unstable with respect to the Hub-
bard interaction before the Mott phase is attained. For
instance, the three-band model presented in Ref. [3] and
which is expected to be realizable in an optical lattice [8]
has a transition from C = 1 to C = 0 at Ū/Uc = 0.4,
according to the above mechanism.
A model with spin and Z topological number.—We con-

sider a system with a spinful orbital at each site described
by a Hamiltonian of the form of Eq. (1) with the matrices
τ replaced by the matrices acting on spin space, σ, and
with

hx = α sin ky , hy = −α sin kx ,

hz = 4t2 cos kx cos ky + 2t1 (cos kx + cos ky) + δ ,(12)

where h0(k) = −2t [cos(kx) + cos(ky)]. Here α is a
Rashba spin-orbit coupling, the term proportional to t1

may be seen as an intrinsic spin-orbit coupling and δ

as a uniform magnetic field. Time reversal implies in
this case hi(k) → −hi(−k). The term hz in Eq. (12)
breaks TRS. In general, due to the presence of the h0(k)
term there is an indirect band overlap and the system is
metallic. Even though the bands are topologically non-
trivial they will be in general partially filled. Considering
h0(k) = 0 and placing the chemical potential at zero en-
ergy one naturally gets a half-filled band insulator with
non-zero Chern number. The expression in Eq. (2) gives
C = 2 if |t1| < |t2 + δ/4|; the Chern number reduces
to C = 1 if |t1| > |t2 + δ/4|. Turning on the Hubbard
interaction, a transition between the different topologi-
cal phases may be obtained as in the previous model at
a suitable Ū < Uc. Considering h0, one possible way to
find an insulating phase is by having a large Rashba term.
By varying t2 one finds regimes where the gap becomes

Robust	  in	  superconduc8ng	  phase	  

(Araújo,	  Castro,	  PDS,	  2012)	  

Role	  of	  interac8ons	  
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FIG. 6 (a) A HgCdTe quantum well structure. (b) As a

function of layer thickness d the 2D quantum well states cross

at a band inversion transition. The inverted state is the QSHI,

which has helical edge states (c) that have a non equilibrium

population determined by the leads. (d) shows experimental

two terminal conductance as a function of a gate voltage that

tunes EF through the bulk gap. Sample I, with d < dc shows

insulating behavior, while samples III and IV show quantized

transport associated with edge states. Adapted from König,

et al., 2007. Reprinted with permission from AAAS.

ature scattering effects. These experiments convincingly

demonstrate the existence of the edge states of the quan-

tum spin Hall insulator. Subsequent experiments have

established the inherently nonlocal electronic transport

in the edge states (Roth, et al., 2009).

IV. 3D TOPOLOGICAL INSULATORS

In the summer of 2006 three groups of theorists in-

dependently discovered that the topological characteri-

zation of the quantum spin Hall insulator state has a

natural generalization in three dimensions (Fu, Kane

and Mele, 2007; Moore and Balents, 2007; Roy, 2009b).

Moore and Balents (2007) coined the term “topological

insulator” to describe this electronic phase. Fu, Kane and

Mele (2007) established the connection between the bulk

topological order and the presence of unique conduct-

ing surface states. Soon after, this phase was predicted

in several real materials (Fu and Kane, 2007), includ-

ing Bi1−xSbx as well as strained HgTe and α−Sn. In

2008, Hsieh, et al. (2008) reported the experimental dis-

covery of the first 3D topological insulator in Bi1−xSbx.

In 2009 “second generation” topological insulators, in-

cluding Bi2Se3, which has numerous desirable properties,

were identified experimentally (Xia, et al., 2009a) and

theoretically (Xia, et al., 2009a; Zhang, H., et al., 2009).
In this section we will review these developments.

(a) (b) (c)

EF

E
kxkx

kyky
!4!3

!1 !2

!4!3

!1 !2

FIG. 7 Fermi circles in the surface Brillouin zone for (a) a

weak topological insulator and (b) a strong topological insu-

lator. In the simplest strong topological insulator the Fermi

circle encloses a single Dirac point (c).

A. Strong and weak topological insulators

A 3D topological insulator is characterized by four Z2

topological invariants (ν0; ν1ν2ν3) (Fu, Kane and Mele,

2007; Moore and Balents, 2007; Roy, 2009b). They can

be most easily understood by appealing to the bulk-

boundary correspondence, discussed in section II.C. The

surface states of a 3D crystal can be labeled with a 2D

crystal momentum. There are four T invariant points

Γ1,2,3,4 in the surface Brillouin zone, where surface states,

if present, must be Kramers degenerate (Fig. 7(a,b)).

Away from these special points, the spin orbit interac-

tion will lift the degeneracy. These Kramers degenerate

points therefore form 2D Dirac points in the surface band

structure (Fig. 7(c)). The interesting question is how the

Dirac points at the different T invariant points connect

to each other. Between any pair Γa and Γb, the surface

state structure will resemble either Fig. 3a or 3b. This

determines whether the surface Fermi surface intersects

a line joining Γa to Γb an even or an odd number of

times. If it is odd, then the surface states are topologi-

cally protected. Which of these two alternatives occurs

is determined by the four bulk Z2 invariants.

The simplest non trivial 3D topological insulators may

be constructed by stacking layers of the 2D quantum spin

Hall insulator. This is analogous to a similar construction

for 3D integer quantum Hall states (Kohmoto, Halperin

and Wu, 1992). The helical edge states of the layers

then become anisotropic surface states. A possible sur-

face Fermi surface for weakly coupled layers stacked along

the y direction is sketched in Fig. 7(a). In this figure a

single surface band intersects the Fermi energy between

Γ1 and Γ2 and between Γ3 and Γ4, leading to the non

trivial connectivity in Fig. 3(b). This layered state is re-

ferred to as a weak topological insulator, and has ν0 = 0.

The indices (ν1ν2ν3) can be interpreted as Miller indices

describing the orientation of the layers. Unlike the 2D he-

lical edge states of a single layer, T symmetry does not

protect these surface states. Though the surface states

must be present for a clean surface, they can be localized

in the presence of disorder. Interestingly, however, a line

dislocation in a weak topological insulator is associated

with protected 1D helical edge states (Ran, Zhang and

Vishwanath, 2009).

ν0 = 1 identifies a distinct phase, called a strong topo-
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