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Quenches in disordered quantum systems

e Introduction
@ Motivation
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Foundations of quantum statistical mechanics

Quantum ergodicity: John von Neumann ‘29
(Proof of the ergodic theorem and the
H-theorem in quantum mechanics)
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Foundations of quantum statistical mechanics

Quantum ergodicity: John von Neumann ‘29
(Proof of the ergodic theorem and the
H-theorem in quantum mechanics)

Related to ideas on typicality and eigenstate thermalization:

Goldstein, Lebowitz, Tumulka, and Zanghi ‘06
(Canonical Typicality)

Popescu, Short, and A. Winter ‘06
(Entanglement and the foundation of statistical mechanics)

Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi ‘10
(Normal typicality and von Neumann’s quantum ergodic theorem)

MR and Srednicki ‘12
(Alternatives to Eigenstate Thermalization)
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Experiments with ultracold gases in 1D

Effective one-dimensional ¢ potential
M. Olshanii, PRL 81, 938 (1998).

Uip(z) = g1pd(x)
where
2hagw |

1 - Ca, /B

gip

Marcos Rigol (Georgetown University) Quenches in disordered quantum systems October 8, 2012



Experiments with ultracold gases in 1D

Girardeau '60

T. Kinoshita, T. Wenger, and D. S. Weiss,

Science 305, 1125 (2004).

T. Kinoshita, T. Wenger, and D. S. Weiss,

Phys. Rev. Lett. 95, 190406 (2005).

91D > 20

2 2 efi=
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Effective one-dimensional ¢ potential
M. Olshanii, PRL 81, 938 (1998).

Uip(z) = g1pd(z)
where

2hagw |

1 - Ca, /B

91D =

Lieb, Schulz, and Mattis '61

B. Paredes et al.,
Nature 429, 277 (2004).

veti= J = 5-200

October 8, 2012



Absence of thermalization in 1D?

0.5

gamma=18

T. Kinoshita, T. Wenger, and D. S. Weiss,
Nature 440, 900 (2006).

0.4}
03}

02}
mgip

h2p

0.1}

0

gip: Interaction strength
p: One-dimensional density

If v > 1 the system is in the
strongly correlated
Tonks-Girardeau regime

amma=1.4
05| &

If v < 1 the system is in the
weakly interacting regime

Gring et al., Science 337, 1318 (2012).
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Quenches in disordered quantum systems

e Introduction

@ Unitary evolution and thermalization
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Exact results from quantum mechanics

If the initial state is not an eigenstate of H
o) # ) where Hla) = Eala) and  Ep = (to| H|to),

then a generic observable O will evolve in time following

O(7) = (¥(r)|Ol%(7)) where [(7)) = e~ AT [yp).
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Exact results from quantum mechanics

If the initial state is not an eigenstate of H
o) # o) where Hla) = Eala) and  Eo = (yo| Hlvo),
then a generic observable O will evolve in time following
O(r) = (¥(n)|Olu(r)) where [%(r)) = e~ [y).

What is it that we call thermalization?
O(7) = O(Eyp) = O(T) = O(T, ).
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Exact results from quantum mechanics

If the initial state is not an eigenstate of H
o) # o) where Hla) = Eala) and  Eo = (yo| Hlvo),
then a generic observable O will evolve in time following
O(r) = (¥(n)|Olu(r)) where [%(r)) = e~ [y).
What is it that we call thermalization?
O(7) = O(Ey) = O(T) = O(T, )
One can rewrite

)= ChC,e"Far=B)T0,,  where [ih) =) Cala),
and taking the infinite time average (diagonal ensemble)

— tim = [ dr@()O19() = 3 ICaPOue = (Ohum,

which depends on the initial conditions through C,, = («|¢y).
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Width of the energy density, sudden quench

Initial state [10) = >, C«|a) is an eigenstate of Ho. AtT=0

Hy—H=Ho+W with W=> 4(j) and H|a)= Eala).

jEo

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Width of the energy density, sudden quench

Initial state [10) = >, C«|a) is an eigenstate of Ho. AtT=0

Hy—H=Ho+W with W=> 4(j) and H|a)= Eala).
jEo

The width of the energy density AFE is then

ar= \/ 3" B2ICal? = (3 BalCal?)? = v/ (ol W2It0) — (ol Ww0)?,

or

> [Wolb(Gr)d()lbo) — (ol (in) o) (Wold(ia)lto)] “& L /2

J1,J2€0

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Width of the energy density, sudden quench

Initial state [10) = >, C«|a) is an eigenstate of Ho. AtT=0
Hy—H=Ho+W with W=> 4(j) and H|a)= Eala).
jEo

The width of the energy density AFE is then

ar= \/ 3" B2ICal? = (3 BalCal?)? = v/ (ol W2It0) — (ol Ww0)?,

or

~ o o L—oo
D [(Wolb(r)(d2)ltbo) — (wolid(jn)ltbo) (tholtb(j2) o)) ~“~ Lé7/?
J1,J2€0
Since the width of the full spectrum diverges as L%~

AE L—oo 1

Tic & Tdi—d./2

dr(d,) is the dimensionality of the lattice (of the region affected by the quench).
since dr, > d, then Ae vanishes in the thermodynamic limit.

Ae =

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Quenches in disordered quantum systems

e Introduction

@ Results for nonintegrable and integrable systems
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Description after relaxation

Hard-core boson Hamiltonian

L
H= Z —t (i)ji)ﬂ.l aF HC) + Vifie1 — t (836i+2 aF HC) TF Vlﬁiﬁi+2 + pif;
1=1
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Description after relaxation

Hard-core boson Hamiltonian
L
H = Z —t (bIbH-l aF H.C.) + Vifie1 — t (b;[bH_Q aF H.C.) TF Vlﬁiﬁi+2 + pif;
1=1

Dynamics vs statistical ensembles
Nonintegrable: ¢ =V’ #0, u; =0  Integrable: V=t =V’ =0, u; #0

0.6 T 0.5 . T ; T
2 < — After relaxation
sk | = Thermal
- S [-GGE
% 04t 41 0.25¢
03 ipitia] State i
—_——— tm‘eaverage 5
- — - — microcanonical
02 . ——" N n n S~ 0 I —i
- /2 0 2 m -Tt -Tt/2 0 /2 Tt
ka ka
MR, PRL 103, 100403 (2009); MR, V. Dunjko, V. Yurovsky, and
PRA 80, 053607 (2009), ... M. Olshanii, PRL 98, 050405 (2007), ...
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Eigenstate thermalization

Eigenstate thermalization hypothesis
[Deutsch, PRA 43 2046 (1991); Srednicki, PRE 50, 888 (1994).]

@ The expectation value («|O|a) of a few-body observable O in an
eigenstate of the Hamiltonian |a), with energy E,,, of a many-body
system equals the thermal average of O at the mean energy E,,:

<O‘|5‘a> = <6>microcan.(Ea)'
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Eigenstate thermalization

Eigenstate thermalization hypothesis
[Deutsch, PRA 43 2046 (1991); Srednicki, PRE 50, 888 (1994).]

@ The expectation value («|O|a) of a few-body observable O in an
eigenstate of the Hamiltonian |a), with energy E,,, of a many-body
system equals the thermal average of O at the mean energy E,,:

<O‘|5‘a> = <6>microcan.(Ea)'

Nonintegrable Integrable (peee =

e Z’nl )‘mfm)

ZGGE

=0)

.a
T -
/

n(k,

—r } } 0 } — — - 15
: —— p(E) exact — o8 — p(B) exact
------ p(E) microcan. — - «+... p(E) microcan. -
— — p(E) canonical 1 = — — p(E) canonical

=

-

pEI

2 0 -8

=)

6 -4
E[J]
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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What changes in the presence of disorder?

Many-body localization
@ D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. 321, 1126 (2006).
@ V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
@ A. Paland D. A. Huse, Phys. Rev. B 82, 174411 (2010).
o ...

Marcos Rigol (Georgetown University) Quenches in disordered quantum systems October 8, 2012 13/33



What changes in the presence of disorder?

Many-body localization
@ D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. 321, 1126 (2006).
@ V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
@ A. Paland D. A. Huse, Phys. Rev. B 82, 174411 (2010).
o ...

Some questions we would like to address
@ How is the relaxation dynamics?

@ Will observables fail to equilibrate?

O(r) # O(7)

@ If an observable equilibrates, will it fail to thermalize?

O(r) # O(Eo) = O(T) = O(T, )
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Quenches in disordered quantum systems

9 Non-equilibrium dynamics in the presence of disorder
@ Nonintegrable system
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Model Hamiltonian and the localization transition

Spinless fermion Hamiltonian in 1D
N 20 & 1 1
+ & &
H = gj e <fz fi+ HC) +V El (nz = 5) (’I’LH_l = 5)

E. Khatami, MR, A. Relafio, and A. M. Garcia-Garcia, PRE 85, 050102(R) (2012).
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Model Hamiltonian and the localization transition

Spinless fermion Hamiltonian in 1D
S PYP . 1 R 1
E. Khatami, MR, A. Relafio, and A. M. Garcia-Garcia, PRE 85, 050102(R) (2012).

Hopping amplitudes
Gaussian random distribution (J;;) = 0

. . 2a| T
Jis 2\ 1+ (|Z_]|)
() =
Limit V' = 0:
@ Properties depend on « but not on
6>0

@ « < 1, eigenstates are delocalized

@ « > 1, eigenstates are localized

@ « =1, eigenstates are multifractal
Mirlin et al., PRE 54, 3221 (1996).
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Model Hamiltonian and the localization transition

Spinless fermion Hamiltonian in 1D
N 20 & 1 1
+ & &
H = ;j e <fz fi+ H.C.) +V El (nz = 2) (’I’LH_l = 2)

E. Khatami, MR, A. Relafio, and A. M. Garcia-Garcia, PRE 85, 050102(R) (2012).

Hopping amplitudes Metal-insulator transition
Gaussian random distribution (J;;) = 0 n = [var — varwp |/[varp — varwp)
-1
2 li — 51\ ** var: variance of level spacing distribution
((Jg)") = |1+
I6] 10
Limit V' = 0: 0.8
@ Properties depend on « but not on 06l
6>0 = |
@ o < 1, eigenstates are delocalized o4r
@ « > 1, eigenstates are localized 0.2F
@ « =1, eigenstates are multifractal oi
0

Mirlin et al., PRE 54, 3221 (1996).
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Dynamics after a quench

Quench protocol
@ Start from an eigenstate of H (I1o)) in a certain disorder realization.
@ Evolve under another disorder realization with the same «.
@ E = (vo|Hin|tho) is the energy of a thermal state with temperature 7' = 10.
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Dynamics after a quench

Quench protocol

@ Start from an eigenstate of H (I1o)) in a certain disorder realization.
@ Evolve under another disorder realization with the same «.

@ E = (4po|Hin|1bo) is the energy of a thermal state with temperature 7' = 10.

Microcanonical vs diagonal e saz08 —eactg
—e0-08 iao-L
Observables: R
1 B ) At 2 90.06*
a(k) = 7 > el £
l,m v
0.03-

. 1 (i
N(k) = 7 >,
L,m

0
0.6
Normalized difference:
%
AO = 2k |Omic(k) — Odiag (k)| o ]
Zk Odiag(k) S

0.2} B
Disorder average: g
(AO)dis oy —
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Dynamics after a quench

Quench protocol
@ Start from an eigenstate of H (I1o)) in a certain disorder realization.
@ Evolve under another disorder realization with the same «.
@ E = (vo|Hin|tho) is the energy of a thermal state with temperature 7' = 10.

Eigenstate thermalization oaf
Observables: \\
N | ik(—m) £1 7 N
(k) = I Ze I fm écg
I,m 3
S — o ik(l—m)
N(k) = 7 lzm: e .
Maximal normalized difference:
AO™ _ Zk |O$gx(k) - Omic(k)| é'\‘ﬁ
" 5 Omic(k) £
Disorder average:
<A023X>di5 0 12 15 18
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Quenches in disordered quantum systems

9 Non-equilibrium dynamics in the presence of disorder

@ Integrable system
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Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

A= 0% (b +He) + v
Constraints on the bosonic operators

b2 =2 =0
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Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential
B =3 (Blbiyy +He) + vy
Constraints on the bosonic operators

b2 =2 =0

4

Map to spins and then to fermions (Jordan-Wigner transformation)
i—1 1—1
ot = fi [ ™%, o7 = [] &30,
B=1 B=1

4

Non-interacting fermion Hamiltonian

Hyp = —JZ (ﬁﬁ-+1 + H.c.) +Zvi it
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Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

H= —JZ (lA);flA)iH + H.C.) +Zv7; ;

Constraints on the bosonic operators

sam 3
bi* = b7 =0
Integrals of motion Lagrange multipliers
(underlying noninteracting fermions) (can be calculated analytically)
HrA110) = EnAf10) | ll - <fm>7=o]
~ m = | ==
{4} = (3diat) (Im)r=o
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One-particle density matrix

One-particle Green'’s function

G” = <\IIHCB|0' O’ |\IIHCB \I/F| HemfﬁfﬁffTHe mf fv|\I/F>
B=1

Time evolution

(7)) = e~ HeT/Mul) = H Z ()£ 10)
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One-particle density matrix

One-particle Green'’s function

G” = <\IIHCB|0' O’ |\IIHCB \I/F| HemfﬁfﬁffTHe mf fv|\I/F>
B=1

Time evolution
B N L
@ (r)) = e ArrMely = T Z (1) |0y
5=1 o=1

4

Gi;(1) = det {(PI(T))Jr PT(T):|

Computation time ~ L2N?

Exact Green'’s function

3000 lattice sites, 300 particles
MR and A. Muramatsu, PRL 93, 230404 (2004); PRL 94, 240403 (2005).
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Finite temperature

One-particle density matrix (grand-canonical ensemble)

1 Str Hpcp kMZTm Bl _Hycs kMZTm Bl
pijZETr bib.e B , Z2=Tr B

Mapping to noninteracting fermions
_71 A
1 a2 s Bp-uS,, fhim -
pij = T {f;fj kl_ll e ikfke” BT I | e=irfi f,}

1
oy = E{det [1+(I+A)01Ue*<E*MI>/kBTUT02}

Exact one-particle density matrix

— det {I + 0, Ue—EB-1D/kpTyt 02] }

Computation time ~ L°: 1000 sites
MR, PRA 72, 063607 (2005).
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Model Hamiltonian and the localization transition

Hard-core boson Hamiltonian in 1D (A, = 2J)

L—1
H=-7 (blbis1 +He)+A) cos(2noi+ )l where o= (v5—1)/2

=1 @

C. Gramsch and MR, arXiv:1206.3570.
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Model Hamiltonian and the localization transition

Hard-core boson Hamiltonian in 1D (A, = 2J)

L—1
H=-7 (blbis1 +He)+A) cos(2noi+ )l where o= (v5—1)/2
=1 7

C. Gramsch and MR, arXiv:1206.3570.
Dynamics after a quench from the ground state (A\; = 0 — Ap # 0)

1 3
A=0-1 (@ time =0 (b)
08 a3
. Average
2 Step ——
0.6 Initial
= £ 15
o \/
1
@2 05
0 0
12 3 45 6 7 8 9 10 -t -2 0 2 m
1 16
A=0-4 © (d)
0.8 a5
0.6
& £ 08
0.4
0.2 04
0 0
12 3 45 6 7 8 9 10 Tt -T2 0 2 m

i k
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Model Hamiltonian and the localization transition

Hard-core boson Hamiltonian in 1D (A, = 2J)

L—1
H=-7 (blbis1 +He)+A) cos(2noi+ )l where o= (v5—1)/2

=1 @

C. Gramsch and MR, arXiv:1206.3570.

Dynamics after a quench from the ground state (A; # 0 — Ap < Aj)

1
A=8-1 a) time =0 (b)
12
0.8 Average
Step
06 Initial
- . 08
S 15
0.4
0.4
0.2
0 0
1 2 3 4 5 6 7 8 9 10 - -T2 0 2 LY
1 1
A=8_4 ©) (C)
0.8 0.8
0.6 0.6
- ~
= £
0.4 04
0.2 0.2
0
1 2 3 4 5 6 7 8 9 10 - -T2 0 2 s
i k
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A=0-1

A=0-2

A=0-4

10° 10°

107 } w‘
= M- .
E 107
: Thingwager
w

10° w

—— 10 sites
— 100 sites
1073 -2 -1 0 1 2 3 4 5 51072 -2 -1 0 1 2 3 4 5 6 -2 -1 0 1 2 3 4 5 6
102 10 10° 10! 10? 10% 10* 10° 10° 102 107 10° 10 10% 10° 10% 10° 10° 102 107 10° 10' 107 10° 10* 10° 10
10° 10° 10°
(d) (e)

10t
=
£ 1
© -2

49 ) W‘NMM

10° 0 —

102 10 10° 10* 10 10° 10°Tmax 102 100 10° 10' 10 10° 10*Tmax 102 1200 10° 10° 10® 10° 10* Tmax

T

T

_ 2 ma(r) — mu(7)|

22 e (T)
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mics after a quench

A=8 -2

m the ground state

A=8-4

an(t)

—— 10ssites
— 100 sites

10°

)
10
102 107 10° 10! 102 10° 10* 10° 10° = 107

10" 10° 10! 10% 10% 10* 10° 10°

-3
10
102 10 10° 10! 10 10° 10* 10° 10°

10°
© 10
YA e 2 "
: N w !
102
*10-310'2 10" 10° 10' 10° 10° 10%T, 0-310'2 10t 10° 10 10°
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Scaling of /O(7) after relaxation

©

A=0-2 A=8-2
© [0 S ®
—— 10t ©

= A

8 T T | e

5 3n(e) —— : 102
10 a0 3 ome) — A=8 -3 A=0 -4 A=8_4
5+10° L= == 4#10° Lo —=
10 100 100010 100 1000 10 100 100010 100 1000
L L L L

@ Delocalized phase (\r < 2): dn(c0) ~ dm(o0) o 1/v/L
@ Critical point (A = 2): dn(o0) o< 1/L'/*
@ Localized phase (\r > 2): dn(o0) = const, 6m(co) o 1/v/L.

@ Recent analytic results (proof for a specific class of observables):
L. Campos Venuti and P. Zanardi, arXiv:1208.1121.
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Results after relaxation vs statistical mechanics

1 3
A=0-1 (a) (b)
25
0 Initial —-—-
. 2 Average
0.6 I\
= 5t FY =TT
0.4
1
0.2 05
=

@ Delocalized phase (Ar < 2): GGE describes one-body observables,

GE falils.

@ Localized phase (Ar > 2): GGE describes n; but fails for m;, GE fails.

Marcos Rigol (Georgetown University)
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Results after relaxation vs statistical mechanics

1 1.2
3 (b) 5 Initial —-—-
08 [y ! N, GGE -——-
\ 0.8
0.6
< 0.6
0.4
0.4
0.2
0
1
0.8 M
0.6
-
0.4
0.2
oLt
1 2 3 4 5 6 7 8 9 10 -T -T2 0 w2 1
i k
@ Delocalized phase (Ar < 2): GGE describes one-body observables,
GE fails.

@ Localized phase (Ar > 2): GGE describes n; and my (?), GE fails.
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Scaling of Am with L

10!

102

Am, An

10°

Am, An

10°

(@) (©) —~———— |
5 _ (d)
. 107 \ \
A=0_1 L A=0-2 A=8_2
10°
(e) 101 Fa=0 .4 (©] (h)
[
G
/\/"P_—- 1072 \/ﬁ/_,_k——/
-3
L 10 AmGCE
GE
A=0-3 A=8-3 10 Am A=8_4
10 100 100010 100 1000 10 100 100010 100 1000
L L L L

@ Delocalized phase (Ar < 2): GGE describes one-body observables
(AmCCE « 1/L), GE fails.

@ Critical point (A\r = 2): GGE describes one-body observables,
GE fails.
@ Localized phase (Ar > 2): GGE describes n; but fails for my, GE fails.
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Nonintegrable case

@ Delocalized regime: Eigenstate thermalization holds and the
system thermalizes. Power law relaxation?

@ Localized regime: Eigenstate thermalization fails and the system
does not thermalize

Integrable case

@ Delocalized regime: n; and m;, equilibrate and they are described
by GGE, despite the lack of translational invariance!
Power law relaxation?

@ Critical point: Slower relaxation dynamics. GGE describes
observables after relaxation

@ Localized regime: my equilibrates but GGE fails to describe it after
relaxation
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Dynamics after a quench

Quench protocol
@ Start from an eigenstate of H (|v)) in a certain disorder realization.
@ Evolve under another disorder realization with the same «.
@ E = (10| Hin|tho) is the energy of a thermal state with temperature 7" = 10.

@ Everything is computed by means of full exact diagonalization.

Time evolution [AO(t) = >, |0(k,t) — Odiag(k)|/ Y1, Odiag (k)]

. L=15
. 01 01
A A
3 5
A\ Vv
0.01 0.01
10° 10" t102 10° 100 10° 10" t102 10°  10°

October 8, 2012 32/33

Quenches in disordered quantum systems

Marcos Rigol (Georgetown University)



Scaling of An with L

10t

102

103

An

10

10 |
1072
1073

An

10

10° :
A=0 4] oo ST =8.4

10 100 100010 100 1000
L L

10°®

@ In all regimes: the differences go to zero as the accuracy in the
calculation of the time average is increased.
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