

Order and disorder in SU(3) and SU(4) Heisenberg systems

K. Penc Institute for Solid State Physics and Optics, Wigner Research Centre, Budapest, Hungary

Correlations and coherence in quantum systems

Évora, Portugal, 8-12 October 2012

In collaboration with:

Miklós Lajkó	ISSPO, Wigner RC, Budapest,
Tamás A. Tóth, Laura Messio Frédéric Mila	EPF Lausanne
Bela Bauer, Philippe Corboz, Matthias Troyer	ETH Zürich
Andreas M. Läuchli	Uni. Innsbruck

Supported by: Hungarian OTKA and Swiss National Foundation

What are the SU(N) symmetric Heisenberg models that we are interested in?

N species on each site that are treated equally.

$$\mathcal{P}_{ij}|eta_i lpha_j
angle = |lpha_i eta_j
angle$$

 $\mathcal{P}_{i,j} | \bullet - \bullet \rangle \rightarrow | \bullet - \bullet \rangle$ $i \quad i \quad i \quad j$

simplest example: SU(2) S=1/2 (fundamental representation) [but not the S=1 !]

Why do we care about SU(3) or SU(4) Heisenberg models?

(i)They are interesting and intelectually challenging (funding agencies ?)

- (ii) Nostalgia from our younghood, when we all wanted to become particle physicist (SU(3) and quarks)
- (iii) Cold atomic gases
- (iv) Spin models
- (v) Spin-orbital models (SU(4))

SU(2) quantum Heisenberg models

square and honeycomb (bipartite) lattices: happy (mean field) antiferromagnets

triangular lattice: frustrated antiferromagnet

3-sublattice 120 degree state

SU(2) quantum Heisenberg models

kagome lattice: highly frustrated antiferromagnet, mean field ground state macroscopically degenerate.

Ground state debated, likely a Z2 spin liquid

frustrated square lattice: dimerized state

even (symmetrical)

even (symmetrical)

SU(3) irreps on 3 sites

Addition of three SU(3) spins (27 states):

$$3 \times 3 \times 3 = 1 + 2 \times 8 + 10$$
$$\square \otimes \square \otimes \square = \square \oplus 2 \times \square \oplus \square$$

SU(3) singlet

$$= |ABC\rangle + |CAB\rangle + |BCA\rangle - |BAC\rangle - |ACB\rangle - |BCA\rangle$$

spins fully antisymmetrized

in the SU(3) singlet the spins are fully entangled: we cannot write it in a product form

What methods do we use?

(i) Variational – site factorized wave function
(ii) Flavor wave calculations
(iii) Exact diagonalization of small clusters
(iv) iPEPS: infinite project entangled pair states(variational approach based on tensor ansatz)
(v) Variational: Gutzwiller projected fermionic wave functions

Variational (classical) approach

a site-product wave function for SU(3):

$$|\Psi\rangle = \prod_{i} |\psi_{i}\rangle$$
$$\psi_{i}\rangle = d_{A,i} |A\rangle_{i} + d_{B,i} |B\rangle_{i} + d_{C,i} |C\rangle_{i}$$

$$E_{\text{var}} = \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = J \sum_{\langle i, j \rangle} \left| \mathbf{d}_i \cdot \bar{\mathbf{d}}_j \right|^2$$

minimal, when the d_i and d_j on the bond are orthogonal

two different colors on a bond

Wednesday, October 10, 2012

SU(3) flavour-wave theory

N. Papanicolaou, Nucl. Phys. B **305**, 367 (1988) A. Joshi *et al.* PRB **60**, 6584 (1999)

 $a_{A,i}^{\dagger}a_{A,i} + a_{B,i}^{\dagger}a_{B,i} + a_{C,i}^{\dagger}a_{C,i} = M$

We enlarge the fundamental to the fully symmetric representation of M boxes.

States in the fully symmetric multiplet can be represented by 3 Schwinger bosons a_A, a_B and a_C

$$\mathcal{P}_{ij} = \sum_{\mu,\nu\in\{A,B,C\}} a^{\dagger}_{\mu,i} a^{\dagger}_{\nu,j} a_{\nu,i} a_{\mu,j}$$

The site product wave function is the "classical" solution (no quantum entanglement between sites)

$$|\Psi\rangle = \prod_i |\psi_i\rangle$$

$$\psi_i \rangle = d_{A,i} |A\rangle_i + d_{B,i} |B\rangle_i + d_{C,i} |C\rangle_i$$

cf. SU(2) spin coherent state for SU(2) $|\vartheta,\varphi\rangle = \cos\frac{\vartheta}{2}|\uparrow\rangle + \sin\frac{\vartheta}{2}e^{i\varphi}|\downarrow\rangle$

SU(3) flavour-wave theory

 $\tilde{a}_{A,j}^{\dagger} = \sum_{\mu} d_{\mu,j} a_{\mu,j}^{\dagger}$ Local coordinate system $|\Psi\rangle = \prod \left(\tilde{a}_i^{\dagger}\right)^M |\tilde{0}\rangle$ $\tilde{a}_{B,j}^{\dagger} = \sum_{\mu} e_{\mu,j} a_{\mu,j}^{\dagger}$ $\tilde{a}_{C,j}^{\dagger} = \sum f_{\mu,j} a_{\mu,j}^{\dagger}$ 1/M expansion: $\tilde{a}_{A,i}^{\dagger}, \tilde{a}_{A,i} \to \sqrt{M - \tilde{a}_{B,i}^{\dagger} \tilde{a}_{B,i}} - \tilde{a}_{C,i}^{\dagger} \tilde{a}_{C,i}$ $\rightarrow \sqrt{M} - \frac{1}{2\sqrt{M}} \left(\tilde{a}_{B,i}^{\dagger} \tilde{a}_{B,i} + \tilde{a}_{C,i}^{\dagger} \tilde{a}_{C,i} \right) + \dots$ Holstein-Primakoff bosons $\mathcal{P}_{ij} \rightarrow M \left| (\mathbf{\bar{e}}_i \cdot \mathbf{d}_j) \tilde{a}_{B,i}^{\dagger} + (\mathbf{\bar{f}}_i \cdot \mathbf{d}_j) \tilde{a}_{C,i}^{\dagger} + (\mathbf{\bar{d}}_i \cdot \mathbf{e}_j) \tilde{a}_{B,j} + (\mathbf{\bar{d}}_i \cdot \mathbf{f}_j) \tilde{a}_{C,j} \right|$ $\times \left[(\mathbf{e}_i \cdot \mathbf{\bar{d}}_j) \tilde{a}_{B,i} + (\mathbf{f}_i \cdot \mathbf{\bar{d}}_j) \tilde{a}_{C,i} + (\mathbf{d}_i \cdot \mathbf{\bar{e}}_j) \tilde{a}_{B,j}^{\dagger} + (\mathbf{d}_i \cdot \mathbf{\bar{f}}_j) \tilde{a}_{C,j}^{\dagger} \right] - M$

quadratic in operators: we know how to diagonalize it (spin wave)

$$\mathcal{H} = -MJL + M\sum_{\nu}\sum_{\mathbf{k}}\omega_{\nu}(\mathbf{k})\left(\alpha_{\nu}^{\dagger}(\mathbf{k})\alpha_{\nu}(\mathbf{k}) + \frac{1}{2}\right)$$

e

The models

- (i) SU(3) model on the triangular lattice
- (ii) SU(3) model on the square lattice
- (iii) SU(4) model on the square and cubic lattice
- (iv) SU(4) model on the honeycomb lattice

The models

- (i) SU(3) model on the triangular lattice
- (ii) SU(3) model on the square lattice
- (iii) SU(4) model on the square and cubic lattice
- (iv) SU(4) model on the honeycomb lattice

The fate of SU(3) on triangular lattice

"classical" solution?

SU(3) classical state is perfectly happy on the triangular lattice - the 3 mutually perpendicular **d**'s form a 3 sublattice structure.

SU(2) frustrated!

crystal of singlets?

SU(3) on triangular lattice - exact diagonalization

Signature of SU(3) breaking in the excitation spectrum: Anderson towers compatible with 3 sublattice order

C2 - Casimir operator, analog of the total spin S^2

The models

- (i) SU(3) model on the triangular lattice
- (ii) SU(3) model on the square lattice
- (iii) SU(4) model on the square and cubic lattice
- (iv) SU(4) model on the honeycomb lattice

SU(3) classical solutions: macroscopically degenerate

All bonds happy at the mean field level, frustration due to abundance of choices

Order by disorder: quantum fluctuations select the ground state

$$E_{ZP} = \frac{M}{2} \sum_{\nu} \sum_{\mathbf{k}} \omega_{\nu}(\mathbf{k})$$

SU(3) flavour-wave: dispersions, zero point energy

E_{ZP} = 1.68

T. A. Tóth, A. M. Läuchli, F. Mila, and K. Penc: PRL 105, 265301 (2010).

Unbiased calculation: ED, Anderson towers

structure of the flavor wave Hamiltonian

each term separately $E_{ZP} = 0$

nearest neighbor also of different color

the 3-site term gives $E_{ZP} > 0$

The models

- (i) SU(3) model on the triangular lattice
- (ii) SU(3) model on the square lattice
- (iii) SU(4) model on the square and cubic lattice
- (iv) SU(4) model on the honeycomb lattice

SU(4) irreps on 4 sites

Addition of four SU(4) spins (256 states):

SU(4) ladder

gapped excitation spectrum, situation similar to J_1-J_2 SU(2) Heisenberg chain:

M. van den Bossche et al., Phys. Rev. Lett. **86**, 4124 (2001).

SU(4) on 2D-square lattice

SU(4) on 2D-square lattice: breaking SU(4)?

The number of good mean field solution is highly degenerate.

Order by disorder:

Assuming on-site long range order, which configuration has the lowest zero-point energy?

SU(4) on 2D-square lattice: iPEPS

Tensor network method, with Ddimensional links between sites.

D = 2 and a unit cell 4 × 4. The bond- energy pattern of the ground state is similar to that of the plaquette state selected by LFWT.

SU(4) on 2D-square lattice: iPEPS

D = 12 and a unit cell 4×2

dimerization and Neel-like state: both spatial and the SU(4) symmetry is broken

the 6 dimensional irreducible representation is realized on the dimers, can Neel order

SU(4) on 2D-square lattice: ED

Color structure factor bond energy correlations $\langle P_{ij}P_{kl}\rangle - \langle P_{ij}\rangle^2$

 $\langle \mathsf{P}_{(i,j)}(a,b)\mathsf{P}_{(k,l)}(a,b)\rangle$

SU(4) on 2D-square lattice: our scenario

Dimerization: 6-dimensional irreps are formed, they can Néel order

P. Corboz, A. M. Läuchli, K. Penc, M. Troyer, F. Mila, PRL 107, 215301 (2011).

SU(4) can be lowered to Sp(4) in cold atoms: H. Hung, Y. Wang, and C. Wu, Phys. Rev. B 84, 054406 (2011). E. Szirmai and M. Lewenstein, EPL 93, 66005 (2011).

The models

- (i) SU(3) model on the triangular lattice
- (ii) SU(3) model on the square lattice
- (iii) SU(4) model on the square and cubic lattice
- (iv) SU(4) model on the honeycomb lattice

Lifting of the degeneracy in flavor wave theory

local magnetization vanishes, no translational symmetry breaking

flavor liquid?

we use the fermionic representation:

$$\mathcal{P}_{ij} = \sum_{\substack{\mu \ \nu \in \text{colors}}} f^{\dagger}_{\alpha,i} f_{\beta,i} f^{\dagger}_{\beta,j} f_{\alpha,j}$$

$$\begin{split} \mathcal{P}_{ij}^{\mathrm{MF}} &= \sum_{\alpha,\beta \in \mathrm{colors}} \langle f_{\beta,i} f_{\beta,j}^{\dagger} \rangle f_{\alpha,i}^{\dagger} f_{\alpha,j} \\ &= -\sum_{\alpha \in \mathrm{colors}} t_{ij}^{\alpha} f_{\alpha,i}^{\dagger} f_{\alpha,j} \end{split}$$

Using different Ansätze for the hoppings, we evaluate the expectation value of the Hamiltonian Mean-field decoupling of the fermionic Hamiltonian gives a hopping Hamiltonian and a variational wave function $|\Psi_{\rm vari}\rangle = P_{\rm Gutzwiller}|\Psi_{\rm FS}\rangle$

$$E_{\rm vari} = \frac{\langle \Psi_{\rm vari} | \mathcal{H} | \Psi_{\rm vari} \rangle}{\langle \Psi_{\rm vari} | \Psi_{\rm vari} \rangle}$$

The fermionic wave function of the pi-flux state

two-fold degenerate bands

96-site cluster - real space correlations from Gutzwiller projected wavefunction

marked differences in 3rd neighbor correlations

24-site cluster - real space correlations

Dimension of the Hilbert space is $24!/(6!)^4 = 2308743493056$ using symmetries makes it tractable

Ground state energy from different methods

SU(N) on honeycomb

SU(2) is a Néel state

SU(3) is a plaquette state

[Y.-W. Lee and M.-F. Yang, Phys. Rev. B **85**, 100402 (2012). H.H.Zhao,C.Xu,Q.N.Chen,Z.C.Wei,M.P.Qin,G.M. Zhang, and T. Xiang, Phys. Rev. B **85**, 134416 (2012).]

SU(4) is most probably an algebraic flavor liquid [P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, F. Mila, <u>arXiv:1207.6029</u>]

SU(6) is likely a chiral flavor liquid [G. Szirmai E. Szirmai, A. Zamora, and M. Lewenstein, Phys. Rev. A **84**, 011611 (2011)], similarly, SU(N) is also a chiral liquid [extending the results of M. Hermele, V. Gurarie, & A. M. Rey, Phys. Rev. Lett. **103**, 135301 (2009)]

honeycomb optical lattices can be realized, see poster of Johannes Hecker-Denschlag

Conclusions

SU(3)

SU(4)

happy

fluctuation stabilized

dimerization+Neel

Many happy returns of the day to you, Jose!

Many happy workshops in Evora!

the end