Correlated fermions on the honeycomb lattice

Alejandro Muramatsu Institut für Theoretische Physik III Universität Stuttgart

Workshop on Correlations and Coherence in Quantum Systems University of Évora October 8-12 2012

Thursday, October 11, 2012

Honeycomb-lattice Interactions and fluctuations

• Low dimensionality \longrightarrow D = 2

• Low dimensionality \longrightarrow D = 2

Lowest possible coordination number in 2D _____ z = 3

- Low dimensionality \longrightarrow D = 2
- Lowest possible coordination number in 2D _____ z = 3
- Vanishing density of states at half-filling at the Fermi energy

- Low dimensionality \longrightarrow D = 2
- Lowest possible coordination number in 2D _____ z = 3
- Vanishing density of states at half-filling at the Fermi energy

Fluctuations around the quantum critical point

- Low dimensionality \longrightarrow D = 2
- Lowest possible coordination number in 2D _____ z = 3
- Vanishing density of states at half-filling at the Fermi energy

Fluctuations around the quantum critical point Heavy fermions

- Low dimensionality \longrightarrow D = 2
- Lowest possible coordination number in 2D _____ z = 3
- Vanishing density of states at half-filling at the Fermi energy

Fluctuations around the quantum critical pointHeavy fermionsOrganic superconductors

Quantum Monte Carlo simulations for the Hubbard model on the honeycomb lattice

Determinantal algorithm for T = 0

Determinantal algorithm for T = 0

- $|\Psi_G\rangle$ ground-state of H
- $|\Psi_T\rangle$ trial wavefunction with $\langle \Psi_G | \Psi_T \rangle \neq 0$

Expectation value of a physical observable in the ground-state

$$\langle \Psi_G | \hat{\mathcal{O}} | \Psi_G \rangle = \lim_{\Theta \to \infty} \frac{\langle \Psi_T | e^{-\Theta H/2} \, \hat{\mathcal{O}} \, e^{-\Theta H/2} | \Psi_T \rangle}{\langle \Psi_T | e^{-\Theta H} | \Psi_T \rangle}$$

Determinantal algorithm for T = 0

- $|\Psi_G\rangle$ ground-state of H
- $|\Psi_T\rangle$ trial wavefunction with $\langle \Psi_G | \Psi_T \rangle \neq 0$

Expectation value of a physical observable in the ground-state

$$\langle \Psi_G | \hat{\mathcal{O}} | \Psi_G \rangle = \lim_{\Theta \to \infty} \frac{\langle \Psi_T | e^{-\Theta H/2} \, \hat{\mathcal{O}} \, e^{-\Theta H/2} | \Psi_T \rangle}{\langle \Psi_T | e^{-\Theta H} | \Psi_T \rangle}$$

In our case, choose $| \Psi_T \rangle = | \Psi_T \rangle_{\uparrow} \otimes | \Psi_T \rangle_{\downarrow}$

$$|\Psi_T\rangle_{\alpha}$$
 ground-state of the free case

• SU(2) invariant algorithm

F.F.Assaad., Phys. Rev. B 71, 075103 (2005)

Particle-hole symmetry at half-filling

free of sign problem

• Convergence to the ground-state with $\Theta = 40/t$

• Systematic error below statistical fluctuations with $\Delta au = 0.05/t$

Finite-size extrapolations to the thermodynamic limit with $N = L \times L \times 2$, $L = 3, 9, 12, 15, 18 \longrightarrow 4^{648}$

• SU(2) invariant algorithm

F.F.Assaad., Phys. Rev. B 71, 075103 (2005)

Particle-hole symmetry at half-filling

free of sign problem

• Convergence to the ground-state with $\Theta = 40/t$

• Systematic error below statistical fluctuations with $\Delta au = 0.05/t$

• Finite-size extrapolations to the thermodynamic limit with $N = L \times L \times 2$, $L = 3, 9, 12, 15, 18 \longrightarrow 4^{648}$

Metastability for large systems (local updates)

$$N = L \times L \times 2 , L = 36$$

Hubbard model on the honeycomb lattice

Z.Y. Meng, T. Lang, S. Wessel, F.F. Assaad, A. M., Nature 464, 847 (2010)

Single particle excitations

One-particle propagator in imaginary time

$$G(\vec{k},\tau) = \sum_{\lambda\sigma} \left\langle Tc_{\vec{k},\lambda,\sigma}(\tau)c_{\vec{k},\lambda,\sigma}^{\dagger}(0) \right\rangle = \sum_{\lambda\sigma} \left\langle Te^{\tau H}c_{\vec{k},\lambda,\sigma}e^{-\tau H}c_{\vec{k},\lambda,\sigma}^{\dagger} \right\rangle$$

Single particle gap opens for U/t > 3.5in the thermodynamic limit

Single particle excitations

One-particle propagator in imaginary time

$$G(\vec{k},\tau) = \sum_{\lambda\sigma} \left\langle Tc_{\vec{k},\lambda,\sigma}(\tau)c_{\vec{k},\lambda,\sigma}^{\dagger}(0) \right\rangle = \sum_{\lambda\sigma} \left\langle Te^{\tau H}c_{\vec{k},\lambda,\sigma}e^{-\tau H}c_{\vec{k},\lambda,\sigma}^{\dagger} \right\rangle$$

Single particle gap opens for U/t > 3.5in the thermodynamic limit

Metal-insulator transition

Thursday, October 11, 2012

Antiferromagnetism

Antiferromagnetic structure factor

$$S_{AF} = \frac{1}{N} \left\langle \left[\sum_{\vec{x}} \left(\vec{S}_{\vec{x}A} - \vec{S}_{\vec{x}B} \right) \right]^2 \right\rangle$$

Antiferromagnetic long range order sets in for U/t > 4.3

Thursday, October 11, 2012

Antiferromagnetism

Antiferromagnetic structure factor

$$S_{AF} = \frac{1}{N} \left\langle \left[\sum_{\vec{x}} \left(\vec{S}_{\vec{x}A} - \vec{S}_{\vec{x}B} \right) \right]^2 \right\rangle$$

Antiferromagnetic long range order sets in for U/t > 4.3

Paramag.-AF transition

Magnetic excitations

Spin-spin correlation function in imaginary time

$$S_s(\vec{k},\tau) = \left\langle \left[\vec{S}_{\vec{k}A}(\tau) - \vec{S}_{\vec{k}B}(\tau) \right] \cdot \left[\vec{S}_{\vec{k}A}(0) - \vec{S}_{\vec{k}B}(0) \right] \right\rangle$$

Spin-gap phase between the semimetal and the AF Mott-insulator (3.5 < U/t < 4.3)

Thursday, October 11, 2012

Phase diagram of the Hubbard model on the honeycomb lattice

Controversy: no spin liquid

S. Sorella, Y. Otsuka, S. Yunoki, arXiv: 1207.1783

$$\langle \hat{\mathcal{O}} \rangle = \frac{\langle \Psi_L | e^{-\theta H/2} \hat{\mathcal{O}} e^{-\theta H/2} | \Psi_R \rangle}{\langle \Psi_L | e^{-\theta H} | \Psi_R \rangle}$$

 $|\Psi_L
angle$: Slater determinant with antiferromagnetic oder parameter

 $|\Psi_R\rangle$: Slater determinant with definite spin S

Controversy: overestimation of AF order

Local magnetic field and magnetization on the most distant point

 $h_0 = 0.1t$

Controversy: overestimation of AF order

Local magnetic field and magnetization on the most distant point

 $h_0 = 0.1t$

Thursday, October 11, 2012

Controversy: overestimation of AF order

Local magnetic field and magnetization on the most distant point

Controversy: estimation of AF order

Local magnetic field and magnetization on the most distant point

$$h_0 = 5.0t$$

Controversy: estimation of AF order

Local magnetic field and magnetization on the most distant point

Large-scale quantum Monte Carlo simulations up to N = 18 x 18 x 2 Presently extending simulations to larger sizes with local field

Large-scale quantum Monte Carlo simulations up to N = 18 x 18 x 2 Presently extending simulations to larger sizes with local field

Large-scale quantum Monte Carlo simulations up to N = 18 x 18 x 2 Presently extending simulations to larger sizes with local field

Results for small fields needed

Large-scale quantum Monte Carlo simulations up to N = 18 x 18 x 2 Presently extending simulations to larger sizes with local field

Results for small fields needed

Fidelity susceptibility being presently calculated

Collaborators

- **Karim Bouadim (University of Stuttgart)**
- Martin Hohenadler (University of Würzburg)
- **Thomas Lang (RWTH-Aachen)**
- Zi Yang Meng (University of Stuttgart/Louisiana State University)
- **Stefan Wessel (RWTH-Aachen)**
- Fakher F. Assaad (University of Würzburg)

Collaborators

- **Karim Bouadim (University of Stuttgart)**
- Martin Hohenadler (University of Würzburg)
- **Thomas Lang (RWTH-Aachen)**
- Zi Yang Meng (University of Stuttgart/Louisiana State University)
- **Stefan Wessel (RWTH-Aachen)**
- Fakher F. Assaad (University of Würzburg)

