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 Honeycomb-lattice
Interactions and fluctuations
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Fluctuations around the quantum critical point
Heavy fermions                 

 Low dimensionality                 D = 2
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 Fluctuations in a honeycomb lattice

Fluctuations around the quantum critical point
Heavy fermions                 Organic superconductors                 

 Low dimensionality                 D = 2

 Lowest possible coordination number in 2D                z = 3

 Vanishing density of states at half-filling at the Fermi energy
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 Quantum Monte Carlo simulations for the
Hubbard model on the honeycomb lattice
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 Determinantal algorithm for T = 0
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 Determinantal algorithm for T = 0

 Expectation value of a physical observable in the ground-state

〈ΨG|Ô|ΨG〉 = lim
Θ→∞

〈ΨT |e−ΘH/2 Ô e−ΘH/2|ΨT 〉
〈ΨT |e−ΘH |ΨT 〉

|ΨT 〉  trial wavefunction with 〈ΨG|ΨT 〉 #= 0

|ΨG〉 ground-state of H
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 Determinantal algorithm for T = 0

 Expectation value of a physical observable in the ground-state

〈ΨG|Ô|ΨG〉 = lim
Θ→∞

〈ΨT |e−ΘH/2 Ô e−ΘH/2|ΨT 〉
〈ΨT |e−ΘH |ΨT 〉

|ΨT 〉  trial wavefunction with 〈ΨG|ΨT 〉 #= 0

|ΨG〉 ground-state of H

 In our case, choose 

 ground-state of the free case|ΨT 〉α

|ΨT 〉 = |ΨT 〉↑ ⊗ |ΨT 〉↓
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 Particle-hole symmetry at half-filling

free of sign problem 

 Convergence to the ground-state with Θ = 40/t

 SU(2) invariant algorithm 
F.F. Assaad., Phys. Rev. B 71, 075103 (2005) 

 Finite-size extrapolations to the thermodynamic limit with

N = L× L× 2 , L = 3, 9, 12, 15, 18 −→∼ 4648

 Systematic error below statistical fluctuations with ∆τ = 0.05/t
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 Particle-hole symmetry at half-filling

free of sign problem 

 Convergence to the ground-state with Θ = 40/t

 SU(2) invariant algorithm 
F.F. Assaad., Phys. Rev. B 71, 075103 (2005) 

 Finite-size extrapolations to the thermodynamic limit with

N = L× L× 2 , L = 3, 9, 12, 15, 18 −→∼ 4648

 Systematic error below statistical fluctuations with ∆τ = 0.05/t

 Metastability for large systems (local updates)

N = L× L× 2 , L = 36

Thursday, October 11, 2012



 Hubbard model on the honeycomb lattice 

Z.Y. Meng, T. Lang, S. Wessel, F.F. Assaad, A. M., Nature 464, 847 (2010)
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 Single particle excitations
 One-particle propagator in imaginary time
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 Single particle excitations
 One-particle propagator in imaginary time
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 Antiferromagnetism
 Antiferromagnetic structure factor

SAF =
1
N

〈 [
∑

!x

(
!S!xA − !S!xB

)]2 〉
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 Magnetic excitations
 Spin-spin correlation function in imaginary time

Ss(!k, τ) =
〈 [

!S!kA(τ)− !S!kB(τ)
]

·
[
!S!kA(0)− !S!kB(0)

] 〉
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 Phase diagram of the Hubbard model
on the honeycomb lattice
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 Controversy: no spin liquid
S. Sorella, Y. Otsuka,S. Yunoki, arXiv:1207.1783

〈Ô〉 =
〈ΨL|e−θH/2Ôe−θH/2|ΨR〉

〈ΨL|e−θH |ΨR〉
|ΨL〉 :  Slater determinant with antiferromagnetic oder parameter
|ΨR〉 : Slater determinant with definite spin S 
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 Controversy: overestimation of AF order

 Local magnetic field and magnetization on the most distant point

h0 = 0.1t
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 Local magnetic field and magnetization on the most distant point
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 Controversy: estimation of AF order

 Local magnetic field and magnetization on the most distant point

h0 = 5.0t
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 Controversy: estimation of AF order

 Local magnetic field and magnetization on the most distant point
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 Summary

 Large-scale quantum Monte Carlo simulations up to N = 18 x 18 x 2 
      Presently extending simulations to larger sizes with local field

 Results for small fields needed 

 Critical behavior?

 Fidelity susceptibility being presently calculated
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