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Motivation

“Counting phase transitions” — a new way to describe
correlations and characterize thermodynamic phases

Originally motivated by “full counting statistics” (FCS)
in mesoscopic physics: e.g., describing electronic noise in
microcontacts

Applicable to a wide range of systems (classical and quantum)

For quadratic fermionic systems, related to the theory
of Toeplitz determinants (Fisher-Hartwig conjecture)

Earlier studies of phase transitions in various FCS problems:
Garrahan '07, Levkivskyi and Sukhorukov '09,
Karzig and von Oppen '10



Outline

“Counting phase transitions” in classical and quantum
systems

Example 1: (classical) 1D Ising model
new “counitng phase transition”

Example 2: (quantum) 1D free fermions
subleading terms for FCS and entanglement entropy

Example 3: (quantum) XY spin-1/2 chain
new interpretation of the old phase diagram



Full counting statistics

Measuring a discrete observable:

e in time:

—f sy F—

t

* orin space: 1000110110001010011000101

Generating function:
Xt()\) — anei)\n
n

t — duration of measurement (or length of the interval),
P,, — probability of counting n events (e.g., transmitting charge n)



Properties of the generating function

e Periodicity: x¢(A) = x¢(A + 2m) — reflects charge quantization

e Multiplicativity for independent processes
(“partition function”): xa+5(A) = xa(A) - xB(A)
e In a periodic setup (with a period 7), define the extensive part:

X0 = Jlim e ()]

—00



“Counting” phase transitions

x 9 (\) is periodic in A (by construction), but:

For any t, the observable is limited

= x¢()\) is analytic on the circle z = ¢

but x)

x@(X\) may develop
a singularity

= PHASE TRANSITION




Example 1 (classical): 1D Ising model

H:JZO']'U]'_H—I-FZU]', ZZZeXp(—H)
J J

counting spins up: ' i l ' ' l '

Solving by transfer matrix:

(X&ﬂ()‘)) Y <X§()\)> O () - largest eigenvalue
XN+1(/\) Xy (A of the transfer matrix M



Example 1: 1D Ising model, phase diagram
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(not a phase transition in the usual sense!)



Example 2 (quantum): 1D free fermions

Free fermions on a L sites
1D chain:

Ground state: states with momenta |k| < kp filled:

)= [ a**)l0)

|k|<kr
Generating function for counting statistics:

L
XeO) = (@™o vy Np = ata,
j=1



Example 2: 1D free fermions (continued)

Average and fluctuations:

(Np) =L (VB ~ L

(either by bosonization or via Wick theorem)
= fluctuations grow slower than L

At the Gaussian level (continuous bosonization):

xr(A) = exp (i/\(N) - 2<<N§>)> = x9N =exp <z7);kzp>

— NOT periodic in A (neglects charge discreteness)



Example 2: 1D free fermions and Toeplitz determinants

Non-analytic x(©(\):
switching branches at A =7

Injx (%)

SV‘{it‘t?hing Restoring periodicity by expressing
# “poin . .
P ‘ . XL(A) as a Toeplitz determinant

0 o 2n

xr(A) = det [1 +(e” = 1) (afap) | =: det oy
Fourier transform (“symbol”) contains jumps at the Fermi points:
o(q) =1+ (* = )nr(q)

— extending the Fisher—Hartwig conjecture
[Kozlowski '08, Kitanine et al '09, Deift, Its, Krasovsky '09,
Calabrese, Essler '10] to obtain a full asymptotic expansion



Example 2: 1D free fermions: full asymptotic expansion

+oo
Xe) = Y Xe(A—2mn)

k 2
7L\ = exp [iA—FL—)\— In(2L sin kr) +Fy(\)+F1 (N kp) L1 . ]

T 2T

lattice version: conjectured [Calabrese, Essler '10]
continuous limit (kp—0): verified analytically (order by order)
[DI, Abanov, Cheianov '11]

Fy(A) =2In ‘G(l—{—%)G(l— %)) (G — Barnes G function)

i (A\°
Fl()\-/k?F):_Z <7T> cot kp, Fy(\kp) = ...



Example 2: 1D free fermions, contnuous limit

In the continuous limit, two alternative methods:
e matrix Riemann—Hilbert problem [Cheianov, Zvonarev '03]

e Painlevé V equation [McCoy, Tang '86]

A
E.(\kp) = (ikp) " fn | —
(A kp) = (ikp) ™" f. (%)
and all f,, are polynomials with rational coefficients:
11 1
Ak) =26 f3(k) = 3’45 + 6/{3

fa(k) = g/@4 fa(k) = = + gli

and so on (computable order by order)



Example 2: 1D free fermions, entanglement entropy

pa="Trp Ppure » S=-Tr palnpa

For free particles, spectrum of p4 (and hence entanglement
entropy S) follows from the full counting statitics x(A) [Klich and
Levitov '09, Song et al '11, Calabrese, Mintchev and Vicari '12]

Carrying over our results from x(A) to S [DI, Siisstrunk '12]:

1 i Ly
§=gIn(kpL) +C + ; son(kpL)~2"
1 31 7057

Ea S4 = — —

2= 96° 7 T1440°

All s, are rational numbers computable order by order



Example 3 (quantum): XY spin-1/2 chain in a Z field

+
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j=—o00
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Counting up spins:

1+U§
2

L
XL = (Mo ~ OV, Np=)
j=1

generalization of the free-fermion example,

mapping onto 1D quadratic BCS Hamiltonian
= Toeplitz determinant, Szeg6 formula



Example 3: XY spin chain, phase diagram

Three “counting phases”:
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e Nonanalytic phase |: phase jump at A==«
(similar to the free-fermion case)

e Nonanalytic phase Il: phase jumps at intermediate A,

e Analytic phase: fully polarized state with local pair excitations.

— the same phase diagram in terms of spin correlations
[Barouch, McCoy '71]



Summary and comments
“Counting phase transitions”: a new way to describe
correlations in terms of the analytic properties of X(O)()\)
. Works for classical and quantum systems

. Can also be applied to systems
in higher dimensions:

. Singularities in x(%)(\) may occur at various values of A
[only at A= for noninteracting fermions]

. New results on the Fisher—Hartwig conjecture and
entanglement for free 1D fermions



Summary and comments: 2

6. Physical signatures are subtle:

e in 1D: nonanalyticity of the correlation length for
Jordan—-Wigner strings
e in any D: “twisted cumulant”

((n*)a = (n®)a — (M)} = (=i0x)* Inx(A)x=a

where (A) 5 1= (A" A) /(eA)

— grows as t in the analytic phase and as t2 in the
nonanalytic phase



