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 Hamiltonian:

Single electron trapped in a quantum dot.
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- Relaxation and decoherence are 
dominated by hyperfine coupling with the 
nuclear spins.
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Form factors
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model.
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The Problem Non-equilibrium dynamics:

Initial condition:

Unitary time evolution (projected on the true 
eigenbasis):

Coherence factor: Overlaps



• Algebraic Bethe Ansatz gives us EXACT 
eigenstates at any B (non-perturbative)

 Bethe Equations:

Algebraic B A
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generated nuclear configurations to address the validity
of this particular choice.
Our main quantity of interest is the central spin coher-

ence factor which, projecting on the eigenbasis of H , can
be written as

〈Ψ(t)|S+
0 |Ψ(t)〉 =

∑

m,n

Cm,ne
i(ωm−ωn)t, (2)

where Cm,n = 〈⇑;Ψbath |ψm〉 〈ψm|S+
0 |ψn〉 〈ψn |⇓;Ψbath〉

with |ψm〉 and |ψn〉 denoting eigenstates of the Hamil-
tonian (1) with energies ωm and ωn respectively. Since∑N

k=0 S
z
k is conserved, |ψm〉 must contain one more up-

spin than |ψn〉.
Any eigenstate of the central spin model (1) is entirely

defined by M complex rapidities {λ1...λM} which are a
solution of the system of M coupled non-linear algebraic
Bethe equations

−2B +
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−
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2

λi − λj
= 0. (3)

Here εk = −1/Ak and ε0 = 0. For every solution of (3)
the corresponding (unnormalized) eigenstate is obtained
by the repeated action, for each rapidity, of a generalized

creation operator S+(λi) ≡
∑N

k=0
S+
k

λi−εk
, i.e.

|{λ1...λM}〉 =
M∏
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The corresponding eigenenergy is then given by
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Due to the level of difficulty of systematically finding
solutions to Eq. (3) we solve instead for a different set

of variables Λ(εi) =
∑M

j=1
1

εi−λj
, which can be shown

to obey a simpler set of quadratic equations [19, 20].
Any given solution to these equations is found starting
from the trivial B = ∞ solutions where an ensemble of
M spins are pointing up and the remaining N −M are
pointing down. These configurations are deformed by a
step-wise ramping of the 1/B-parameter until the desired
B value is reached [20] . Finally, it was recently shown
that the scalar products matrix elements defining Cm,n

in eq. (2) can be written, in terms of Λ(εi), as determi-
nants of N +1 by N +1 matrices [21]. The resulting fast
algorithm allows us to define a probability

Pm,n ≡ |Cm,n| , (6)

for any pair of eigenstates (m,n) and perform the double
sum in eq. (2) using a simple Metropolis algorithm (see
[22] for another example of combining Monte Carlo with
ABA). Starting from a randomly selected pair of B = ∞
eigenstates, we first deform them to the desired finite-B

eigenstates |ψm〉 , |ψn〉 and compute the probability Pm,n,
frequencies ωm,ωn and the sign sm,n = sgn(Cm,n). A
new pair is then generated by randomly selecting one
of the two B = ∞ configurations and minimally chang-
ing it by exchanging a randomly selected pair of up
and down spin. Deforming this new configuration to fi-
nite B we compute Pm,n′ (assuming state n was mod-
ified) and accept the new pair (m,n′) with probability

max
(
1,

Pm,n′

Pm,n

)
. Repeating the procedure generates a

list of Ω configurations (mα, nα) distributed according
to Pmα,nα such that

< S+
0 (t) >

< S+
0 (0) >

= lim
Ω→∞

∑Ω
α=1 smα,nαe

i(ωmα−ωnα )t

∑Ω
α=1 smα,nα

, (7)

which can be normalized by the known initial value of the
coherence factor. Fig. 1 presents the spectrum

〈
S+
0

〉
(ω)

whose Fourier transform corresponds to
〈
S+
0 (t)

〉
for a

wide range of external magnetic fields covering the full
crossover from the perturbative regime B ) A down
to weak magnetic fields. All plots are obtained for an
ensemble of N = 36 nuclear spins by sampling Ω = 107

configurations.
The spectrum is basically characterized by two struc-

tures. First we find a peak around the ”bare” Larmor
frequency B+hz

init given by the total effective ẑ magnetic
field felt by the central spin. For strong magnetic fields
this sharp peak is the dominant feature whose nearly
Lorentzian lineshape leads to exponentially decaying os-
cillations. As the magnetic field is lowered its width in-
creases giving rise to faster decoherence. On the other
hand, there is a low frequency peak, which carries a very
low weight at strong fields but becomes more and more
significant as the field is lowered. At strong fields this
leads to slow modulations of the envelope function which
were evidenced in the fourth order perturbative treat-
ment [9] and are now confirmed by our exact results. At
weak enough fields, this contribution becomes a scalable
function of ω/B as evidenced in panel 1c) which focuses
on this feature. At finite fields, this low frequency peak
has a finite width (∝ B). In the long time dynamics,
it leads to the slowly decaying low-frequency oscillations
evidenced in panel 2b). However, both their period and
lifetime can be made arbitrarily large since the real-time
evolution becomes a function of Bt. This ultimately
leads, as B → 0, to a large non-decaying fraction rep-
resenting nearly 0.5 of the initial factor.
Albeit in a longitudinal relaxation setup, results show-

ing very slow 1/ ln(t) long-time decay have been obtained
previously using TDMF at zero field [16]. Here, how-
ever, working with exact eigenstates of the model pro-
vides valuable insight in the processes involved and al-
lows us to demonstrate the complete absence of long-
time decay. Indeed, we know that in the B → 0 limit,
solutions to the Bethe equations (3) split into two inde-
pendent subsets. A state-dependent number 0 ≤ r ≤ M

2

generated nuclear configurations to address the validity
of this particular choice.
Our main quantity of interest is the central spin coher-

ence factor which, projecting on the eigenbasis of H , can
be written as

〈Ψ(t)|S+
0 |Ψ(t)〉 =

∑

m,n

Cm,ne
i(ωm−ωn)t, (2)

where Cm,n = 〈⇑;Ψbath |ψm〉 〈ψm|S+
0 |ψn〉 〈ψn |⇓;Ψbath〉

with |ψm〉 and |ψn〉 denoting eigenstates of the Hamil-
tonian (1) with energies ωm and ωn respectively. Since∑N

k=0 S
z
k is conserved, |ψm〉 must contain one more up-

spin than |ψn〉.
Any eigenstate of the central spin model (1) is entirely

defined by M complex rapidities {λ1...λM} which are a
solution of the system of M coupled non-linear algebraic
Bethe equations

−2B +
N∑

k=0

1

λi − εk
−

M∑

j=1( "=i)

2

λi − λj
= 0. (3)

Here εk = −1/Ak and ε0 = 0. For every solution of (3)
the corresponding (unnormalized) eigenstate is obtained
by the repeated action, for each rapidity, of a generalized

creation operator S+(λi) ≡
∑N

k=0
S+
k

λi−εk
, i.e.

|{λ1...λM}〉 =
M∏

i=1

S+(λi) |⇓; ↓↓ ... ↓〉 . (4)

The corresponding eigenenergy is then given by

E({λ1...λM}) = 1

2

M∑

i=1

1

λi
− B

2
−

N∑

j=1

1

4εj
. (5)

Due to the level of difficulty of systematically finding
solutions to Eq. (3) we solve instead for a different set

of variables Λ(εi) =
∑M

j=1
1

εi−λj
, which can be shown

to obey a simpler set of quadratic equations [19, 20].
Any given solution to these equations is found starting
from the trivial B = ∞ solutions where an ensemble of
M spins are pointing up and the remaining N −M are
pointing down. These configurations are deformed by a
step-wise ramping of the 1/B-parameter until the desired
B value is reached [20] . Finally, it was recently shown
that the scalar products matrix elements defining Cm,n

in eq. (2) can be written, in terms of Λ(εi), as determi-
nants of N +1 by N +1 matrices [21]. The resulting fast
algorithm allows us to define a probability

Pm,n ≡ |Cm,n| , (6)

for any pair of eigenstates (m,n) and perform the double
sum in eq. (2) using a simple Metropolis algorithm (see
[22] for another example of combining Monte Carlo with
ABA). Starting from a randomly selected pair of B = ∞
eigenstates, we first deform them to the desired finite-B

eigenstates |ψm〉 , |ψn〉 and compute the probability Pm,n,
frequencies ωm,ωn and the sign sm,n = sgn(Cm,n). A
new pair is then generated by randomly selecting one
of the two B = ∞ configurations and minimally chang-
ing it by exchanging a randomly selected pair of up
and down spin. Deforming this new configuration to fi-
nite B we compute Pm,n′ (assuming state n was mod-
ified) and accept the new pair (m,n′) with probability

max
(
1,

Pm,n′

Pm,n

)
. Repeating the procedure generates a

list of Ω configurations (mα, nα) distributed according
to Pmα,nα such that

< S+
0 (t) >

< S+
0 (0) >

= lim
Ω→∞

∑Ω
α=1 smα,nαe

i(ωmα−ωnα )t

∑Ω
α=1 smα,nα

, (7)

which can be normalized by the known initial value of the
coherence factor. Fig. 1 presents the spectrum

〈
S+
0

〉
(ω)

whose Fourier transform corresponds to
〈
S+
0 (t)

〉
for a

wide range of external magnetic fields covering the full
crossover from the perturbative regime B ) A down
to weak magnetic fields. All plots are obtained for an
ensemble of N = 36 nuclear spins by sampling Ω = 107

configurations.
The spectrum is basically characterized by two struc-

tures. First we find a peak around the ”bare” Larmor
frequency B+hz

init given by the total effective ẑ magnetic
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in eq. (2) can be written, in terms of Λ(εi), as determi-
nants of N +1 by N +1 matrices [21]. The resulting fast
algorithm allows us to define a probability

Pm,n ≡ |Cm,n| , (6)

for any pair of eigenstates (m,n) and perform the double
sum in eq. (2) using a simple Metropolis algorithm (see
[22] for another example of combining Monte Carlo with
ABA). Starting from a randomly selected pair of B = ∞
eigenstates, we first deform them to the desired finite-B

eigenstates |ψm〉 , |ψn〉 and compute the probability Pm,n,
frequencies ωm,ωn and the sign sm,n = sgn(Cm,n). A
new pair is then generated by randomly selecting one
of the two B = ∞ configurations and minimally chang-
ing it by exchanging a randomly selected pair of up
and down spin. Deforming this new configuration to fi-
nite B we compute Pm,n′ (assuming state n was mod-
ified) and accept the new pair (m,n′) with probability

max
(
1,

Pm,n′

Pm,n

)
. Repeating the procedure generates a

list of Ω configurations (mα, nα) distributed according
to Pmα,nα such that

< S+
0 (t) >

< S+
0 (0) >

= lim
Ω→∞

∑Ω
α=1 smα,nαe

i(ωmα−ωnα )t

∑Ω
α=1 smα,nα

, (7)

which can be normalized by the known initial value of the
coherence factor. Fig. 1 presents the spectrum

〈
S+
0

〉
(ω)

whose Fourier transform corresponds to
〈
S+
0 (t)

〉
for a

wide range of external magnetic fields covering the full
crossover from the perturbative regime B ) A down
to weak magnetic fields. All plots are obtained for an
ensemble of N = 36 nuclear spins by sampling Ω = 107

configurations.
The spectrum is basically characterized by two struc-

tures. First we find a peak around the ”bare” Larmor
frequency B+hz

init given by the total effective ẑ magnetic
field felt by the central spin. For strong magnetic fields
this sharp peak is the dominant feature whose nearly
Lorentzian lineshape leads to exponentially decaying os-
cillations. As the magnetic field is lowered its width in-
creases giving rise to faster decoherence. On the other
hand, there is a low frequency peak, which carries a very
low weight at strong fields but becomes more and more
significant as the field is lowered. At strong fields this
leads to slow modulations of the envelope function which
were evidenced in the fourth order perturbative treat-
ment [9] and are now confirmed by our exact results. At
weak enough fields, this contribution becomes a scalable
function of ω/B as evidenced in panel 1c) which focuses
on this feature. At finite fields, this low frequency peak
has a finite width (∝ B). In the long time dynamics,
it leads to the slowly decaying low-frequency oscillations
evidenced in panel 2b). However, both their period and
lifetime can be made arbitrarily large since the real-time
evolution becomes a function of Bt. This ultimately
leads, as B → 0, to a large non-decaying fraction rep-
resenting nearly 0.5 of the initial factor.
Albeit in a longitudinal relaxation setup, results show-

ing very slow 1/ ln(t) long-time decay have been obtained
previously using TDMF at zero field [16]. Here, how-
ever, working with exact eigenstates of the model pro-
vides valuable insight in the processes involved and al-
lows us to demonstrate the complete absence of long-
time decay. Indeed, we know that in the B → 0 limit,
solutions to the Bethe equations (3) split into two inde-
pendent subsets. A state-dependent number 0 ≤ r ≤ M
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generated nuclear configurations to address the validity
of this particular choice.
Our main quantity of interest is the central spin coher-

ence factor which, projecting on the eigenbasis of H , can
be written as

〈Ψ(t)|S+
0 |Ψ(t)〉 =

∑

m,n

Cm,ne
i(ωm−ωn)t, (2)

where Cm,n = 〈⇑;Ψbath |ψm〉 〈ψm|S+
0 |ψn〉 〈ψn |⇓;Ψbath〉

with |ψm〉 and |ψn〉 denoting eigenstates of the Hamil-
tonian (1) with energies ωm and ωn respectively. Since∑N

k=0 S
z
k is conserved, |ψm〉 must contain one more up-

spin than |ψn〉.
Any eigenstate of the central spin model (1) is entirely

defined by M complex rapidities {λ1...λM} which are a
solution of the system of M coupled non-linear algebraic
Bethe equations

−2B +
N∑

k=0

1

λi − εk
−

M∑

j=1( "=i)

2

λi − λj
= 0. (3)

Here εk = −1/Ak and ε0 = 0. For every solution of (3)
the corresponding (unnormalized) eigenstate is obtained
by the repeated action, for each rapidity, of a generalized

creation operator S+(λi) ≡
∑N

k=0
S+
k

λi−εk
, i.e.

|{λ1...λM}〉 =
M∏

i=1

S+(λi) |⇓; ↓↓ ... ↓〉 . (4)

The corresponding eigenenergy is then given by

E({λ1...λM}) = 1

2

M∑

i=1

1

λi
− B

2
−

N∑

j=1

1

4εj
. (5)

Due to the level of difficulty of systematically finding
solutions to Eq. (3) we solve instead for a different set

of variables Λ(εi) =
∑M

j=1
1

εi−λj
, which can be shown

to obey a simpler set of quadratic equations [19, 20].
Any given solution to these equations is found starting
from the trivial B = ∞ solutions where an ensemble of
M spins are pointing up and the remaining N −M are
pointing down. These configurations are deformed by a
step-wise ramping of the 1/B-parameter until the desired
B value is reached [20] . Finally, it was recently shown
that the scalar products matrix elements defining Cm,n

in eq. (2) can be written, in terms of Λ(εi), as determi-
nants of N +1 by N +1 matrices [21]. The resulting fast
algorithm allows us to define a probability

Pm,n ≡ |Cm,n| , (6)

for any pair of eigenstates (m,n) and perform the double
sum in eq. (2) using a simple Metropolis algorithm (see
[22] for another example of combining Monte Carlo with
ABA). Starting from a randomly selected pair of B = ∞
eigenstates, we first deform them to the desired finite-B

eigenstates |ψm〉 , |ψn〉 and compute the probability Pm,n,
frequencies ωm,ωn and the sign sm,n = sgn(Cm,n). A
new pair is then generated by randomly selecting one
of the two B = ∞ configurations and minimally chang-
ing it by exchanging a randomly selected pair of up
and down spin. Deforming this new configuration to fi-
nite B we compute Pm,n′ (assuming state n was mod-
ified) and accept the new pair (m,n′) with probability

max
(
1,

Pm,n′

Pm,n

)
. Repeating the procedure generates a

list of Ω configurations (mα, nα) distributed according
to Pmα,nα such that

< S+
0 (t) >

< S+
0 (0) >

= lim
Ω→∞

∑Ω
α=1 smα,nαe

i(ωmα−ωnα )t

∑Ω
α=1 smα,nα

, (7)

which can be normalized by the known initial value of the
coherence factor. Fig. 1 presents the spectrum

〈
S+
0

〉
(ω)

whose Fourier transform corresponds to
〈
S+
0 (t)

〉
for a

wide range of external magnetic fields covering the full
crossover from the perturbative regime B ) A down
to weak magnetic fields. All plots are obtained for an
ensemble of N = 36 nuclear spins by sampling Ω = 107

configurations.
The spectrum is basically characterized by two struc-

tures. First we find a peak around the ”bare” Larmor
frequency B+hz

init given by the total effective ẑ magnetic
field felt by the central spin. For strong magnetic fields
this sharp peak is the dominant feature whose nearly
Lorentzian lineshape leads to exponentially decaying os-
cillations. As the magnetic field is lowered its width in-
creases giving rise to faster decoherence. On the other
hand, there is a low frequency peak, which carries a very
low weight at strong fields but becomes more and more
significant as the field is lowered. At strong fields this
leads to slow modulations of the envelope function which
were evidenced in the fourth order perturbative treat-
ment [9] and are now confirmed by our exact results. At
weak enough fields, this contribution becomes a scalable
function of ω/B as evidenced in panel 1c) which focuses
on this feature. At finite fields, this low frequency peak
has a finite width (∝ B). In the long time dynamics,
it leads to the slowly decaying low-frequency oscillations
evidenced in panel 2b). However, both their period and
lifetime can be made arbitrarily large since the real-time
evolution becomes a function of Bt. This ultimately
leads, as B → 0, to a large non-decaying fraction rep-
resenting nearly 0.5 of the initial factor.
Albeit in a longitudinal relaxation setup, results show-

ing very slow 1/ ln(t) long-time decay have been obtained
previously using TDMF at zero field [16]. Here, how-
ever, working with exact eigenstates of the model pro-
vides valuable insight in the processes involved and al-
lows us to demonstrate the complete absence of long-
time decay. Indeed, we know that in the B → 0 limit,
solutions to the Bethe equations (3) split into two inde-
pendent subsets. A state-dependent number 0 ≤ r ≤ M
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We present a numerical approach which allows the solving of Bethe equations whose solutions
define the eigenstates of Gaudin models. By focusing on a new set of variables, the canceling di-
vergences which occur for certain values of the coupling strength no longer appear explicitly. The
problem is thus reduced to a set of quadratic algebraic equations. The required inverse transfor-
mation can then be realized using only linear operations and a standard polynomial root finding
algorithm. The method is applied to Richardson’s fermionic pairing model, the central spin model
and generalized Dicke model.
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 N quadratic Bethe Eqs:
New variables:

2

generated nuclear configurations to address the validity
of this particular choice.
Our main quantity of interest is the central spin coher-

ence factor which, projecting on the eigenbasis of H , can
be written as

〈Ψ(t)|S+
0 |Ψ(t)〉 =

∑

m,n

Cm,ne
i(ωm−ωn)t, (2)

where Cm,n = 〈⇑;Ψbath |ψm〉 〈ψm|S+
0 |ψn〉 〈ψn |⇓;Ψbath〉

with |ψm〉 and |ψn〉 denoting eigenstates of the Hamil-
tonian (1) with energies ωm and ωn respectively. Since∑N

k=0 S
z
k is conserved, |ψm〉 must contain one more up-

spin than |ψn〉.
Any eigenstate of the central spin model (1) is entirely

defined by M complex rapidities {λ1...λM} which are a
solution of the system of M coupled non-linear algebraic
Bethe equations

−2B +
N∑

k=0

1

λi − εk
−

M∑

j=1( "=i)

2

λi − λj
= 0. (3)

Here εk = −1/Ak and ε0 = 0. For every solution of (3)
the corresponding (unnormalized) eigenstate is obtained
by the repeated action, for each rapidity, of a generalized

creation operator S+(λi) ≡
∑N

k=0
S+
k

λi−εk
, i.e.

|{λ1...λM}〉 =
M∏

i=1

S+(λi) |⇓; ↓↓ ... ↓〉 . (4)

The corresponding eigenenergy is then given by

E({λ1...λM}) = 1

2

M∑

i=1

1

λi
− B

2
−

N∑

j=1

1

4εj
. (5)

Due to the level of difficulty of systematically finding
solutions to Eq. (3) we solve instead for a different set

of variables Λ(εi) =
∑M

j=1
1

εi−λj
, which can be shown

to obey a simpler set of quadratic equations [19, 20].
Any given solution to these equations is found starting
from the trivial B = ∞ solutions where an ensemble of
M spins are pointing up and the remaining N −M are
pointing down. These configurations are deformed by a
step-wise ramping of the 1/B-parameter until the desired
B value is reached [20] . Finally, it was recently shown
that the scalar products matrix elements defining Cm,n

in eq. (2) can be written, in terms of Λ(εi), as determi-
nants of N +1 by N +1 matrices [21]. The resulting fast
algorithm allows us to define a probability

Pm,n ≡ |Cm,n| , (6)

for any pair of eigenstates (m,n) and perform the double
sum in eq. (2) using a simple Metropolis algorithm (see
[22] for another example of combining Monte Carlo with
ABA). Starting from a randomly selected pair of B = ∞
eigenstates, we first deform them to the desired finite-B

eigenstates |ψm〉 , |ψn〉 and compute the probability Pm,n,
frequencies ωm,ωn and the sign sm,n = sgn(Cm,n). A
new pair is then generated by randomly selecting one
of the two B = ∞ configurations and minimally chang-
ing it by exchanging a randomly selected pair of up
and down spin. Deforming this new configuration to fi-
nite B we compute Pm,n′ (assuming state n was mod-
ified) and accept the new pair (m,n′) with probability

max
(
1,

Pm,n′

Pm,n

)
. Repeating the procedure generates a

list of Ω configurations (mα, nα) distributed according
to Pmα,nα such that

< S+
0 (t) >

< S+
0 (0) >

= lim
Ω→∞

∑Ω
α=1 smα,nαe

i(ωmα−ωnα )t

∑Ω
α=1 smα,nα

, (7)

which can be normalized by the known initial value of the
coherence factor. Fig. 1 presents the spectrum

〈
S+
0

〉
(ω)

whose Fourier transform corresponds to
〈
S+
0 (t)

〉
for a

wide range of external magnetic fields covering the full
crossover from the perturbative regime B ) A down
to weak magnetic fields. All plots are obtained for an
ensemble of N = 36 nuclear spins by sampling Ω = 107

configurations.
The spectrum is basically characterized by two struc-

tures. First we find a peak around the ”bare” Larmor
frequency B+hz

init given by the total effective ẑ magnetic
field felt by the central spin. For strong magnetic fields
this sharp peak is the dominant feature whose nearly
Lorentzian lineshape leads to exponentially decaying os-
cillations. As the magnetic field is lowered its width in-
creases giving rise to faster decoherence. On the other
hand, there is a low frequency peak, which carries a very
low weight at strong fields but becomes more and more
significant as the field is lowered. At strong fields this
leads to slow modulations of the envelope function which
were evidenced in the fourth order perturbative treat-
ment [9] and are now confirmed by our exact results. At
weak enough fields, this contribution becomes a scalable
function of ω/B as evidenced in panel 1c) which focuses
on this feature. At finite fields, this low frequency peak
has a finite width (∝ B). In the long time dynamics,
it leads to the slowly decaying low-frequency oscillations
evidenced in panel 2b). However, both their period and
lifetime can be made arbitrarily large since the real-time
evolution becomes a function of Bt. This ultimately
leads, as B → 0, to a large non-decaying fraction rep-
resenting nearly 0.5 of the initial factor.
Albeit in a longitudinal relaxation setup, results show-

ing very slow 1/ ln(t) long-time decay have been obtained
previously using TDMF at zero field [16]. Here, how-
ever, working with exact eigenstates of the model pro-
vides valuable insight in the processes involved and al-
lows us to demonstrate the complete absence of long-
time decay. Indeed, we know that in the B → 0 limit,
solutions to the Bethe equations (3) split into two inde-
pendent subsets. A state-dependent number 0 ≤ r ≤ M

- O Babelon and D Talalaev, On the Bethe ansatz for the Jaynes–Cummings–Gaudin model, J. Stat. Mech, P06013 (2007)

- A. Faribault, O. El Araby, C. Sträter, and V. Gritsev, Gaudin models solver based on the correspondence between Bethe ansatz 
and ordinary differential equations, Phys Rev. B 83, 235124 (2011)

- O. El Araby, V. Gritsev and A. Faribault, Bethe ansatz and ordinary differential equation correspondence for degenerate 
Gaudin models, Phys. Rev. B 85, 115130 (2012)

http://prb.aps.org/abstract/PRB/v83/i23/e235124
http://prb.aps.org/abstract/PRB/v83/i23/e235124
http://prb.aps.org/abstract/PRB/v83/i23/e235124
http://prb.aps.org/abstract/PRB/v83/i23/e235124
http://prb.aps.org/abstract/PRB/v85/i11/e115130
http://prb.aps.org/abstract/PRB/v85/i11/e115130
http://prb.aps.org/abstract/PRB/v85/i11/e115130
http://prb.aps.org/abstract/PRB/v85/i11/e115130


• Sum over the contributions:

N. A. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the algebraic 
Bethe ansatz, Teor. Mat. Fiz. 79, 502 (1989)

 Monte Carlo sampling of pairs (m,n)

Numerics

Overlaps: 
 Form factors:

New representation in terms of ⇤j

1

A. Faribault and D. Schuricht, On the determinant representations of Gaudin models' scalar products and form factors, 
arXiv: 1207.2352
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• Dynamics for N = 36  (Spin 1/2)

• Couplings (Gaussian wavefunction for 2D 
dot):

• Monte-Carlo sample 10 configurations7
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Results      Growing width (T2 goes down)
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• Weak field regime Results

B=1.3889 x10−2(A)

B=1.3889 x10−3(A)

B=1.3889 x10−4(A)

B=1.3889 x10−5(A)

B=1.3889 x10−6(A)

−0.4 −0.2  0  0.2  0.4  0.6  0.8  1
t/B

−1

 0

 1

 2

 3

 4

 5

 0   200   400   600
t (2/ N/A)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  1  2  3  4

  |
�S

+ (t)
� |

0

t (2/ N/A)

exp(−t2/o2)

Short time:



Results

B=0 eigenstates are split into independent 
subsets

 of localized:       

and delocalized:
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FIG. 1. Top: Spectrum
〈
S+
0 (ω)

〉
in the strong 1a), intermediate 1b) and weak 1c) magnetic field regimes. The dashed lines

mark the ”bare” Larmor frequencies B + hz
init. Panel 1c) is plotted in terms of the rescaled frequency ω/B and shows only

the low frequency peak. Bottom: The corresponding strong 2a), intermediate 2b) and weak 2c) field real time evolution of the
coherence factor

〈
S+
0 (t)

〉
. Each curve has an offset of 1 compared to the previous one. Black lines in panel 2a) are the norms∣∣〈S+

0 (t)
〉∣∣ which, in the perturbative regime, correspond to the envelope function computed in [9].

of rapidities diverge as λi ≈ Li
B + O(1) (Li being roots

of a Laguerre polynomial [23]). For these, the creation

operator S+(λi → ∞) ∝
∑N

k=0 S
+
k creates fully delo-

calized excitations whose contribution to the energy is
1
λi

∝ B + O(B2). The remaining M − r rapidities stay

finite λi ≈ λ0i + O(B) and create localized excitations
(due to the proximity of λi with some particular val-
ues of the inverse couplings {εi}). They contribute a
finite energy 1

λi
∝ const. + O(B). These two subsets

being decoupled, any set of rf finite rapidities solution
to the B = 0 Bethe eqs. (3) can be supplemented by
any number r < N − rf of diverging rapidities to cre-
ate exact B = 0 eigenstates containing r + rf rapidi-
ties: [S+(∞)]

r [∏rf
i=1 S

+(λ0i )
]
|⇓; ↓↓ ... ↓〉 which all have

the same energy. This can be thought of as a manifesta-
tion of BEC-like physics since it allows one to build eigen-
states by adding any number of particles in a given single
quantum state. It echoes the behavior of other integrable
Gaudin models such as Dicke model’s superradiance [24]
or Richardson model’s superconductivity [25].

Thus for any M -particle eigenstate |ψn〉, there exists
a corresponding M + 1 eigenstate which, at B = 0, only
differs by adding a single delocalized zero-energy parti-
cle. Any such pair of eigenstates leads, in Eq. (2), to
a low frequency contribution at ω = ωm − ωn ∝ B and
contributes to the non-decaying fraction at B = 0. Any
other pair of eigenstates gives a contribution at a finite

frequency which, being spread over a large energy band,
leads to an initial rapid decay. Since the energies are only
related to the finite rapidities content of the states, weak
magnetic fields will only give subleading corrections. As
shown in Fig. 2, this results in a saturation of the de-
cay time characterizing the early dynamics which become
well captured by a single Gaussian independently of the
magnetic field value.
Experimental observation of the non-perturbative

long-time low frequency contribution we evidenced re-
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FIG. 2. Short time dynamics of the norm
∣∣〈S+

0 (t)
〉∣∣ for in-

termediate to weak fields. The nine values of magnetic fields
B/A ∈

[
1.3889 · 10−6, 0.05556

]
shown in Fig. 1 are plotted

with black lines. The red line is a Gaussian with fitting pa-
rameter τ ∼ (A/N)−1. For both GaAs and Si:P, using values
from [3] gives τ ≈ 1µs.
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being decoupled, any set of rf finite rapidities solution
to the B = 0 Bethe eqs. (3) can be supplemented by
any number r < N − rf of diverging rapidities to cre-
ate exact B = 0 eigenstates containing r + rf rapidi-
ties: [S+(∞)]

r [∏rf
i=1 S

+(λ0i )
]
|⇓; ↓↓ ... ↓〉 which all have

the same energy. This can be thought of as a manifesta-
tion of BEC-like physics since it allows one to build eigen-
states by adding any number of particles in a given single
quantum state. It echoes the behavior of other integrable
Gaudin models such as Dicke model’s superradiance [24]
or Richardson model’s superconductivity [25].

Thus for any M -particle eigenstate |ψn〉, there exists
a corresponding M + 1 eigenstate which, at B = 0, only
differs by adding a single delocalized zero-energy parti-
cle. Any such pair of eigenstates leads, in Eq. (2), to
a low frequency contribution at ω = ωm − ωn ∝ B and
contributes to the non-decaying fraction at B = 0. Any
other pair of eigenstates gives a contribution at a finite

frequency which, being spread over a large energy band,
leads to an initial rapid decay. Since the energies are only
related to the finite rapidities content of the states, weak
magnetic fields will only give subleading corrections. As
shown in Fig. 2, this results in a saturation of the de-
cay time characterizing the early dynamics which become
well captured by a single Gaussian independently of the
magnetic field value.
Experimental observation of the non-perturbative

long-time low frequency contribution we evidenced re-
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FIG. 2. Short time dynamics of the norm
∣∣〈S+

0 (t)
〉∣∣ for in-

termediate to weak fields. The nine values of magnetic fields
B/A ∈

[
1.3889 · 10−6, 0.05556

]
shown in Fig. 1 are plotted

with black lines. The red line is a Gaussian with fitting pa-
rameter τ ∼ (A/N)−1. For both GaAs and Si:P, using values
from [3] gives τ ≈ 1µs.
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EVERY   M-1 eigenstate (n) 
has a degenerate M partner (m) 
(by adding one delocalized QP) 
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Conclusions
•By exploiting the integrability of the central 
spin model, we were able to numerically 
explore the decoherence properties for any 
magnetic field.

- Large B: Larmor precession + weakly 
modulated exponential decay. 

- Intermediate B: crossover

- Weak field: rapid Gaussian decay followed         
                     by non-decaying fraction.


