B e
Integrable pairing models in
mesoscopic physics

Jorge Dukelsky

SSSSSSSSSSSSSSS
DE INVESTIGACIONES
ccccccccccc

Ny
CSIC




Brief History

Cooper pair and BCS Theory (1956-57)

Richardson exact solution (1963).

Gaudin magnet (1976).

Proof of Integrability. CRS (1997).

Recovery of the exact solution in applications to ultrasmall grains (2000).
SU(2) Richardson-Gaudin models (2001). Rational and Hyperbolic families.
Applications of rational RG model to superconducting grains, atomic nuclei,
cold atoms, quantum dots, etc...

Generalized RG Models for r>1 (2006-2009). SO(6) Color pairing . SO(5) T=1
and SO(8) T=0,1 p-n pairing model and spin 3/2 cold atoms.

Realization of the hyperbolic family in terms of a p-wave integrable pairing

Hamiltonian (2010). Applications to nuclear structure (2011).




Richardson’s Exact Solution
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Exact Solution of the BCS Model

_ T At
Ho =2 6 M +9 2 CNCl €y Cn
K k,k'
Eigenvalue equation:
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Ansatz for the eigenstates (generalized Cooper ansatz)
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Richardson eqguations
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Properties:
This is a set of M nonlinear coupled equations with M unknowns (E ).
The pair energies are either real or complex conjugated pairs.

There are as many independent solutions as the dimension of the Hilbert
space. The solutions can be classified in the weak coupling limit (g—0).

Exact solvability reduces an exponential complexity of the many-body
problem to an algebraic problem.
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Evolution of the real and imaginary par of the pair energies with g.
L=16, M=8




Integrals of motion of the Richardson-Gaudin Models

L. Amico, A. Di Lorenzo, and A. Osterloh , Phys. Rev. Lett. 86, 5759(2001)
J. D., C. Esebbag and P. Schuck, Phys. Rev. Lett. 87, 066403 (2001).

« Pair realization of the SU(2) algebra

Zajm jm ~ Tj’ T - _Zajma

« The most general comblnatlon of linear and quadratlc generators, with the
restriction of being hermitian and number conserving, is

+2gz { L(S7S; +SS] )+zijsizs;}

 The integrability condition [Ri, Rj] =0 leads to

*These are the same conditions encountered by Gaudin (J. de Phys. 37
(1976) 1087) in a spin model known as the Gaudin magnet.




Gaudin (1976) found three solutions

XXX (Rational)

XXZ (Hyperbolic = Trigonometric)
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Exact solution

Ri‘LP>:ri‘LP>

Eigenstates of the Rational Model : Richardson Ansatz
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* Any function of the R operators defines a valid integrable and exactly
solvable Hamiltonian..

« Within the pair representation two body Hamiltonians can be obtained by a
linear combination of R operators

H = Zg, 77g +C

« The parameters g, n’s and ¢’s are arbitrary. There are 2 L+1 free
parameters to define an integrable Hamiltonian in each of the families. (L
number of single particle levels)

 The BCS Hamiltonian solved by Richardson can be obtained from the XXX
family by choosing r = ¢.

Hos = > 2652 +9> S/'S;

* An important difference betweeh RG models arld any other ES model is the
large number of free parameters. They can be used to define physical
interactions. They can even be chosen randomly.
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FIG. 2. Nearest-neighbor spacing distribution P(s) for 200 TB-
PRE members. The dashed curve corresponds to the Poisson limit.

Stringent numerical test of the Poisson distribution for finite quantum integrable Hamiltonians

A. Relaﬁo,1 T Dukelsky,2 J. M. G. Gc’)mez,1 and J. Retamosa

PHYSICAL REVIEW E 70, 026208 (2004)

200 random ensemble

L =13

D=1716




Some models derived from rational (XXX) RG

@ BCS Hamiltonian (Fermion and Boson).

@ Generalized Pairing Hamiltonians (Fermion and Bosons).
@ The Universal Hamiltonian of quantum dots.

@ Central Spin Model.

@ Generalized Gaudin magnets.

@ Lipkin Model.

@ Two-level boson models (IBM, molecular, etc..)

@ Atom-molecule Hamiltonians (Feshbach resonances), or
Generalized Jaynes-Cummings models,

@ Breached superconductivity (Sarma state).

@ Pairs with finite center of mass momentum, FFLO superconductivity.

Review: J.Dukelsky, S. Pittel and G. Sierra, Rev. Mod. Phys. 76, 643 (2004).




The Hyperbolic Richardson-Gaudin Model

A particular RG realization of the hyperbolic family is the separable pairing

Hamiltonian:
H :ZUiRi :Zﬂi iZ_GZ 77i77jSi+Sj_
| | 1]

With eigenstates:

ou)-[1[ 505 o e(ou)-Fe,

Richardson equations:
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The physics of the model is encoded in the exact solution. It does not
depend on any particular representation of the Lie algebra




(P +ip,) exactly solvable model

In 2D one can find a representation of the SU(2) algebra in terms of
spinless fermions.

1 Kk +ik
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Choosing 73, = k2 we arrive to the p,+ip, Hamiltonian

cic’, = (Sk‘ )Jr

H=Y k—;(c;ckmkck)—e > (K +ik, )(k, ik, )cich e .c,
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M. I. Ibafez, J. Links, G. Sierra and S. Y. Zhao, Phys. Rev. B 79, 180501 (2009).
C. Dunning, M. I. Ibafiez, J. Links, G. Sierra and S. Y. Zhao,, J. Stat. Mech. P080025 (2010).
S. Rombouts, J. Dukelsky and G. Ortiz, Phys. Rev. B. 82, 224510 (2010).




Why p-wave pairing?

@ p,+ip, paired phase has been proposed to describe the Al superfluid
phase of 3He.

@ N. Read and D. Green (Phys. Rev. B 61, 10267 (2000)), studied the
p,*+ip, model. They showed that p-wave pairing has a QPT (2° order?)
separating two gapped phases: a) a non-trivial topological phase. Weak
pairing; b) a phase characterized by tightly bound pairs. Strong pairing.

@ Moreover, there is a particular state in the phase diagram (the Moore-
Read Pfafian) isomorphic to the v=5/2 fractional quantum Hall state.

@ In polarized (single hyperfine state) cold atoms p-wave pairing is the most
important scattering channel (s-wave is suppressed by Pauli). p-wave
Feshbach resonances have been identified and studied. However, a p-wave
atomic superfluid is unstable due to atom-molecule and molecule-molecule
relaxation processes.

@ Current efforts to overcome these difficulties. The great advantage is that
the complete BCS-BEC transition could be explored.




| From the exact solution |

1) The Cooper pair wavefunction

E_, complex - Cooper Resonance

Z K, +|k E_ real positive — uncorrelated pair
k —k
{ E, real negative — Bound state

2) All pair energies converge to zero (Moore-Read line)
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L-M+1 1-p Density p=M/L
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3) All pair energies real and negative (Phase transition)
1
G2> , g2
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for g=1/(1-2p)=E =0




Quantum phase diagram of the hyperbolic model

The phase diagram can be parametrized in terms of the density p = M/L
and the rescaled coupling ¢ =GL
In the thermodynamic limit the Richardson equations ——— BCS equations
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| | | | — Exact solution in a 2D
ooz |1 JO° N lattice with disk geometry
of R=18 with total number
Rl R of levels L=504 and
002 |- E M=126. (quarter filling)
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weak coupling
g=0.250000, M/L=0.250, [f(y)|=0.00000000457727

0.1
0.05
=
I 0 BN GE BN B PN N BN W NESE B N GNOU B O RGN MOW N W -
-0.05 |
-0.1
0 0.05 0.1 0.15 0.2 0.25

Re(y) Stefan Rombouts. CSIC




Higher order derivatives of the GS energy in the thermodynamic limit

3° order QPT
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Characterization of the QPT

In the thermodynamic limit the condensate wavefunction in k-space is:

(k) ={w|cccl [w) =uv,

Moore-Read QPT, =0

Size of the pair wavefunction

10 . Z

T . [Ive(x)[ dk

6 F rrmS: - 2
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2 | Lig(])(rrfns) ~ Ln|y

Accessible experimentally by quantum noise interferometry and time of flight analysis?




A similar analysis can be applied to the pairs in the exact solution

k, +ik,
oC
k?—E,

S+(Ea)=zk:¢a(k)c;‘cik, ¢, (k)

2 : L
The root mean square lims exact Of the pair wavefunction is finite for E complex
or real and negative.

2
However, N eae = @ for  E realand >0
In strong pairing all pairs are bound and have finite radius.

At the QPT one pair energy becomes real an positive corresponding to a
single deconfined Cooper pair on top of an ensemble of bound molecules.




The Hyperbolic Model in Nuclear Structure

J. Dukelsky, S. Lerma H., L. M. Robledo, R. Rodriguez-Guzman, S. Rombouts, PRC (in press)

The separable integrable Hyperbolic Hamiltonian
H :ZUi ; _GZ ThiT; Si+Sj_
i ]

Redefining the O of energy 7. =&, —a , absorbing the constant in
the chemical potential y

Exactly solvable H with non-
constant matrix elements

_ _ + _ _ _ + At
H=>(5-u)cc GZ\/(a &)(a—¢g;)cce,
| 1)
a IS a new parameter that could serve as an energy cutoff.

In BCS approximation: A =Ga—¢ Z\/a_gi'ui'vi' =A\Ja—¢

The BCS Hamiltonianhas A =A "




Gogny force in nuclear physics

& Phenomenological effective density dependent force.
& The central part is finite range, providing a natural cutoff for pairing correlations

& The parameters were adjusted to nuclear matter properties, to some selected
finite nuclei, and to the pairing properties in Tin isotopes.

& It has been used over the years to reproduce and explain the low energy
properties in atomic nuclei in the whole table o nuclides.

Vig =

| Mo

e—{r-l—ﬁgﬁl-fp.;'( W;+ BjPy;— HjPr — M;PsPr) Central part

7=1

]

+ t3(1 + xgPys) 6( — 75) [P( 5

Density dependent part
+ iWpsV120(7] — ) x V12 - (61 + &) Spin-orbit term

+ (1+2712)(1 + 2722) 755 Coulomb interaction between protons




Mapping of the Gogny force in the Canonical Basis

We fit the pairing strength G and the interaction cutoff « to the paring
tensor u,v; and the pairing gaps A, of the Gogny HFB eigenstate in the
Hartree-Fock basis.
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Summary

& Two new realizations of the Hyperbolic model in condensed matter and nuclear
structure.

& From the analysis of the exact Richardson wavefunction we proposed a new
view to the nature of the Cooper pairs in the BCS-BEC transition for p-wave
pairing.

@ The hyperbolic RG offers a unique tool to study a rare 3° order QPT in the
p,+ip, paired superfluid.

& We found that the root mean square size of the pair wave function diverges at
the critical point. It could be a clear experimental signature of the QPT.

& The exactly solvable Hamiltonian with two free parameters reproduces the
ground state properties of heavy nuclei as described by Gogny self-consistent
mean field.

@ It can be an excellent benchmark to test approximations beyond mean-field.

& Applications to other mesoscopic systems?




