
 

 

Jorge  Dukelsky  



Cooper pair and BCS Theory  (1956-57) 

Richardson exact solution (1963). 

Gaudin magnet (1976). 

Proof of Integrability. CRS (1997). 

Recovery of the exact solution in applications to ultrasmall grains (2000). 

SU(2) Richardson-Gaudin models (2001). Rational and Hyperbolic families. 

Applications of rational RG model to superconducting grains, atomic nuclei, 

cold atoms, quantum dots, etc… 

Generalized RG Models for r>1 (2006-2009). SO(6) Color pairing . SO(5) T=1 

and SO(8) T=0,1 p-n pairing model and spin 3/2 cold atoms.  

Realization of the hyperbolic family in terms of a p-wave integrable pairing 

Hamiltonian  (2010). Applications to nuclear structure (2011).  

 

Brief History  



Richardson’s Exact Solution 



Exact Solution of the BCS Model 

Eigenvalue equation: 

 

 

Ansatz for the eigenstates (generalized Cooper ansatz) 
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Richardson equations 
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Properties: 

This is a set of M nonlinear coupled equations with M unknowns (E). 

The pair energies are either real or complex conjugated pairs. 

There are as many independent solutions as the dimension of the Hilbert 

space. The solutions can be classified in the weak coupling limit (g0). 

Exact solvability reduces an exponential complexity of the many-body  

problem to an algebraic problem.  



Evolution of the real and imaginary par of the pair energies with g. 

 L=16,  M=8 



•    The most general combination of linear and quadratic generators, with the 

restriction of being hermitian and number conserving, is 
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•    The integrability condition                            leads to , 0i jR R   

•These are the same conditions encountered by Gaudin (J. de Phys. 37 

(1976) 1087) in a spin model known as the Gaudin magnet.  

Integrals of motion of the Richardson-Gaudin Models 

L. Amico, A. Di Lorenzo, and A. Osterloh , Phys. Rev. Lett. 86, 5759(2001) 

J. D., C. Esebbag and P. Schuck, Phys. Rev. Lett. 87, 066403 (2001). 
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• Pair realization of the SU(2) algebra 
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Gaudin  (1976) found three solutions 

1
ij ij

i j

X Z
 

 


XXX (Rational) 

XXZ  (Hyperbolic  Trigonometric) 

 
 

1
2 ,

i j i j

ij ij i j

i j i ji j

X Z Coth x x
Sinh x x

  

   


    

 

i iR r  
Exact solution 

Eigenstates of the Rational Model : Richardson Ansatz 
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• Any function of the R operators defines a valid integrable and exactly 

solvable Hamiltonian.. 

  

•    Within the pair representation two body Hamiltonians can be obtained by a 

linear combination of R operators: 

 

 

 

•   The parameters g, ´s and ´s are arbitrary. There are 2 L+1 free 

parameters to define an integrable Hamiltonian in each of the families. (L 

number of single particle levels)  

 

•   The BCS Hamiltonian solved by Richardson can be obtained from the XXX 

family by choosing  = .   

 

 

•    An important difference between RG models and any other ES model is the 

large number of free parameters. They can be used to define physical 

interactions. They can even be chosen randomly.  
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Some models derived from rational (XXX) RG 

 BCS Hamiltonian (Fermion and Boson). 

 Generalized Pairing Hamiltonians (Fermion and Bosons). 

 The Universal Hamiltonian of quantum dots. 

 Central Spin Model. 

 Generalized Gaudin magnets.   

 Lipkin Model. 

 Two-level boson models (IBM, molecular, etc..) 

 Atom-molecule Hamiltonians (Feshbach resonances), or  

Generalized Jaynes-Cummings models, 

 Breached superconductivity (Sarma state).  

 Pairs with finite center of mass momentum, FFLO superconductivity.  

Review: J.Dukelsky,  S. Pittel and G. Sierra, Rev. Mod. Phys. 76, 643 (2004).  



The Hyperbolic Richardson-Gaudin Model 

A particular RG  realization of the hyperbolic family is the separable pairing 

Hamiltonian: 
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With eigenstates:  
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Richardson equations: 
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The physics of the model is encoded in the exact solution. It does not 

depend on any particular representation of the Lie algebra   



(px+ipy) exactly solvable model 
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Choosing k  = k2  we arrive to the px+ipy  Hamiltonian  
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M. I. Ibañez, J. Links, G. Sierra and S. Y. Zhao, Phys. Rev. B 79, 180501 (2009). 

C. Dunning, M. I. Ibañez, J. Links, G. Sierra and S. Y. Zhao,, J. Stat. Mech. P080025 (2010).  

S. Rombouts, J. Dukelsky and G. Ortiz, Phys. Rev. B. 82, 224510 (2010). 

In 2D one can find a representation of the SU(2) algebra in terms of 

spinless fermions. 



 px+ipy paired phase has been proposed to describe the A1 superfluid 

phase of 3He. 

 

 N. Read and D. Green (Phys. Rev. B 61, 10267 (2000)), studied the  

px+ipy  model.  They showed that p-wave pairing has a QPT (2º order?) 

separating two gapped phases: a) a non-trivial topological phase. Weak 

pairing; b) a phase characterized by tightly bound pairs. Strong pairing.  

 

 Moreover, there is a particular state in the phase diagram (the Moore-

Read Pfafian) isomorphic to the =5/2 fractional quantum Hall state.  

 

 In polarized  (single hyperfine state) cold atoms p-wave pairing is the most 

important scattering channel (s-wave is suppressed by Pauli). p-wave 

Feshbach resonances have been identified and studied. However, a p-wave 

atomic superfluid is unstable due to atom-molecule and molecule-molecule 

relaxation processes.   

 

 Current efforts to overcome these difficulties. The great advantage is that 

the complete BCS-BEC transition could be explored. 

Why p-wave pairing? 



2) All pair energies converge to zero (Moore-Read line) 

3) All pair energies  real and negative (Phase transition) 
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From the exact solution 

1) The Cooper pair wavefunction  
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E real positive   uncorrelated pair 

E complex   Cooper Resonance 

E real negative  Bound state 

  

 

Density 

Coupling    



The phase diagram can be parametrized in terms of the density          

and the rescaled coupling 

In the thermodynamic limit the Richardson equations             BCS equations 
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Quantum phase diagram of the hyperbolic model  
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Exact solution in a 2D 

lattice with disk geometry 

of R=18 with total number 

of levels L=504 and 

M=126. (quarter filling) 

 

D  10122 

 

g=0.5 weak pairing 

 

g=1.33 Moore-Read 

 

g=1.5 weak pairing 

 

g=2.0 QPT 

  

g=2.5 strong pairing 





Higher order derivatives of the GS energy in the thermodynamic limit 

3º order QPT 



Characterization of the QPT 
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Accessible experimentally by quantum noise interferometry and time of flight analysis?   
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In the thermodynamic limit the condensate wavefunction in k-space is:  

Size of the pair wavefunction 
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A similar analysis can be applied to the pairs in the exact solution 
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The root mean square              of the pair wavefunction is finite for  E complex 

or real and negative.  

 
However,                            for  

 

In strong pairing all pairs are bound and have finite radius.  

 

At the QPT one pair energy becomes real an positive corresponding to a 

single deconfined Cooper pair on top of an ensemble of bound molecules.   
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The Hyperbolic Model in Nuclear Structure 
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The separable integrable Hyperbolic Hamiltonian 

 α is a new parameter that could serve as an energy cutoff.   

In BCS approximation: 

The BCS Hamiltonian has 
' ' '

'

i i i i i i

i

G u v          

Exactly solvable H with non-

constant matrix elements 

J. Dukelsky, S. Lerma H., L. M. Robledo,  R. Rodriguez-Guzman, S. Rombouts, PRC (in press) 
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Gogny force in nuclear physics 

 Phenomenological effective density dependent force. 

 

 The central part is finite range, providing a natural cutoff for pairing correlations  

 

 The parameters were adjusted to nuclear matter properties, to some selected 

finite nuclei, and to the pairing properties in Tin isotopes. 

 

 It has been used over the years to reproduce and explain the low energy 

properties in atomic nuclei in the whole table o nuclides.  

 

Central part 

Density dependent part 

Spin-orbit term 

Coulomb interaction between protons  



Mapping of the Gogny force in the Canonical Basis 

We fit the pairing strength G and the interaction cutoff  to the paring 

tensor uivi and the pairing gaps i of the Gogny HFB eigenstate in the 

Hartree-Fock basis.  

Protons   

o Gogny 

_ Hyperbolic 
  



M L D G   EG
corr EBCS

corr EExa
corr 

154Sm 31 95 9.9x1024 2.2x10-3 32.7 0.158 1.3254 1.0164 2.9247 

238U 46 148 4.8x1038 2.0x10-3 25.3 0.159 0.861 0.503 2.651 



Summary 

 Two new realizations of the Hyperbolic model in condensed matter and nuclear 

structure.  

 From the analysis of the exact Richardson wavefunction we proposed a new 

view to the nature of the Cooper pairs in the BCS-BEC transition for p-wave 

pairing. 

 The hyperbolic RG offers a unique tool to study a rare 3º order QPT in the 

px+ipy paired superfluid.   

 We found that the root mean square size of the pair wave function diverges at 

the critical point. It could be a clear experimental signature of the QPT.   

 The exactly solvable Hamiltonian with two free parameters reproduces the 

ground state properties of heavy nuclei as described by Gogny self-consistent 

mean field. 

 It can be an excellent benchmark to test approximations beyond mean-field.  

 Applications to other mesoscopic systems? 

 


