Ferronematic order in underdoped Cuprates

Collaborators: G. Seibold, M. Capati, M. Grilli and J. Lorenzana.

Hidden Ferronematic order in underdoped cuprates. arH1v:1204.2119v1 [cond-mat.supr-com]

> Carlo Di Castro Dipartimento di Fisica Università di Roma "La Sapienza"

Generic phase diagram of Cuprates, e.g. La_{2-x}Sr_xCuO₄

checkerboard or droplets (Bi2212)

QCP for the formation of **ICDW**.

Strong correlations reduces double occupancy Why Phase Separation is easy Generic of all models ICDW? Add Coulomb forces →

STRIPES

Frustrated PS on local basis

From the high doped correlated Fermi Liquid (Rome):

Local (Hubbard) repulsion reduces the homogenizing kinetic energy term, favoring PS in the presence of phonon mediated (*Holstein*) attraction. Frustrate with Coulomb From low doping (Emery, Kivelson): Expulsion of holes from AF background; Zaanen,Tranquada,... antiphase stripes.

ICDW instability with finite q_c modulating wave vector [(0,1), (1,0) direction], QCP (x_c=0.19), end-point of a critical line T_{CDW}(x)~T*

Indeed new resonant x-ray scattering experiments in YBCO [Ghiringhelli et al; Chang et al 2012] identify a 2D-ICDW as the order competing with superconductivity at intermediate doping. "The incipient CDW phase transition ... is preempted by the superconducting transition,...".

ICDW smoothly evolving into anharmonic stripes

However long range stripe order observed in codoped LSCO only (e.g. $La_{1.48}Nd_{0.4}Sr_{0.12}CuO_4$) Elastic neutron scattering: Splitting of magnetic and superlattice peaks denotes periodic spin and charge modulation ($q_s=q_c/2$)

Generally,YBCO,LSCO, Bi2201: - Incommensurate spin scattering (q_s // Cu-O bond in YBCO; $q_s = (\pi/a)\delta$ diagonal for x< 0.06 in LSCO, Bi2201). -No signature of charge modulation. -Breaking of rotational symmetry

 λ_{spin}

 λ_{charge}

T=25K E=2meV

(a)

x=0.06

150 F

100

50

Therefore from low doping

LSCO, Bi2201, YBCO:

-Incommensurate spin modulation, smectic like, response.

-No Charge modulation

-Evidence of four field rotational symmetry breaking

Nematic charge order also in $Bi_2CaCu_2O_{8+y}$, (Lawler et al. 2010 [STM])

By doping the AF background we will answer the questions:

Can incommensurate spin correlations arise without charge modulation as instead required by the stripe model?

Is nematicity a sign of fluctuating spin and charge density wave order, as it would be given by dynamic melted stripes, or has it an independent origin?

Doped holes form Vortex-Antivortex (V-A) segments, nematic seeds (random in space) for incommensurate spin smectic like structure, a new phase, dubbed by us "ferronematic".

(G. Seibold et al. . arXiv:12042119)

See also Berciu and John 2004, Timm and Bennemann 2000.

Dilute limit

1-band extended Hubbard model (U,t,t', U/t=8, t'/t =...) Variational calculations based on Gutzwiller approxim. Doped charged holes in the anti-ferro background form Vortex-Antivortex (V-A) pairs which, then, tend to arrange in 1D V-A segments.

Analogy with dipolar fluids

In 3D, the maximal dipole-dipole attraction is

when two dipole spheres touch each other a touch each other touch touch e

V-A pair: staggered spin/charge structure; t'/t=-0.1

 $V_{dip-dip} = \frac{p_1 p_2}{l^2} - 2 \frac{(p_1 l)(p_2 l)}{l^4} = -|p_1||p_2|/l^2$

In 2D, the dipole-dipole interaction does not distinguish between the *nose-to-tail* and the antiparallel side-by side quadrupolar alignment

J KA

However in our variational approach short range interaction is important and the V-A pairs gain energy for nose-to-tail alignment (as in dipolar fluid) due to the local distribution of holes in magnetically ordered environment.

Direction is determined by t'/t. For -0.3<t'/t<-0.2 crossover from diagonal to vertical-horizontal configuration. 16x16lattice sites, t'/t=-0.2 **4 V-A pairs** staggered spin/charge

~~~~~

Each segment of N<sub>pairs</sub> and length / has  $N_{ch}$  (=2N<sub>pairs</sub>) charges immersed in a compensating charged background: Long range Coulomb interaction (Coulomb charge energy is increasing as N<sub>ch</sub> lnN<sub>ch</sub>) limits chain's length / to few lattice constants.

For  $N_{seg}$ , the magnetic short range interaction favors, as for two V-A pairs, a ferronematic alignment.

#### Distribution of $N_{seg}$ segments each of length l and charge $N_{ch}$ : effect of orientation

A classical XY-model is used (variational GA is too limited in sizes). Segments are chains of vacancies, alternately centers of vortex and antivortex. Parameters obtained by comparing the phase change across a single segment. Minimization of classical energy.

# Oriented segments random orientation

Spin phase distribution is obtained at given doping  $x=N_{ch}N_{seg}/L^2=0.03$ on a lattice of 160x160 sites,, segment sites l+1=8, filling factor  $v=N_{ch}/(l+1)=0.7$ .

In fig.a, with macroscopic polarization, phase modulation (stripe-like in the spin sector) appears, but with random space distribution of oriented segments.

Fig.b, instead, disaggregates in large areas of equal phase.

The influence of a collection of equally oriented V-A segments on spins at each point r is obtained by evaluating the total phase change  $\phi$  at point r

 $S^{x}(\mathbf{r})=S_{0}exp(i\mathbf{Q}\cdot\mathbf{r})cos\Phi(\mathbf{r}), \quad S^{y}=S_{0}exp(i\mathbf{Q}\cdot\mathbf{r})sin\Phi(\mathbf{r}), \quad \mathbf{Q}=(\pi,\pi),$ 

 $grad\Phi$  gives the *incommensuration of* spin response.

-In a single vortex, Φ is the velocity potential and coincides with the radial angle φ.
The (spin) velocity v, tangential to the streamlines, is v=gradφ=1/r.



-Pair of Vortex and Antivortex at distance lThe velocities add to the value v=2/l/2 between V and A and tend to cancel outside. v is orthogonal to the dipole lThe phase disturbance, averaged on a square (L<sup>2</sup>), extends on a circle of radius l/2:

 $\langle grad\Phi \rangle \approx \pi (I/2)^2 / L^2 v = \pi I x (versz) / L^2$ .

-For a segment of V-A pairs, the dipole is the length *l*.

-Distribution of  $N_{seg}$  macroscopically polarized segments, random in space, length l, doping  $x=N_{seg}N_{ch}/L^2$ , filling factor  $v=N_{ch}/(l+1)$  (l+1 sites):

 $\langle grad\Phi \rangle \approx N_{seg} \langle grad\Phi \rangle_{segm} = N_{seg} \pi l \times (versz)/L^2 = q$ 

 $q = \pi \frac{x}{v} \frac{l}{l+1} \equiv \pi P$  is the incommensurate modulation vector of spin response (as in the stripes); q determines peak position

*q* perpendicular to the dipole segments and to their macroscopic polarization  $P=N_{seg}I/L^2$ , the "ferronematic" order parameter, (incommensurability in YBCO? Hinkov et al 2009)

Fits of the experiments (Wakimoto et al. 2000) on spin structure factor for doping x=0.3, 0.4, 0.5, *I*+1=8, no smectic order. Average over 20≈30 configurations of 160x160 lattice



#### Conclusion

Inhomogeneous State as a bridge between FL and doped AFM separated by a hidden QCP, which, coming from high doping, arises as a correlated-Fermi-liquid instability :

At low doping glass of nematic V-A chain segments gives rise to spin smectic like correlations with the polarization of the segments as an order parameter of a phase, dubbed ferronematic by us.

Open problems: -how the two topologically different phases (stripes and ferronematic segments) are interconnected? -T≠0? Nematic and polarization transition? Simultaneous or which first?

Increasing doping and T, branching is favored: more complex structures (checkerboard, bubbles,...) and a gas of topological excitations (ends, junctions, edge dislocations) should appear out of the nematic glass.

junctions: 20x20 lattice 14 holes, U/t=8, t'/t=-0.1

