

Johannes Hecker Denschlag European Conference on Trapped Ions, Obergurgl, September 13, 2012





#### Trapped lons and Ultracold neutral Atoms



Good compatibility of traps!



#### Three stories

1) Putting atoms to work in an ion trap: cooling and micromotion compensation

2) An ion as a three-body reaction center

3) A "mysterious" production of  $Rb^+$  and  $Rb_2^+$  ions

#### An ion in a cloud of atoms, naive picture



- Thermalization of ion within a few collisions, sympathetic cooling
- Loss of a few Rb atoms
- no further dynamics afterwards....

### The role of excess micromotion



- ion energy is set by excess micromotion  $E_{ion} \sim mK k_{B}$ 

shallow dipole trap  $U_{\rm dip} \sim 10 \mu {\rm K}$ 



#### **Observed elastic atom-ion collisions**



#### Stray electric fields → excess micromotion



can be minimized by applying appropriate compensation voltages



initial conditions Atom number  $N \sim 80000$ Temperature 180 nK Density  $n \sim 2.5 \ 10^{12} \ cm^{-3}$ Interaction time  $\tau = 2 \ s$ 





You can use cold atoms to compensate micromotion!

Sensitivity down to 0.1 V/m for stray electrical fields  $\rightarrow$ micromotion energies  $\sim 10\mu$ K

However, preliminary analysis indicates that some micromotion ~500 $\mu$ K remains, probably due to rf phase difference on electrodes.



Also: Interesting collision dynamics -non-thermal kinetic distribution - heating/ cooling depends on m-ratio - lower limit of sympathetic cooling (e.g. C. Zipkes et al., New J Phys.(2011), M. Cetina et al. arXiv:1205.2806v1).



#### Three stories

1) Putting atoms to work in an ion trap: cooling and micromotion compensation

2) An ion as a three-body reaction center

3) A "mysterious" production of Rb<sup>+</sup> and Rb<sub>2</sub><sup>+</sup> ions

#### The role of excess micromotion



#### **Ion-induced atom loss**



Interaction time  $\tau$  [s]

#### **Atom number distributions**



A. Härter et al. PRL 2012, in press





#### **Atom-atom-ion three-body recombination**



#### **Measurement of the reaction energy**



# Data well described by three-body recombination dynamics





#### Three stories

1) Putting atoms to work in an ion trap: cooling and micromotion compensation

2) An ion as a three-body reaction center

3) A "mysterious" production of Rb<sup>+</sup> and Rb<sub>2</sub><sup>+</sup> ions

## A "mysterious" production of Rb<sup>+</sup> / Rb<sub>2</sub><sup>+</sup> ions

 $4 \times 10^{4}$  <sup>87</sup>Rb atoms in an optical dipole trap at 1064nm; ~1 $\mu$ K temperature; density ~ 10<sup>13</sup> cm<sup>-3</sup>;

After a few seconds... there is a Rb<sup>+</sup> ion (or even a  $Rb_2^+$  ion)





Ion production rate is quadratic in atomic density! → 3-body recombination process of Rb atoms!





#### Potential energy curves for Rb<sub>2</sub>





#### **1064nm laser plays a crucial role!**





#### **1064nm laser plays a crucial role!**





#### **1064nm laser plays a crucial role!**





# From recent spectroscopy we know several spectra quite well!! (~200 MHz precision!)





Calculations from E. Tiemann, Hannover





This depends!

If we extract the ion quickly from the atom cloud ( $\sim \mu$ s), then we get mostly Rb<sub>2</sub><sup>+</sup> (55%) otherwise mostly Rb<sup>+</sup> ( $\sim 97\%$ ).



Sit on top of this line



Possibly:

- a) Ionization always produces Rb<sub>2</sub><sup>+</sup>
- b) Afterwards

 $Rb_2^+ + Rb + \gamma (?) \rightarrow Rb^+ + 2 Rb (?)$ 



### Three stories

- 1) Use atoms
  - cool ion
  - micromotion compensation

 2) An ion as a three-body reaction center Rb<sup>+</sup> + 2Rb → Rb<sup>+</sup> + energy + (2Rb)

3) A "mysterious" production of Rb ions 3 Rb +  $3\gamma \rightarrow Rb_2^+ + e^- + Rb$ 

 $3 \text{ Rb} + 4\gamma \rightarrow \text{Rb}^+ + e^- + (2\text{Rb})$ 

