A single ion in an ultracold atomic gas

Johannes Hecker Denschlag
European Conference on Trapped Ions, Obergurgl, September 13, 2012
The BaRble-Team

Wolfgang Schnitzler
Stefan Schmid
Andreas Brunner
Arne Härter
Artjom Krükow
Amir Mohammadi
Trapped Ions and Ultracold neutral Atoms

Good compatibility of traps!
Three stories

1) Putting atoms to work in an ion trap:
 cooling and micromotion compensation

2) An ion as a three-body reaction center

3) A „mysterious“ production of Rb\(^+\) and Rb\(_2^+\) ions
- Thermalization of ion within a few collisions, sympathetic cooling
- Loss of a few Rb atoms
- no further dynamics afterwards….
The role of excess micromotion

- coherent trap drive (5MHz) accelerates stopped ion again

- ion energy is set by excess micromotion $E_{\text{ion}} \sim \text{mK} \ k_B$

atoms $T \sim 1 \mu\text{K}$
confined by shallow dipole trap
$U_{\text{dip}} \sim 10 \mu\text{K}$
Observed elastic atom-ion collisions

Path to cold ion temperatures:

- Minimize micromotion
 \[\varepsilon_{dc} = 0 \text{ V/m} \]
- Minimize atomic losses

Thermal cloud
\[T \approx 100\text{nK} \]

Electric field offset
\[\varepsilon_{dc} = 4 \text{ V/m} \]
Stray electric fields \rightarrow excess micromotion

can be minimized by applying appropriate compensation voltages
initial conditions

Atom number
N \sim 80000

Temperature
180 \text{nK}

Density
n \sim 2.5 \times 10^{12} \text{cm}^{-3}

Interaction time
\tau = 2 \text{s}
initial conditions

Atom number
N ~ 80000

Temperature
180 nK

Density
n ~ 2.5 \times 10^{12} \text{ cm}^{-3}

Interaction time
\tau = 2 \text{ s}

Excess micromotion also changes temperature of atom cloud!
You can use cold atoms to compensate micromotion!

Sensitivity down to 0.1 V/m for stray electrical fields → micromotion energies \(\sim 10 \mu K \)

However, preliminary analysis indicates that some micromotion \(\sim 500 \mu K \) remains, probably due to rf phase difference on electrodes.

Also: Interesting collision dynamics
- non-thermal kinetic distribution
- heating/ cooling depends on m-ratio
Three stories

1) Putting atoms to work in an ion trap:
 cooling and micromotion compensation

2) An ion as a three-body reaction center

3) A „mysterious“ production of Rb⁺ and Rb₂⁺ ions
The role of excess micromotion
Ion-induced atom loss

- Interaction time τ [s]
- Atom number N_{at} [$\times 10^4$]
Atom number distributions

A. Härter et al. PRL 2012, in press
Collision dynamics

Interaction time [s]

Atom number $N_{at} \times 10^4$

number of outcomes
Collision dynamics

“catastrophic” event → interaction stops!

Interaction time [s]

Atom number N_{at} [$\times 10^4$]

0 20 40

number of outcomes

0 20 40
Atom-atom-ion three-body recombination

We always observe Rb^+ in the end.

$\text{Rb}_2^+ + \text{Rb} + 0.7\text{eV}$
Measurement of the reaction energy

Result:
Ion has typical energy of a few 0.1 eV.
Data well described by three-body recombination dynamics

\[K_3 \sim 3 \times 10^{-25} \text{ cm}^6 \text{ s}^{-1} \]

quadratic density dependence
→ atom-atom-ion three-body coefficient

A. Härtler et al. PRL 2012, in press
Three stories

1) Putting atoms to work in an ion trap: cooling and micromotion compensation

2) An ion as a three-body reaction center

3) A "mysterious" production of Rb\(^+\) and Rb\(_2\)\(^+\) ions
A „mysterious“ production of Rb\(^+\) / Rb\(_2\)^+ ions

\[4 \times 10^4 \ \text{^{87}Rb} \text{ atoms in an optical dipole trap at 1064 nm; } \]
\[\sim 1 \mu K \text{ temperature; density } \sim 10^{13} \ \text{cm}^{-3}; \]

After a few seconds…
there is a Rb\(^+\) ion
(or even a Rb\(_2\)^+ ion)
Not a background effect, i.e. no charge transfer collisions of hot ions!

Ion production rate is quadratic in atomic density!
\[\rightarrow 3\text{-body recombination process of Rb atoms!} \]

But that is not nearly enough energy to ionize Rb!!

\[I_L = 4 \cdot 10^4 \text{ W/cm}^2 \]

![Graph showing ion production rate vs. atomic density](image)
You need 3 or 4 1064nm photons!

3 Rb \rightarrow Rb$_2$ + Rb
Rb$_2$ + 3γ \rightarrow Rb$_2^+$ + e$^-$

Resonantly enhanced?
1064nm laser plays a crucial role!

Clear resonance structure!!

Laser frequency (GHz) – 281632 GHz
1064nm laser plays a crucial role!

High resolution! Narrow linewidths ~ 50 MHz!

Laser frequency (GHz) – 281632 GHz

- small Doppler broadening
- Rb$_2$ molecules slow after three-body recombination
- energy released in three body-recombination is not large (< 0.01 eV)
1064nm laser plays a crucial role!

Many lines!

Looks like hyperfine and rotational spectrum!

Can we understand the spectrum? Perhaps part of it!
From recent spectroscopy we know several spectra quite well!! (~200 MHz precision!)

Strauss et al., PRA (2010)
Takekoshi et al., PRA (2011)

collaboration with E. Tiemann

Possible resonance transition
\(a^3\Sigma_u, v = 26 \rightarrow a^3\Sigma_g, v' = 0 \)
Some calculated transitions

\[^3\Sigma_u, \; v = 26, \; + \text{parity} \rightarrow ^3\Sigma_g, \; v'= 0 \]

We might learn something about the three-body recombination!!

Preliminary calculations

Calculations from E. Tiemann, Hannover
What do we produce more of: Rb$^+$ and Rb$_2^+$?

This depends!

If we extract the ion quickly from the atom cloud ($\sim \mu s$), then we get mostly Rb$_2^+$ (55%) otherwise mostly Rb$^+$ (~ 97%).

Possibly:

a) Ionization always produces Rb$_2^+$

b) Afterwards

$$\text{Rb}_2^+ + \text{Rb} + \gamma (?) \rightarrow \text{Rb}^+ + 2 \text{Rb} (?)$$
Three stories

1) Use atoms
 - cool ion
 - micromotion compensation

2) An ion as a three-body reaction center
 \[\text{Rb}^+ + 2\text{Rb} \rightarrow \text{Rb}^+ + \text{energy} + (2\text{Rb}) \]

3) A “mysterious“ production of Rb ions
 \[3 \text{Rb} + 3\gamma \rightarrow \text{Rb}_2^+ + e^- + \text{Rb} \]
 \[3 \text{Rb} + 4\gamma \rightarrow \text{Rb}^+ + e^- + (2\text{Rb}) \]