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1)Dilute limit:
   BEC condensate of
   linearly polarized dark excitons

2)Under a density increase:
   - mixture of dark and bright
                      condensates
   - phase separation between
          BEC and BCS condensates
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dilute limit

Part 1
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  In the dilute limit,
       electrons and holes
                      form excitons.
  At low T, they undergo a
       Bose-Einstein condensation
            in a linearly polarized 
                        dark state
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hole: full valence band minus one electron

formidable reduction of the many-body problem !
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Naive view of an exciton

   exciton similar to Hydrogen atom

light effective mass
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    The true story
  is

    far more complex
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Coulomb interaction in a periodic lattice

Bloch states 
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Intraband   Coulomb processes 
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repulsion between conduction and valence electrons 

attraction between electrons and holes 
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One Wannier exciton 
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Exciton creation operator 
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Excitons are boson-like particles
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Being boson-like particles,
                excitons, as cold atoms, must undergo
                                      Bose-Einstein condensation

Yet, the precise nature of composite boson condensate
                                                 is not known !
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Exciton BEC searched for decades ….
                                      but never evidenced !

Reason: the condensate must be dark …
                  and search has been done through 
                             photoluminescence experiments
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conduction band

 valence band
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Although small, interband Coulomb 
                                      interaction also exists

exists for bright pairs 
J= (+1, 0, -1) only
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Coulomb intraband
   exists for all

Coulomb interband
   exists for bright only

(repulsive) interband Coulomb processes push 
                              bright exciton above dark exciton
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Dark excitons have the lowest energy

             just because they are dark !

Exciton BEC must be dark …

No hope to see it (directly) with 
          photoluminescence experiments

Better to know where condensation takes place !
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Pairs are created in bright states by photon absorption
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Dark condensate must have a linear polarization
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So,
  in the dilute limit,
       electrons and holes
                      form excitons.
  At low T, they undergo a
       Bose-Einstein condensation
            in a linearly polarized
                        dark state
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How can we see a dark condensate ?

parabolic trap

lowest state 
dark

lowest trap level

we predict the appearance of a dark spot
                           at the center of the trap
                                    when BEC takes place
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Optical trap: standing wave  (+Q, -Q)

K exciton becomes superposition of (K, K +2Q, K- 2Q)

    so, it is trapped.       Potential depth: a fraction of meV

photon +Q
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Under a density increase

Part 2
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    a bright component
appears in the condensate

(A)
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dark excitons

bright excitons
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When the density increases, we must include interactions
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and 

! 

" ="
b
#"

d

  

! 

h
2"J

2
= 32gbd

2
Nb

(0)
Nd

(0)
= 2#

0

2
(
N
2

Nth

2
$1)

! 

! 

"
0
#10µeV

! 

"N # "N (0)
+ ....cos$

J
t

Josephson oscillations 

! 

"N = (N
b
# N

d
) /2 are conjugate variables

Hamilton equations

! 

d("N)

dt
=
#H

#$

! 

d"

dt
= #

$H

$(%N)

close to equilibrium

! 

"
J
#10

10
N /N

th



40

    a phase separation 
   takes place between 
        exciton gas
             and 
  electron-hole plasma

(B)
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Mott dissociation
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     a BCS condensation
         occurs in the 
  dense electron-hole plasma

(C)
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Even if strongly screened

electrons and holes still attract each other
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Again, dark pairs have the lowest energy

Exchange coupling must however bring 
       a bright component to the condensate since it is dense

Moreover,
degeneracy between the two dark and the two bright pairs
                must lead to a linear polarisation 
                                                  as optimum state  
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So,
  under a density increase,
   -a bright component appears in
the condensate.
   -a phase separation occurs
between exciton gas and e-h plasma
   -a BCS condensation of excitonic
Cooper pairs takes place in the e-h
plasma
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Conclusion
Electron-hole systems are quite rich !

1) At low density, excitons are formed.
           They suffer BEC condensation into a dark state
                                                                 with linear polarisation
2) Under a density increase,
         - a bright component appears in the condensate
         - a phase separation occurs between
                               exiton gas and electron-hole plasma
         - a BCS condensation of excitonic Cooper pairs takes
                                                          place in the dense plasma
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