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1)Dilute limit:
BEC condensate of
linearly polarized dark excitons

2)Under a density increase:
- mixture of dark and bright
condensates

- phase separation between
BEC and BCS condensates



Part 1

dilute limit



In the dilute limit,
electrons and holes
form excitons.

At low T, they undergo a
Bose-Einstein condensation

in a linearly polarized
dark state
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hole: full valence band minus one electron

formidable reduction of the many-body problem !



Naive view of an exciton
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exciton similar to Hydrogen atom
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The true story
IS
far more complex



Coulomb interaction in a periodic lattice

Bloch states
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repulsive scattering between conduction and valence electrons
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Intraband| Coulomb processes
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dressed by a dielectric constant

which results from many-body effects induced by
« boiling valence band »
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Direct scatterings between valence and/or conduction electrons:

repulsive as between free electrons
reduced by the semiconductor dielectric constant
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repulsion between conduction and valence electrons

———— gttraction between electrons and holes
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We turn from conduction/valence electrons to electrons/holes
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Attraction between one electron and one hole
reduced by dielectric constant
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One Wannier exciton
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Wannier exciton
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Exciton creation operator
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Excitons are boson-like particles i=(v,0)

BJT,BT] =B'B"-B'B* =0 as bosons
/ [ J2 | Jo i
\ I:Bm,Bl.+ ]_ =0,.-D but not exactly
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Being boson-like particles,
excitons, as cold atoms, must undergo
Bose-Einstein condensation

Yet, the precise nature of composite boson condensate
IS not known !

close to (B))"]0)+ ...

but surely not exactly (B*)"|0)
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Exciton BEC searched for decades ....
but never evidenced !

Reason: the condensate must be dark ...
and search has been done through
photoluminescence experiments
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Although small, interband Coulomb
Interaction also exists
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emission and reabsorption
of a virtual photon
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exists for bright pairs 24
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™~ no valence-conduction
Coulomb processes
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Coulomb intraband
‘\‘___ 1 __L__L___existsforall
e Coulomb interband

‘ J l ‘ exists for bright only
/7Y S [ R E -

(repulsive) interband Coulomb processes push
bright exciton above dark exciton
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Dark excitons have the lowest energy

just because they are dark !

Exciton BEC must be dark ...

No hope to see it (directly) with
photoluminescence experiments

Better to know where condensation takes place !
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Pairs are created in bright states by photon absorption

However, dark / bright excitons are linked by carrier exchange

2 =
-3/2
-1/2
dark bright
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Dark condensate must have a linear polarization
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So,
in the dilute limit,
electrons and holes
form excitons.
At low T, they undergo a
Bose-Einstein condensation

in a linearly polarized
dark state
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How can we see a dark condensate ?
parabolic trap

dark
lowest state <
lowest trap level

we predict the appearance of a dark spot
at the center of the trap
when BEC takes place
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400 uW
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Optical trap: standing wave (+Q, -Q)

N — >< .................. exciton K
_/é\/ photon +Q

K + Q(Q immmmesessessssisssssisss s exciton K

IR, S

K exciton becomes superposition of (K, K +2Q, K- 2Q)

So, it is trapped. Potential depth: a fraction of meV



Part 2

Under a density increase
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(A)

a bright component
appears in the condensate
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dark excitons D}

bright excitons B,

lowest state  (D;)"|0)

dark condensate
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When the density increases, we must include interactions

------------------------

the Hamiltonian then reads
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Josephson oscillations

p=¢,—-¢@, and ON=(N,-N,)/2 are conjugate variables
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Hamilton equations  gr  4g
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(B)

a phase separation
takes place between
exciton gas
and
electron-hole plasma
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Mott dissociation
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Excitons dissociate into an electron-hole plasma for

n=1
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dilute exciton gas
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« electron-hole droplets »
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(C)

a BCS condensation
occurs in the
dense electron-hole plasma
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Even if strongly screened
electrons and holes still attract each other

+7.+ +
E oooooo ak —k _Bcooper

Formation of « electron-hole Cooper pairs »

neutral, so not superconducting
but still superfluid
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Again, dark pairs have the lowest energy

Exchange coupling must however bring
a bright component to the condensate since it is dense

Moreover,
degeneracy between the two dark and the two bright pairs
must lead to a linear polarisation
as optimum state

(B, + sz)N_Nl(O) (B + Bfl)Nl(O) \O>
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« gray » condensate

exciton BEC ay exciton BCS
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So,
under a density increase,

-a bright component appears in
the condensate.

-a phase separation occurs
between exciton gas and e-h plasma

-a BCS condensation of excitonic
Cooper pairs takes place in the e-h
plasma
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Conclusion
Electron-hole systems are quite rich !

1) At low density, excitons are formed.
They suffer BEC condensation into a dark state
with linear polarisation

2) Under a density increase,
- a bright component appears in the condensate
- a phase separation occurs between
exiton gas and electron-hole plasma
- a BCS condensation of excitonic Cooper pairs takes
place in the dense plasma
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