Shortcuts To Adiabaticity: Theory and Application

Xi Chen

(陈 玺 **)**

University of Basque Country, Spain Shanghai University, China

aman ta zabal za

1/23

Évora, Portugal, 8-12 October 2012

Outline

- \bullet **Introduction**
- •**Techniques of shortcuts to adiabaticity**
- **Applications (1) trap expansion**

 (2) atomic transport

*** (3) population transfer**

• **Other results**

Motivation- accelerate adiabatic process

- **(1) Adiabatic adjustment for cold atoms** (expansions, contractions, rotation, transport)
	- i. e. Prepare atoms on a lattice Reach very low T Reduce Dv in spectroscopy& metrology

(2) Bottleneck step in a "quantum refrigerator cycle"

Techniques of Shortcuts to Adiabaticity

Invariant-based inverse engineering

J. G. Muga et al. J. Phys. B: At. Mol. Opt. Phys. 42, 241001 (2009).

X. Chen et al. Phys. Rev. Lett. 104, 063002 (2010).

Trasitionless quantum driving (counter-diabatic protocols)

M. Demirplak and S. A. Rice, J. Phys. Chem. A 107, 9937 (2003).

M. V. Berry, J. Phys. A 42, 365303 (2009).

X. Chen et al. Phys. Rev. Lett. 105, 123003 (2010).

Fast-forward (FF) scaling approach

S. Masuda and K. Nakamura, Proc. R. Soc. A 466, 1135 (2010).

Optimal control theory etc. ….

Inverse engineering

general idea: design the dynamics first then deduce Hamiltonian H(t)

$$
U = \sum_{n} e^{i\alpha_n(t)} |\phi_n(t)\rangle \langle \phi_n(0)| \implies H(t) = i\hbar (\partial_t U) U^{\dagger}
$$

Relation: **X. Chen et al. Phys. Rev. A 83, 062116 (2011)**

two routes: (a) dynamical invariants $I(t)|\phi_n(t)\rangle = \lambda_n |\phi_n(t)\rangle$

(b) transitionless tracking $\xi_n(t) = \alpha_n(t)$ $|n_0(t)\rangle = |\phi_n(t)\rangle$

if we choose
$$
\xi_n(t) = -\frac{1}{\hbar} \int_0^t dt' E_n^{(0)}(t') + i \int_0^t dt' \langle n_0(t') | \partial_{t'} n_0(t') \rangle
$$

\n
$$
H(t) = H_0(t) + \underbrace{(H_1(t))}_{n} \text{counter-diabatic term}
$$
\nM. V. Berry, J. Phys. A 42, 365303 (2009)
\n
$$
H_1(t) = i\hbar \sum_n \left(|\partial_t n_0(t) \rangle \langle n_0(t) | - \langle n_0(t) | \partial_t n_0(t) \rangle | n_0(t) \rangle \langle n_0(t) | \right),
$$

Third route: related to FF approach in Torrontegui et al. PRA 86 (2012)

multiple Schödinger pictures

Application in shortcuts to adiabaiticty

- A simple case is A'=1
- Then the IP is directly interpreted as an alternative physical reality
- If $A(0)=A(t_f)=1$ initial and final states for S & S' are equal
- Observables that commute with A are also equal for S & S'

6/23to overcome the difficulties to implement ''counterdiabatic'' terms S. Ibáñez et al. Phys. Rev. Lett.109, 100403 (2012)

 $K' = i\hbar \dot{A}' A'^{\dagger}$

1: fast trap expansions

X. Chen et al. Phys. Rev. Lett. 104, 063002 (2010)

BECs J. G. Muga et al. J. Phys. B: At. Mol. Opt. Phys. 42, 241001 (2009)

Experiments:**J. F. Schaff et al. Phys. Rev. A 82, 033430 (2010) Europhys. Lett. 93, 23 001 (2011).**

2: fast atomic transport

E. Torrontegui et al, Phys. Rev. A 83, 013415 (2011)

BECS: Torrontegui et al, New J. Phys. 14, 013031 (2012)

Optimal Control: X. Chen et al. Phys. Rev. A 84, 043415 (2011)

3: population transfer

Population Transfer in 2- and 3-level systems

Two major routes to control internal state

- **resonant pulses (pi, pi/2, etc…) fast but unstable**
- **adiabatic passage methods (RAP, STIRAP..) robust but slow**

In general we would like *fast & robust* **processes**

 - Composite pulses and Optimal control

Shortcuts To Adiabaticity:

X. Chen et al., Phys. Rev. Lett. 105, 123003 (2010)

3-level: X. Chen and J. G. Muga, Phys. Rev. A 86, 033405 (2012)

(I) Transitionless quantum driving

X. Chen et al. Phys. Rev. Lett. 105, 123003 (2010)

reference Hamiltonian

$$
H_0^I(t) = \frac{\hbar}{2} \begin{pmatrix} -\Delta(t) & \Omega_R(t) \\ \Omega_R(t) & \Delta(t) \end{pmatrix}
$$

counter-diabatic term

 $H_1(t) = i\hbar \sum_n |\partial_t \lambda_n\rangle \langle \lambda_n|$

- **with same frequency as H0**
- **orthogonal polarization**
- **time-dependent (shaped) intensity**

$$
\implies H_1^l(t) = \begin{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 0 & -i\Omega_a \\ i\Omega_a & 0 \end{pmatrix} \\ \frac{\hbar}{2} \begin{pmatrix} 0 & -i\Omega_a \\ i\Omega_a & 0 \end{pmatrix} \end{pmatrix}
$$

where

We will use *H 1(t)* **to make Rapid Adiabatic Passage (RAP)** *really* **RAPID**

As far as populations are concerned (the adiabatic phase is not needed), we can

 $H_1(t)$ (substitute $H_0(t)$) or $H_0(t) + H_1(t)$ (supplement $H_0(t)$)

10/23

transfer populations in 2- level systems

RAP is a standard robust way to invert the population

$$
|\psi_{\pm}^{I}(t)\rangle = \exp\{-\frac{i}{\hbar} \int_{t_{i}}^{t} dt' E_{\pm}(t')\} |\lambda_{\pm}(t)\rangle
$$

Parameters: $\omega = 5$ and $\tau = 1.22$.

adiabatic approximation $\frac{1}{2}|\Omega_a| \ll |\Omega(t)|$ which is non-adiabatic

11/23

(II) Multiple Schödinger pictures

$$
H_0 + H_{cd}^{(0)} = \begin{pmatrix} Z_0 & X_0 - i\hbar \dot{\Theta}_0 / 2 \\ X_0 + i\hbar \dot{\Theta}_0 / 2 & -Z_0 \end{pmatrix} = \begin{pmatrix} Z_0 & Pe^{-i\phi} \\ Pe^{i\phi} & -Z_0 \end{pmatrix}
$$

where $H_{cd}^{(0)} = \hbar (\dot{\Theta}_0 / 2) \sigma_y$ counter-diabatic term

$$
P = [X_0^2 + (\hbar \dot{\Theta}_0/2)^2]^{1/2} \quad \phi = \arctan(\hbar \dot{\Theta}_0/2X_0)
$$

Define new IP based on

$$
A_z = \begin{pmatrix} e^{-i\phi/2} & 0\\ 0 & e^{i\phi/2} \end{pmatrix} \qquad K_z = i\hbar \dot{A}_z A_z^{\dagger} \qquad \text{Z-rotation}
$$

$$
A_z^{\dagger} (H_0 + H_{cd}^{(0)} - K_z) A_z = \begin{pmatrix} Z_0 - \hbar \dot{\phi}/2 & P \\ P & -Z_0 + \hbar \dot{\phi}/2 \end{pmatrix}
$$

Reinterpret as a SP (A'=1)

12/23 S. Ibáñez et al. Phys. Rev. Lett.109, 100403 (2012)

example and experiment Landau–Zener Scheme

(III) invariant-based inverse engineering

$$
H(t) = \frac{\hbar}{2} \begin{pmatrix} \Delta & \Omega_R \\ \Omega_R & -\Delta \end{pmatrix}
$$

the Rabi frequency and detuning can be constructed by two parameters:

$$
i\hbar \frac{\partial I(t)}{\partial t} - [H(t), I(t)] = 0,
$$

$$
\Omega_R = \dot{\gamma}/\sin \beta,
$$

$$
\Delta = \Omega_R \cot \gamma \cos \beta - \dot{\beta}.
$$

which results from the invariant

X. Chen et al. Phys. Rev. A 83, 062116 (2011)

14/23

$$
I(t) = \frac{\hbar}{2} \Omega_0 \begin{pmatrix} \cos \gamma & \sin \gamma e^{i\beta} \\ \sin \gamma e^{-i\beta} & -\cos \gamma \end{pmatrix}
$$

$$
|\phi_{+}(t)\rangle = \cos\left(\frac{\gamma}{2}\right)e^{i\beta}|2\rangle + \sin\left(\frac{\gamma}{2}\right)|1\rangle,
$$
\n
$$
|\phi_{-}(t)\rangle = \sin\left(\frac{\gamma}{2}\right)|2\rangle - \cos\left(\frac{\gamma}{2}\right)e^{-i\beta}|1\rangle,
$$
\n**design the trajectory**

stability amplitude noise and systematic errors

Stimulated Raman Adiabatic Passage (STIRAP)

(I) Transitionless quantum driving

Reference Hamiltonian H₀

(two-photon resonance)

$$
H_0(t) = \frac{\hbar}{2} \begin{pmatrix} 0 & \Omega_p(t) & 0 \\ \Omega_p(t) & 2\Delta_p & \Omega_s(t) \\ 0 & \Omega_s(t) & 0 \end{pmatrix}
$$

\n**Counterdiabatic term H**₁ $H_1(t) = i\hbar \sum_{\Omega} |\partial_t n\rangle\langle n|$
\nM. V. Berry, J. Phys. A 42, 365303 (2009)
\nX. Chen et al. Phys. Rev. Lett. 105, 123003 (2010)
\n
$$
|1\rangle \rightarrow |3\rangle \text{ H}_1 \text{ is simplified as}
$$
\n
$$
\tilde{H}_1(t) = \frac{\hbar}{2} \begin{pmatrix} 0 & 0 & \sqrt{\tilde{\Omega}_a} \\ 0 & 0 & 0 \\ -\sqrt{\tilde{\Omega}_a} & 0 & 0 \\ -\sqrt{\tilde{\Omega}_a} & 0 & 0 \end{pmatrix}
$$
\nwhere $\tan \theta = \Omega_p(t)/\Omega_s(t)$ $\tan(2\phi) = \Omega/\Delta_p$ $\tilde{\Omega}_a = 2\dot{\theta}_{16/23}$

 t/T

BUT this limits the ability to shorten the times

(II) Invariant-based inverse engineering

we consider the simplest case of one-photon resonance

$$
H(t) = \frac{\hbar}{2} \left(\begin{array}{ccc} 0 & \Omega_p(t) & 0 \\ \Omega_p(t) & 0 & \Omega_s(t) \\ 0 & \Omega_s(t) & 0 \end{array} \right) \frac{}{} = \frac{\hbar}{2} (\Omega_p(t)\hat{K}_1 + \Omega_s(t)\hat{K}_2)
$$

Carroll & Hioe, JOSA B 5, 1335 (1988)

invariant can be constructed as

$$
I(t) = \frac{\hbar}{2} \Omega_0(\cos \gamma \sin \beta \hat{K}_1 + \cos \gamma \cos \beta \hat{K}_2 + \sin \gamma \hat{K}_3)
$$

\n
$$
\hat{\kappa}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \hat{\kappa}_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \hat{\kappa}_3 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \text{SU(2)}
$$

\n
$$
\Omega_s = 2(\beta \cot \gamma \cos \beta - \dot{\gamma} \sin \beta),
$$

\n
$$
\Omega_p = 2(\beta \cot \gamma \sin \beta + \dot{\gamma} \cos \beta).
$$

\n
$$
i\hbar \frac{\partial I(t)}{\partial t} - [H(t), I(t)] = 0,
$$

\n18/23

Explanation- multi-mode driving

the final state is calculated as

 $C_n = \langle \phi_n(0) | 1 \rangle$ $|\Psi(0) \rangle = | 1 \rangle$ where

Using eigenstates of invariant at t=0 and t= t_f

we finally obtain the **fidelity**

$$
F \equiv \langle -3|\Psi(t_f)\rangle = e^{i\alpha_0} \cos^2 \epsilon + \frac{1}{2} \langle e^{i\alpha} \rangle + e^{i\alpha} \sin^2 \epsilon.
$$

In the first protocol **In the first protocol In the first protocol**

$$
\alpha_0 = 0, \quad \alpha_{\pm} = \mp \frac{\pi}{2 \sin \epsilon},
$$

$$
F = 1 - \sin^2 \epsilon \left\{ 1 - \cos \left(\frac{\pi}{2 \sin \epsilon} \right) \right\}.
$$

$$
(\sin \epsilon)^{-1} = 4N, (N = 1, 2, 3...)
$$

Other results & applications

Transient energy and 3rd principle, maximal cooling rates X. Chen and J. G. Muga, Phys. Rev. A 82, 053403 (2010).

3D effects in fast expansions E. Torróntegui et al., Phys. Rev. A 85, 033605 (2012).

Complex potentials S. Ibáñez et al., Phys. Rev. A 84, 023415 (2011). +86 (2012)(E)

Fast splitting of matter waves (interferometry) E. Torrontegui et al., arXiv:1207.3184

Spintronics [fast spin-flip in quantum dot]

Y. Ban et al,, arXiv:1208.4890 see poster!

22/23

Thank you for your attention!

STA working team and collaborators

J. Gonzalo Muga (UPV-EHU) A. Ruschhaupt (Cork)

 D. Guéry-Odelin (Paul Sabatier) A. del Campo (Los Alamos)

 S. Martínez (UPV-EHU) S. Ibáñez (UPV-EHU)

-
-
- **M. Modugno (UPV-EHU) E. Torrontegui (UPV-EHU)**
	-

Andrée Richmond for amimals with wheels http://www.andreerichmond.com

