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• FQHE: basics, hierarchy and composite fermions

• Introduction to CFT description of QH wave functions

• Motivation and main results of our work

• CFT description of QH quasielectrons

• ‘Condensates’ of quasielectrons: Jain sequence & hierarchy

• Justification of results (consistency checks)

• Explicit hierarchical form of Jain wave functions
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• Summary and outlook
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The quantum Hall effect

2-dimensional electron gas in a
strong perpendicular magnetic

field at low temperatures

Transverse (Hall) resistance is quantized
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• v: Landau level filling at center of plateau.

• Incompressible ground states at integer and          
fractional v (e.g. 1/3, 2/5, ...).
• Fractionally charged quasiparticle excitations



FQHE and many-body wave functions

• 2-dimensional electron gas in a strong perpendicular magnetic field at low T

• Electrons residing (mainly) in the lowest Landau level (LLL).

Single particle basis states: |l〉 = Nlz
le−|z|2/4, z = x + iy

N-particle (trial) wave functions constructed as antisymmetric combinations of 
these, i.e. homogeneous polynomials. Total angular momentum = degree of 
polynomial.

The construction of trial many-body wave functions, believed to capture the 
essential physics, has proven fruitful in the study of the quantum Hall system. 
Laughlin, hierachy, composite fermions...



Laughlin state and its excitations

Laughlin’s famous wave function, ground state at v=1/m:

Quasihole at z0: Multiply Laughlin wf by
∏

i

(zi − z0)

ψN (z1, ...zN ) =
∏

i<j

(zi − zj)
me−

∑
|zi|

2/4

Fundamental excitation at v=1/m. Local depletion of charge, with fractional 
charge e/m and obeying fractional statistics.

Quasielectron: Opposite of a quasihole. Local contraction of the QH liquid, 
with fractional charge and statistics. Form of wave function less obvious...



Beyond Laughlin I: Hierarchy picture

• Idea: A quantum Hall state can give rise to a sequence of ‘daughter states’ 
as successive ‘condensates’ of quasielectrons and/or quasiholes:

• As the B-field is changed away from its value at the center of the plateau, 
the number of quasiparticles increases.

• These quasiparticles eventually may form a strongly correlated state, in 
much the same way as the electrons form the Laughlin state.

• Result: New incompressible ground state at a different filling fraction. 
Quasielectrons or quasiholes of this state may again condense to form the 
next ‘daughter’ etc.......

Ψn+1(z1 . . . zN ) =
∫

d2 !R1 . . .

∫
d2 !RM Φ!(!R1 . . . !RM )Ψn(!R1 . . . !RM ; z1 . . . zN )

Multi quasi particle 

“pseudo” wave function for 

the quasi particles at Ri

Electronic wave function 

parametrically depending 

on the quasi particle 

positions Ri

Hard integrals!



Beyond Laughlin II: Composite fermions

• Ground states of the Jain sequence v = n/(2np+1) as v = n integer quantum 
Hall states of composite fermions. Similar construction for v = n/(2np-1).

• Quasiholes and -electrons constructed as holes/single CFs in effective CF 
Landau levels

• The CF quasielectron wave function does much better than the one originally 
proposed by Laughlin [Kjønsberg&Leinaas] 

• Machinery that provides numerically excellent wave functions in a systematic 
way. Served as a guide for CFT construction.

• Jain: Composite fermion = Electron with 2p flux quanta attached (thus 
effectively moving in a reduced magnetic field). Weakly (non-)interacting.

ψ(z1, ..., zN ) = P
[
ΦCF (zi, z̄i)

∏

k<l

(zk − zl)2p

]



CFT description of QH wave functions

• Basic observation (early 90s): QH wave functions (Laughlin, quasiholes, 
Pfaffians...) can be expressed as correlators of RCFT vertex operators.

where

ν = 1/m : ψL(z1, ..., zN ) =
∏

i<j

(zi − zj)
m = 〈V1(z1)V1(z2)...V1(zN )〉

V1(z) = e
i
√

mϕ1(z)

•        : Free massless boson field compactified on radius R2=m, ϕ1(z)

Q =
1

√
m

1

2π

∮
dz ∂zϕ1(z)〈ϕ1(z)ϕ1(z)〉 = −ln(z − w) ,

Charge/
vorticity



CFT description of QH wave functions

〈H1/m(η)
∏

i

V1(zi)〉 =
∏

i

(zi − η) ψL(z1, ....zN )

• Quasiholes created by insertions of H1/m(η) = e(i/
√

m)ϕ1(η)

• Pushes all electrons away from point   . Fractional charge/statistics. η

• How to write quasielectrons?? In particular, how to contract the 
electron liquid without running into trouble with the Pauli principle? 

• The CFT giving relevant bulk WFs defines 1D edge theory

• The braiding properties (monodromies) of the conformal blocks 
reflect the expected fractional statistics of the QH quasiparticles. 



Our approach and main results

• Inspired by previous literature, we extend the CFT description of the 
FQHE, to express hierarchical QH wave functions and their qp 
excitations as CFT correlators.

• Inspiration from composite fermions (n different electron operators at 
level n of the hierarchy)

• Explicit candidate wave functions for all Abelian hierarchy states: qe 
condensates, qh condensates, mixed states. Exactly reproduces CF wave 
functions of positive and negative Jain sequences as special cases.

• Consistency checks: Topological classification, TT limit, numerics

• Explicit proof of equivalence of composite fermions and hierarchy.

• Candidate wave functions for non-Abelian quasielectrons (Pfaffian)



The quasielectron

• Quasielectron constructed by modifying one of the electron 
operators, corresponding to a local contraction of the electron liquid 
(charge density), with excess charge -e/m:

• Essentially inverse quasihole operator combined with electron operator. 
Descendant. (Derivative necessary to get non-zero wave functions). 

P1/m(z) = ∂ e
i(
√

m−
1

√

m
)ϕ1(z)

• Physical interpretation: Shrinking of the correlation hole around one of the 
electrons.

• Note: Gives quasielectrons in angular momentum states, rather than localized



One-quasielectron wave function

• One-qe wave function constructed from Laughlin state by replacing one of 
the electronic vertex operators by P and antisymmetrizing over particle 
coordinates. Identical to the wave function obtained from composite fermions. 
(But no projection needed!)

Ψ(l)
1qp(zi) = A〈P1/m(z1)V1(z2) . . . . . . V1(ZN )〉

=
∑

i

(−1)i

(i)∏

j<k

(zj − zk)m
∂i

∏

l !=i

(zl − zi)
m−1



Two quasielectrons (m=3)

• Two-qe wave function (minimum relative angular momentum):

• Excellent overlap with exact state. Numerical and analytical 
arguments that qes have fractional charge and statistics as 
expected

ψ2qp = A{(z1 − z2)
5/3 〈P1/3(z1)P1/3(z2)

N∏

i=3

V1(zi)〉 }



‘Condensates’ of many quasiparticles

• Many-quasielectron wave function must be analytic and antisymmetric. For 
MDD of N/2 electrons and N/2 quasielectrons, this is achieved by 
introducing a second Bose field (m=3):

leading to the next-level ground state

• Exactly reproduces the 2/5 CF wave function!

• Indicates that the 2/5 state can be viewed as a quasielectron condensate. 
(More later!)

ψ2/5 = A{ 〈

N/2∏

i=1

V1(zi)
N∏

j=N/2+1

V2(zj)〉 }

V2(z) = ∂e
2i
√

3
ϕ1(z)

e
i
√

5

3
ϕ2(z)

Charge e, fermionic. 
Corresponds to a CF in the 
second CF Landau level.



Condensates of quasiparticles: hierarchy

• Less dense. Can be interpreted as a fractional (v = 1 + 1/3) state of 
composite fermions.

• Promising numerics

Ψ4/11 = A{(1 − 1)3∂2(2 − 2)5(1 − 2)2}

• Other consistent coefficients of       : Non-Jain states such as 4/11:ϕ2

V2(z) = ∂e
2i
√

3
ϕ1(z)+i

√

11

3
ϕ2(z)



Condensates of quasiparticles: hierarchy

• Reproduces exactly the v = n/(2np+1) CF wave functions. Generates 
candidate WFs for all (quasielectron condensate) hierarchy states 
and their qh/qe excitations,

νn =
1

t1 −
1

t2−
1
·
·

tn−1−
1

tn

= p/q
t1 = (1), 3, 5, ... ; ti>1 = 2, 4, ...

• At level n of the hierarchy: n electronic vertex operators (n Bose 
fields), n hole operators. Recursive construction:

Vn+1 ∼

(

∂H
−1
n Vn

)

e
iαn+1ϕn+1



Consistency checks...

• Also:  Wave functions fit into Wen’s topological classification scheme for 
abelian QH fluids, in terms of K-matrix, t- and l-vectors. 

• Exactly reproduce Jain’s wave functions for v = n/(2np+1). Promising 
numerics for v = 4/11.

• The quantum Hall problem is exactly solvable in the thin cylinder limit 
(Bergholtz & Karlhede), where it is reduced to an electrostatic 
problem, with gapped crystal-like ground states (TT states). These 
solutions are believed to be adiabatically connected to bulk QH 
states.

• Hierarchy construction is manifest in this limit.

• Taking the ‘thin limit’ of our proposed hierarchy wave functions exactly 
reproduces the correct TT states.



Hierarchical form of CF wave functions

• Recall: The operator P(z) gave qe states with good angular 
momentum. Can get localized states by coherent superposition.

• We have constructed an operator         which directly creates a 
(quasi)localized qe at position   . (Hans Hansson’s talk)

P(η)
η

Using

Ψn+1(z1 . . . zN ) =
∫

d2 !R1 . . .

∫
d2 !RM Φ!(!R1 . . . !RM )Ψn(!R1 . . . !RM ; z1 . . . zN )in

Φk(!R1 . . . !RM ) =
M∏

i<j

(η̄i − η̄j)2ke−
1

4m!2
PM

i=1 |ηi|2with

(pseudo wave function for charge e/m qe’s in bosonic representation),

identically reproduces the level 2 composite fermion WFs, 
including e.g. v=2/5. 

Ψ(!R1 . . . !RM ;!r1 . . .!rN ) = 〈P(!R1) . . .P(!RM )Ve(z1) . . . Ve(zN )Obg〉



Quasihole condensates and ‘mixed’ states

• Procedure outlined so far only applies to pure qe condensates. What 
about quasihole condensates (including the negative Jain 
sequence                      ) and combinations of qe & qh condensates?ν = n/(2np− 1)

• We have generalized our construction to describe these cases. 
Introduce antiholomorphic fields for qh condensates.

• Exactly reproduce Jain’s WFs for the negative sequence, e.g. 2/3:

• Explicit candidate WFs for more general qh candidates and for mixed 
states. Remain to be tested...

Ψ2/3 = A
{
(∂(1) − ∂(1)) z(2)(∂(2) − ∂(2))

} ∏

i<j

(zi − zj)2



• CFT description of quasielectrons (Abelian and non-Abelian) and 
their condensates, including Jain states. Explicit trial wave functions.

• Equivalence of hierarchy and composite fermion pictures

• Condensates of quasiholes (incl. negative Jain sequence) and ‘mixed’ 
states, ie rest of Abelian hierarchy. (In preparation)

• Open: description of the state at v=1/2. 

• Next talk (Hansson): Details on quasilocal quasielectron operator, 
quasielectrons of Moore-Read Pfaffian state.

Summary and open questions
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