

Quantum Hall hierarchy wave functions from Conformal Field Theory

Susanne Viefers, Evora, November 2008

Hans Hansson Maria Hermanns Juha Suorsa Nicolas Regnault Anders Karlhede Emil Bergholtz Chia-Chen Chang Jainendra Jain

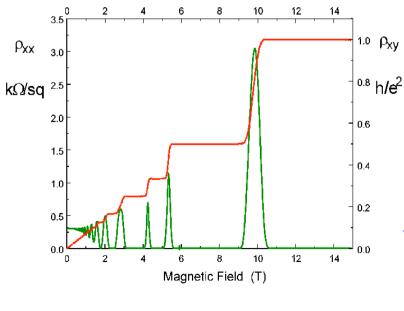
UNIVERSITETET I OSLO

Outline

- FQHE: basics, hierarchy and composite fermions
- Introduction to CFT description of QH wave functions
- Motivation and main results of our work
- CFT description of QH quasielectrons
- 'Condensates' of quasielectrons: Jain sequence & hierarchy
- Justification of results (consistency checks)
- Explicit hierarchical form of Jain wave functions
- Quasihole condensates and 'mixed' states
- Summary and outlook

The quantum Hall effect

2-dimensional electron gas in a strong perpendicular magnetic field at low temperatures



 B_z

Transverse (Hall) resistance is quantized

$$R_{xy} = \frac{V_y}{I_x} = \frac{1}{\nu} \frac{h}{e^2}$$

- v: Landau level filling at center of plateau.
- Incompressible ground states at integer and fractional v (e.g. 1/3, 2/5, ...).
- Fractionally charged quasiparticle excitations

FQHE and many-body wave functions

- 2-dimensional electron gas in a strong perpendicular magnetic field at low T
- Electrons residing (mainly) in the lowest Landau level (LLL).

Single particle basis states:
$$|l
angle=N_{l}z^{l}e^{-|z|^{2}/4},\quad z=x+iy$$

N-particle (trial) wave functions constructed as *antisymmetric combinations* of these, i.e. homogeneous polynomials. Total angular momentum = degree of polynomial.

The construction of trial many-body wave functions, believed to capture the essential physics, has proven fruitful in the study of the quantum Hall system. Laughlin, hierachy, composite fermions...

Laughlin state and its excitations

Laughlin's famous wave function, ground state at v=1/m:

$$\psi_N(z_1, \dots z_N) = \prod_{i < j} (z_i - z_j)^m e^{-\sum |z_i|^2/4}$$

Quasihole at z_0 : Multiply Laughlin wf by $\prod (z_i - z_0)$

Fundamental excitation at v=1/m. Local depletion of charge, with fractional charge e/m and obeying fractional statistics.

Quasielectron: Opposite of a quasihole. Local contraction of the QH liquid, with fractional charge and statistics. Form of wave function less obvious...

Beyond Laughlin I: Hierarchy picture

- Idea: A quantum Hall state can give rise to a sequence of 'daughter states' as successive 'condensates' of quasielectrons and/or quasiholes:
- As the B-field is changed away from its value at the center of the plateau, the number of quasiparticles increases.
- These quasiparticles eventually may form a strongly correlated state, in much the same way as the electrons form the Laughlin state.
- Result: New incompressible *ground state* at a different filling fraction. Quasielectrons *or* quasiholes of this state may again condense to form the next 'daughter' etc......

$$\Psi_{n+1}(z_1 \dots z_N) = \int d^2 \vec{R}_1 \dots \int d^2 \vec{R}_M \, \Phi^*(\vec{R}_1 \dots \vec{R}_M) \Psi_n(\vec{R}_1 \dots \vec{R}_M; z_1 \dots z_N)$$

Hard integrals!
Multi quasi particle
"pseudo" wave function for
the quasi particles at \mathbf{R}_i
Electronic wave function
parametrically depending
on the quasi particle
positions \mathbf{R}_i

UNIVERSITETET I OSLO

Beyond Laughlin II: Composite fermions

• Jain: Composite fermion = Electron with 2p flux quanta attached (thus effectively moving in a reduced magnetic field). Weakly (non-)interacting.

$$\psi(z_1, \dots, z_N) = \mathcal{P}\left[\Phi_{CF}(z_i, \bar{z}_i) \prod_{k < l} (z_k - z_l)^{2p}\right]$$

- Ground states of the Jain sequence v = n/(2np+1) as v = n integer quantum Hall states of composite fermions. Similar construction for v = n/(2np-1).
- Quasiholes and -electrons constructed as holes/single CFs in effective CF Landau levels
- The CF quasielectron wave function does much better than the one originally proposed by Laughlin [Kjønsberg&Leinaas]
- Machinery that provides numerically excellent wave functions in a systematic way. Served as a guide for CFT construction.

CFT description of QH wave functions

• Basic observation (early 90s): QH wave functions (Laughlin, quasiholes, Pfaffians...) can be expressed as correlators of RCFT vertex operators.

$$\nu = 1/m: \quad \psi_L(z_1, ..., z_N) = \prod_{i < j} (z_i - z_j)^m = \langle V_1(z_1) V_1(z_2) ... V_1(z_N) \rangle$$

where

$$V_1(z) = e^{i\sqrt{m}\varphi_1(z)}$$

• $\varphi_1(z)$: Free massless boson field compactified on radius $R^2=m$,

$$\langle \varphi_1(z)\varphi_1(z)\rangle = -\ln(z-w), \qquad \mathcal{Q} = \frac{1}{\sqrt{m}}\frac{1}{2\pi}\oint dz\,\partial_z\varphi_1(z) \qquad \begin{array}{c} \text{Charge/}\\ \text{vorticity} \end{array}$$

CFT description of QH wave functions

- The CFT giving relevant bulk WFs defines ID edge theory
- The braiding properties (monodromies) of the conformal blocks reflect the expected fractional statistics of the QH quasiparticles.
- Quasiholes created by insertions of $H_{1/m}(\eta) = e^{(i/\sqrt{m})\varphi_1(\eta)}$

$$\langle H_{1/m}(\eta) \prod_{i} V_1(z_i) \rangle = \prod_{i} (z_i - \eta) \psi_L(z_1, \dots, z_N)$$

- Pushes all electrons away from point η . Fractional charge/statistics.
- How to write quasielectrons?? In particular, how to contract the electron liquid without running into trouble with the Pauli principle?

LOSLO

Our approach and main results

- Inspired by previous literature, we extend the CFT description of the FQHE, to express hierarchical QH wave functions and their qp excitations as CFT correlators.
- Inspiration from composite fermions (*n* different electron operators at level *n* of the hierarchy)
- *Explicit* candidate wave functions for all Abelian hierarchy states: ge condensates, qh condensates, mixed states. Exactly reproduces CF wave functions of positive and negative Jain sequences as special cases.
- Consistency checks: Topological classification, TT limit, numerics
- Explicit proof of equivalence of composite fermions and hierarchy.
- Candidate wave functions for non-Abelian quasielectrons (Pfaffian)

The quasielectron

 Quasielectron constructed by modifying one of the electron operators, corresponding to a local contraction of the electron liquid (charge density), with excess charge -e/m:

$$P_{1/m}(z) = \partial e^{i(\sqrt{m} - \frac{1}{\sqrt{m}})\varphi_1(z)}$$

- Essentially inverse quasihole operator combined with electron operator. Descendant. (Derivative necessary to get non-zero wave functions).
- Physical interpretation: Shrinking of the correlation hole around one of the electrons.
- Note: Gives quasielectrons in angular momentum states, rather than localized

One-quasielectron wave function

 One-qe wave function constructed from Laughlin state by replacing one of the electronic vertex operators by P and antisymmetrizing over particle coordinates. *Identical to the wave function obtained from composite fermions*. (But no projection needed!)

$$\Psi_{1qp}^{(l)}(z_i) = \mathcal{A} \langle P_{1/m}(z_1) V_1(z_2) \dots V_1(Z_N) \rangle$$

$$=\sum_{i}(-1)^{i}\prod_{j< k}^{(i)}(z_{j}-z_{k})^{m}\partial_{i}\prod_{l\neq i}(z_{l}-z_{i})^{m-1}$$

Two quasielectrons (m=3)

• Two-qe wave function (minimum relative angular momentum):

$$\psi_{2qp} = \mathcal{A}\{(z_1 - z_2)^{5/3} \left(P_{1/3}(z_1) P_{1/3}(z_2) \prod_{i=3}^N V_1(z_i) \right) \}$$

• Excellent overlap with exact state. Numerical and analytical arguments that qes have fractional charge and statistics as expected

'Condensates' of many quasiparticles

 Many-quasielectron wave function must be analytic and antisymmetric. For MDD of N/2 electrons and N/2 quasielectrons, this is achieved by introducing a second Bose field (m=3):

 $V_2(z) = \partial e^{\frac{2i}{\sqrt{3}}\varphi_1(z)} e^{i\sqrt{\frac{5}{3}}\varphi_2(z)}$

Charge e, fermionic. Corresponds to a CF in the second CF Landau level.

leading to the next-level ground state

$$\psi_{2/5} = \mathcal{A}\{\langle \prod_{i=1}^{N/2} V_1(z_i) \prod_{j=N/2+1}^{N} V_2(z_j) \rangle \}$$

- *Exactly* reproduces the 2/5 CF wave function!
- Indicates that the 2/5 state can be viewed as a quasielectron condensate. (More later!)

Condensates of quasiparticles: hierarchy

• Other consistent coefficients of φ_2 : Non-Jain states such as 4/11:

$$V_2(z) = \partial e^{\frac{2i}{\sqrt{3}}\varphi_1(z) + i\sqrt{\frac{11}{3}}\varphi_2(z)}$$

$$\Psi_{4/11} = \mathcal{A}\{(1-1)^3 \partial_2 (2-2)^5 (1-2)^2\}$$

- Less dense. Can be interpreted as a fractional (v = 1 + 1/3) state of composite fermions.
- Promising numerics

Condensates of quasiparticles: hierarchy

• At level *n* of the hierarchy: *n* electronic vertex operators (*n* Bose fields), *n* hole operators. Recursive construction:

$$V_{n+1} \sim \left(\partial H_n^{-1} V_n\right) e^{i\alpha_{n+1}\varphi_{n+1}}$$

Reproduces exactly the v = n/(2np+1) CF wave functions. Generates candidate WFs for all (quasielectron condensate) hierarchy states and their qh/qe excitations,

$$\nu_n = \frac{1}{t_1 - \frac{1}{t_2 - \frac{1}{\frac{1}{t_n - 1 - \frac{1}{t_n}}}}} = p/q$$

$$t_1 = (1), 3, 5, \dots; t_{i>1} = 2, 4, \dots$$

- .

Consistency checks...

- The quantum Hall problem is exactly solvable in the *thin cylinder limit* (Bergholtz & Karlhede), where it is reduced to an electrostatic problem, with gapped crystal-like ground states (TT states). These solutions are believed to be adiabatically connected to bulk QH states.
- Hierarchy construction is manifest in this limit.
- Taking the 'thin limit' of our proposed hierarchy wave functions exactly reproduces the correct TT states.
- Also: Wave functions fit into Wen's topological classification scheme for abelian QH fluids, in terms of K-matrix, t- and I-vectors.
- Exactly reproduce Jain's wave functions for v = n/(2np+1). Promising numerics for v = 4/11.

Hierarchical form of CF wave functions

- Recall: The operator *P*(*z*) gave qe states with good *angular momentum*. Can get *localized* states by coherent superposition.
- We have constructed an operator $\mathcal{P}(\eta)$ which *directly* creates a (quasi)localized qe at position η . (Hans Hansson's talk)

Jsing
$$\Psi(\vec{R}_1 \dots \vec{R}_M; \vec{r}_1 \dots \vec{r}_N) = \langle \mathcal{P}(\vec{R}_1) \dots \mathcal{P}(\vec{R}_M) V_e(z_1) \dots V_e(z_N) \mathcal{O}_{bg} \rangle$$

in
$$\Psi_{n+1}(z_1...z_N) = \int d^2 \vec{R}_1 ... \int d^2 \vec{R}_M \, \Phi^*(\vec{R}_1...\vec{R}_M) \Psi_n(\vec{R}_1...\vec{R}_M; z_1...z_N)$$

with
$$\Phi_k(\vec{R}_1 \dots \vec{R}_M) = \prod_{i < j} (\bar{\eta}_i - \bar{\eta}_j)^{2k} e^{-\frac{1}{4m\ell^2} \sum_{i=1}^M |\eta_i|^2}$$

(pseudo wave function for charge e/m qe's in bosonic representation),

identically reproduces the level 2 composite fermion WFs, including e.g. v=2/5.

UNIVERSITETET

Quasihole condensates and 'mixed' states

- Procedure outlined so far only applies to pure qe condensates. What about quasihole condensates (including the negative Jain sequence $\nu = n/(2np-1)$) and combinations of qe & qh condensates?
- We have generalized our construction to describe these cases. Introduce *antiholomorphic* fields for qh condensates.
- Exactly reproduce Jain's WFs for the negative sequence, e.g. 2/3:

$$\Psi_{2/3} = \mathcal{A}\left\{ (\partial_{(1)} - \partial_{(1)}) \, z_{(2)} (\partial_{(2)} - \partial_{(2)}) \right\} \prod_{i < j} (z_i - z_j)^2$$

• Explicit candidate WFs for more general qh candidates and for mixed states. Remain to be tested...

Summary and open questions

- CFT description of quasielectrons (Abelian and non-Abelian) and their condensates, including Jain states. Explicit trial wave functions.
- Equivalence of hierarchy and composite fermion pictures
- Condensates of quasiholes (incl. negative Jain sequence) and 'mixed' states, ie rest of Abelian hierarchy. (In preparation)
- Open: description of the state at v=1/2.
- Next talk (Hansson): Details on quasilocal quasielectron operator, quasielectrons of Moore-Read Pfaffian state.

References: Phys. Rev. Lett. **98**, 076801 (2007); Phys. Rev. B **76**, 075347(2007); Phys. Rev. B **77**, 165325 (2008). arXiv:0810.0636