Correlations and quenches in integrable systems

Jean-Sébastien Caux Universiteit van Amsterdam

Work done in collaboration with: R. Hagemans, J. M. Maillet, R. Pereira, J. Sirker, I. Affleck, S. R.White, J. Mossel, I. Pérez Castillo, A. Klauser
P. Calabrese, N. Slavnov, A. Faribault

Plan of the talk

Correlation dynamics

Systems which can be treated using 'exact' methods Short overview of the methods used
Example I: quantum spin chains
3 approaches: lattice, q group, field theory
Example 2: one-d Bose gas repulsive, attractive
Example 3: the Richardson model
Quantum quenches
General comments
... quenches in the Richardson model

The contract: calculate dynamical correlation functions of local operators in interacting models

General form:
some local operator

Ground state, prepared state, thermal average, ...

\bigcirc
Difficulty: multiparticle eigenstates are not obtained as simple products of single-particle states (alt., not created using simple products of local ops) Exact methods (integrability): traditionally restricted to equilibrium thermodynamics

Correlation functions: elements

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum_{\mu}\langle 0| \mathcal{O} \phi \mid \mu\right) \mid \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

I) Eigenstates basis: energies, states (+ norms)

2) We need to be able to compute the matrix elements of the operators we're interested in Algebraic Bethe Ansatz; q. groups
3) We need to be able to perform the sum over intermediate states

Numerics, analytics

Models which we can treat:

Heisenberg spin-I/2 chain
$H=\sum_{j=1}^{N}\left[J\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}+\Delta S_{j}^{z} S_{j+1}^{z}\right)-H_{z} S_{j}^{z}\right]$
(finite lattice BA; quantum groups)

O Interacting Bose gas (Lieb-Liniger)

$$
\mathcal{H}_{N}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+2 c \sum_{1 \leq j<l \leq N} \delta\left(x_{j}-x_{l}\right)
$$

(BA for finite particle numbers)
Richardson model (+ Gaudin magnets)

$$
H_{B C S}=\sum_{\substack{\alpha=1 \\ \sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-g \sum_{\alpha, \beta=1}^{N} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

What we can calculate:

OdYNAMICAL STRUCTURE FACTOR

$$
S^{a \bar{a}}(q, \omega)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)} \int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle S_{j}^{a}(t) S_{j^{\prime}}^{\bar{a}}(0)\right\rangle_{c}
$$

inelastic neutron scattering
ODENSITY-DENSITY FUNCTION

$$
S(k, \omega)=\int d x \int d t e^{-i k x+i \omega t}\langle\rho(x, t) \rho(0,0)\rangle
$$

\bigcirc ONE-BODY FN $G_{2}(x, t)=\left\langle\Psi^{\dagger}(x, t) \Psi(0,0\rangle\right.$
Bragg spectroscopy, interference experiments, ... (zero temperature only (for now !))

Specific cases treated:

Finite BA

numerics

General XXZ AFM, Hz XXX gapless AFM, Hz=0
XXZ gapped AFM, Hz=0
XXZ gapless AFM, $\mathrm{Hz}=0$

Repulsive
Attractive

Richardson

Finite BA
numerics done

Finite BA
numerics done

Analytics
(brute force)
no go done

Quenches done (t.b.p.)

Method I: Bethe Ansatz

Hans Bethe, 193I

$$
H=\sum_{j=1}^{N}\left[J\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}+\Delta S_{j}^{z} S_{j+1}^{z}\right)-H_{z} S_{j}^{z}\right]
$$

Exact solution through Bethe Ansatz:
Eigenstate with M down spins fully characterized by set of rapidities $\left\{\lambda_{j}\right\}, \quad j=1, \ldots, M$
July 2, 1906 - March 6, 2005

$$
\Psi\left(j_{1}, \ldots, j_{M} \mid \lambda_{1}, \ldots, \lambda_{M}\right)=\sum_{P}^{M!} A(P \mid\{\lambda\}) e^{i \sum_{a=1}^{M} k\left(\lambda_{P_{a}}\right) j_{a}}
$$

Known amplitudes

The M rapidities are solutions of the Bethe equations

$$
\theta_{1}\left(\lambda_{j}\right)-\frac{1}{N} \sum_{l=1}^{M} \theta_{2}\left(\lambda_{j}-\lambda_{l}\right)=2 \pi \frac{I_{j}}{N}, \quad j=1, \ldots, M
$$

Eigenstates: labeled by set of quantum numbers Ground state:
$\{I\}$:
$\bigcirc \bigcirc$ $\{\lambda\}:$

\bigcirc

\bigcirc

\bigcirc- ○○○○○ O

Simple excitations:

Solving the BE: nontrivial in general, still: it's feasible

Deformed strings ($X X X$)

M = 2: Bethe,Vladimirov, Essler Korepin Schoutens, ...
Wide pairs, narrow pairs, extra real solutions for $\mathrm{N}>22$ Higher M
(R. Hagemans \& JSC, JPA 2007)

Here: 4-strings on
a chain of IM sites
Asymptotes:
$\Im \lambda=\frac{\Re \lambda}{\sqrt{N-3 \pm \sqrt{\frac{2}{3}(N-3)(N-2)}}}$

Beyond strings: important for completeness, finite size, ...
Full understanding of solutions to BE remains to be obtained

Algebraic Bethe Ansatz

Like '2nd quantization' for Bethe Ansatz
Introduce family $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$ of nonlocal operators which act in Hilbert space of model
$B(\lambda)$ creation operator, increasing particle number by I
Wavefunctions: $|\Psi(\{\lambda\})\rangle=\prod_{j} B\left(\lambda_{j}\right)|0\rangle$
provided the rapidities satisfy Bethe equations
Mapping ABA ops to local ops: quantum inverse problem (Maillet 1999)
For spin chains: $A(\lambda), B(\lambda), C(\lambda), D(\lambda) \longleftrightarrow S_{j}^{a}$
State norms: Gaudin-Korepin formula
Form factors: Slavnov's theorem

Det representation of form factors from the Algebraic Bethe Ansatz

$$
\left.\left|\langle\{\mu\}| S_{q}^{z}\right|\{\lambda\}\right\rangle\left.\right|^{2}=\frac{\left|F_{M}^{z}(\{\mu\},\{\lambda\})\right|^{2}}{\left|N_{M}(\{\mu\}) N_{M}(\{\lambda\})\right|}=\prod_{j=1}^{M}\left|\frac{\sinh \left(\mu_{j}-i \zeta / 2\right.}{\sinh \left(\lambda_{j}-i \zeta / 2\right)}\right|^{2} \prod_{j>k=1}^{M}\left|\sinh ^{2}\left(\mu_{j}-\mu_{k}\right)+\sin ^{2} \zeta\right|^{-1} \times
$$

$$
\times \prod_{j>k=1}^{M}\left|\sinh ^{2}\left(\lambda_{j}-\lambda_{k}\right)+\sin ^{2} \zeta\right|^{-1} \frac{|\operatorname{det}[\mathbf{H}(\{\mu\},\{\lambda\})-2 \mathbf{P}(\{\mu\},\{\lambda\})]|^{2}}{|\operatorname{det} \boldsymbol{\Phi}(\{\mu\}) \operatorname{det} \boldsymbol{\Phi}(\{\lambda\})|}
$$

All matrices are given explicitly as functions of the rapidities of the eigenstates involved:

$$
\mathbf{H}_{a b}(\{\mu\},\{\lambda\})=\frac{1}{\sinh \left(\mu_{a}-\lambda_{b}\right)}\left[\prod_{j \neq a} \sinh \left(\mu_{j}-\lambda_{b}-i \zeta\right)-\left[\frac{\sinh \left(\lambda_{b}+i \zeta / 2\right)}{\sinh \left(\lambda_{b}-i \zeta / 2\right)}\right]^{N} \prod_{j \neq a} \sinh \left(\mu_{j}-\lambda_{b}+i \zeta\right)\right],
$$

(Kitanine, Maillet, Slavnov, Terras 1999 \& 2000)
String states: need modified determinants
(Caux, Hagemans, Maillet 2005)

Integrability for correlations:

 generic featuresExact realization of ground state, taking all 'entanglement' into account

Exact realization of excited states (spinons, Lieb types I, II, Gaudinos,...), irrespective of their energy

Action of local operators: accurately captured by using only a handful of BA excitations
incredibly efficient basis for many physically relevant correlations

Correlation functions: elements

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum_{\mu}\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

I) Eigenstates basis: energies, states (+ norms)

2) We need to be able to compute the matrix elements of the operators we're interested in Algebraic Bethe Ansatz; q. groups
3) We need to be able to perform the sum over intermediate states

Numerics, analytics

Method I: ABACUS

$$
S(k, \omega), \quad \Delta=1, \quad h=0
$$

Zero field chain: transverse SF

Zero field chain: longitudinal SF

$S^{-+}, \Delta=1 / 4$

$$
S^{+-}, \Delta=1 / 4
$$

$S^{z z}, \Delta=1 / 4$

$S^{\text {tot }}, \Delta=1 / 4$

Method 2: analytics $(X X X, h=0)$

\bigcirc Infinite model, zero field: possesses $U_{q}\left(\hat{s l_{2}}\right)$ quantum group symmetry
Representation theory of q group \square eigenstates and form factors (Jimbo, Miwa, ...)
Excitations: built up of even numbers of spinons
Two spinon part of the structure factor:
Bougourzi, Couture, Kacir 1996; Karbach, Müller, B., Fledderjohann, Mütter 1997
Two spinon states carry 72.89% of integrated intensity (71.30\% of first frequency moment)

Remarkable: measure 0 set in Hilbert space carries majority of correlation weight !

Missing part: higher spinon numbers

Four spinon part of zero-field structure factor in the thermodynamic limit

 (Abada, Bougourzi, Si-Lakhal I997, revised in JSC \& R. Hagemans JSTAT 2006)At each point, 4 spinon SF is two-fold integral:

$$
S_{4}(k, \omega)=C_{4} \int_{\mathcal{D}_{K}} d K \int_{\Omega_{l}(k, \omega, K)}^{\Omega_{u}(k, \omega, K)} d \Omega \frac{J(k, \omega, K, \Omega)}{\left\{\left[\omega_{2, u}^{2}(K)-\Omega^{2}\right]\left[\omega_{2, u}^{2}(k-K)-(\omega-\Omega)^{2}\right]\right\}^{1 / 2}}
$$

4-spinon continuum:

Integration regions: intersection of two 2-spinon continua

4-spinon states carry about 27% of full intensity $2+4$ spinons: approx 98% of correlations!

Analytics (II): gapped XXZ, h = 0

(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel \& Pérez Castillo, JSTAT 2008)

Spinon excitations:

$$
e(\beta)=I \operatorname{dn}(\beta), \quad p(\beta)=\operatorname{am}(\beta)+\frac{\pi}{2}, \quad I \equiv \frac{J K}{\pi} \sinh \left(\frac{\pi K^{\prime}}{K}\right)
$$

Dispersion relation: $\quad e_{1}(p)=I \sqrt{1-k^{2} \cos ^{2}(p)}, \quad 0 \leq p \leq \pi$
Nontrivial 2-spinon continuum:
'Folding up' of continuum at small momentum transfer
(curvature of dispersion relation changes sign as fn of momentum)

Gapped XXZ AFM, h = 0, 2spinons

$\Delta=8$

 energies below twice the gap

Method 3: Field theory approach (small-q limit) / DMRG / BA for longitudinal structure factor

(Pereira, Sirker, Caux, Hagemans, Maillet, Affleck, White: PRL 2006, JSTAT 2007)
Straight free boson: $\quad \mathcal{H}_{L L}=\frac{v}{2}\left[\Pi^{2}+\left(\partial_{x} \phi\right)^{2}\right]$ nonzero field
simply gives

$$
S^{z z}(q, \omega)=K|q| \delta(\omega-v|q|)
$$

$$
\left.\left.\delta \mathcal{H}(x)=1 \eta_{-} \eta_{-}\left(\partial_{x} \phi_{L}\right)^{3}-\left(\partial_{x} \phi_{R}\right)^{3}\right]+\eta_{+}\left[\left(\partial_{x} \phi_{L}\right)^{2} \partial_{x} \phi_{R}-\left(\partial_{x} \phi_{R}\right)^{2} \partial_{x} \phi_{L}\right]\right]_{1}^{\prime}
$$

$+\zeta_{3}\left[\partial_{x} \phi_{L}\left(\partial_{x} \phi_{R}\right)^{3}+\partial_{x} \phi_{R}\left(\partial_{x} \phi_{L}\right)^{3}\right]+\lambda \cos \left(4 \sqrt{\pi K} \phi+4 k_{F} x\right)$
n-integrable $\sum \lambda$ zero field $\sum \lambda$

General appearance of the small q lineshape:

As for interacting fermions (Pustilnik, Glazman \& al.)
Finer structure for XXZ : can be investigated using BA

Peak region: $2 p$

Combining:

frequency-dependent form factors

\& density of states,

a nontrivial lineshape is obtained

Advantages/
disadvantages of the 3 approaches presented here

O Quantum group
Exact result
Zero field only
2 \& 4 sp only
Finite T

- ABACUS

Any integrable chain
Any field
Accurate at any energy Finite N
Finite T

○ FIELD THEORY
Not only for integrable cases Small window of q
Fine structure in w: tough Finite T

Lieb-Liniger Bose gas

Density-density (dynamical SF)
(J-S C \& P Calabrese, PRA 2006)

$$
\left.S(k, \omega)=\frac{2 \pi}{L} \sum_{\alpha}\left|\langle 0| \rho_{k}\right| \alpha\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\alpha}+E_{0}\right)
$$

Correspondence with excitations

Particle-like

$\bigcirc \bigcirc \bigcirc \bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet ○ ○ \bullet ○ ○$

Umklapp

One-particle dynamical function

$$
G_{2}(x, t)=\left\langle\Psi^{\dagger}(x, t) \Psi(0,0)\right\rangle_{N}
$$

(J-S C, P Calabrese \& N Slavnov, JSTAT 2007)

The attractive Lieb-Liniger model: analytical solution

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}-2 \bar{c} \sum_{\langle!, j\rangle} \delta\left(x_{i}-x_{j}\right)
$$

Bethe eqns: $\quad e^{i \lambda_{a} L}=\prod_{a \neq b} \frac{\lambda_{a}-\lambda_{b}-i \bar{c}}{\lambda_{a}-\lambda_{b}+i \bar{c}}, \quad a=1, \ldots, N$

bound state solutions: strings

$$
\lambda_{\alpha}^{j, a}=\lambda_{\alpha}^{j}+\frac{i \bar{c}}{2}(j+1-2 a)+i \delta_{\alpha}^{j, a} .
$$

(J. B. McGuire, I964; F. Calogero \& A. DeGasperis, I975; Y. Castin \& C. Herzog, 200I)

The attractive Lieb-Liniger model

(J. B. McGuire, I964; F. Calogero \& A. DeGasperis, I975; Y. Castin \& C. Herzog, 200I)

Ground state: single N string with zero momentum
Excitations: 'partition' N atoms into bound states

Bethe equations for GS solved to exponential accuracy: determinants can be calculated explicitly !!
(J.-S.C \& P. Calabrese PRL 2007; JSTAT 2007)

Analytical solution for CFs

(J.-S.C \& P. Calabrese PRL 2007; JSTAT 2007)

Single-particle coherent part + two-particle continuum

Finite threshold

Square-root singularity

Single-particle part: leads to Mössbauer-like effect (gas reacts like a single massive particle)

The 2-component Bose gas

 (special case of Yang permutation model)

$$
H=-\sum_{a=1}^{N_{C}} \sum_{i=1}^{N_{a}} \frac{\partial^{2}}{\partial x_{a, i}^{2}}+2 c \sum_{(a, i)<(b, j)} \delta\left(x_{a, i}-x_{b, j}\right)
$$

Dynamics: hum... nested BA
Equilibrium thermodynamics: OK!

$$
\begin{aligned}
& \epsilon(\lambda)=\lambda^{2}-\mu-\Omega-a_{2} * T \ln \left(1+e^{-\epsilon(\lambda) / T}\right)-\sum_{n=1}^{\infty} a_{n} * T \ln \left(1+e^{-\epsilon_{n}(\lambda) / T}\right) \\
& \epsilon_{1}(\lambda)=f * T \ln \left(1+e^{-\epsilon(\lambda) / T}\right)+f * T \ln \left(1+e^{\epsilon_{2}(\lambda) / T}\right) \\
& \epsilon_{n}(\lambda)=f * T \ln \left(1+e^{\epsilon_{n-1}(\lambda) / T}\right)+f * T \ln \left(1+e^{\epsilon_{n+1}(\lambda) / T}\right) \\
& \lim _{n \rightarrow \infty} \frac{\epsilon_{n}(\lambda)}{n}=2 \Omega
\end{aligned}
$$

The 2-component Bose gas

Populations as a function of total chemical potential
$\mu_{1}=60, \mu_{2}=40$

Populations as a function of temperature: contrast with single component case

Waiting for experimental data...

The Richardson model

$$
H_{B C S}=\sum_{\substack{\alpha=1 \\ \sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-g \sum_{\alpha, \beta=1}^{N} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

(R.W. Richardson, I963; R.W. Richardon \& N. Sherman, I964)
"Reduced BCS": ground state is BCS in th. limit, grand-canonical. Exactly solvable in canonical ensemble.

Eigenstates are Bethe, Rapidities: (Bethe) Richardson equations

$$
\left|\left\{w_{j}\right\}\right\rangle=\prod_{k=1}^{N_{r}} \mathcal{B}\left(w_{k}\right)|0\rangle
$$

$$
\frac{1}{g}=\sum_{\alpha=1}^{N} \frac{1}{w_{j}-\varepsilon_{\alpha}}-\sum_{k \neq j}^{N_{r}} \frac{2}{w_{j}-w_{k}}, \quad j=1, \ldots, N_{r}
$$

Pseudospin representation: $S_{\alpha}^{z}=b_{\alpha}^{\dagger} b_{\alpha}-1 / 2, \quad S_{\alpha}^{-}=b_{\alpha}, \quad S_{\alpha}^{+}=b_{\alpha}^{\dagger}$

$$
b_{\alpha}=c_{\alpha-} c_{\alpha+}, \quad b_{\alpha}^{\dagger}=c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} \quad H=\sum_{\alpha=1}^{N} \varepsilon_{\alpha} S_{\alpha}^{z}-g \sum_{\alpha, \beta=1}^{N} S_{\alpha}^{+} S_{\beta}^{-}
$$

Solving the Richardson equations

(relatively) straightforward for the ground state

For excited states: can become a real challenge !!
(Richardson, 1964; Schechter, Imry, Levinson \& von Delft, 200I; von Delft \& Ralph, 200I;Yuzbashyan, Baytin \& Altshuler, 2003; Roman, Sierra \& Dukelsky, 2003; Snyman \& Geyer, 2006; Sambataro, 2007)

The Richardson model:

(static) correlation functions

(A. Faribault, P. Calabrese \& J-S C, PRB 2008)
(Following up on ABA work by J. von Delft \& R. Poghossian, 2002 and H.-Q. Zhou, J. Links, R. H. McKenzie \& M. D. Gould, 2002-3)

$$
\left\langle S_{1}^{-} S_{\alpha}^{+}\right\rangle
$$

$\left\langle S_{1}^{z} S_{\alpha}^{z}\right\rangle$

Quenches: some trivialities

Sudden change of

 interaction parameter(Barouch \& McCoy, ..., Calabrese \& Cardy, ... Cazalilla, Lamacraft, Klich, Lannert \& Refael, ...)

At quench time: $\quad\left|\Psi_{g}^{0}\right\rangle=\sum_{\alpha}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle\left\langle\Psi_{g^{\prime}}^{\alpha} \mid \Psi_{g}^{0}\right\rangle \equiv \sum_{\alpha} M_{g^{\prime} g}^{\alpha 0}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle$
Subsequent time evolution:

$$
|\Psi(t)\rangle=\sum_{\alpha} M_{g^{\prime} g}^{\alpha 0} e^{-i \omega_{g^{\prime}}^{\alpha} t}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle
$$

Crucial building block: $\left\langle\left\langle\Psi_{g^{\prime}}^{\alpha} \mid \Psi_{g}^{\beta}\right\rangle \equiv M_{g^{\prime} g}^{\alpha \beta}\right.$ We know how to calculate this for Richardson !!

Quench matrix elements

Quench matrix elements

Quench: dominant excitations

Promoting 'blocks' of spins from under to above the Fermi level

$\bullet \bullet \bullet \bullet-\mid \circ \circ \circ \circ \circ \circ$

- - - ○ $1 \bullet \circ \circ \circ \circ \circ$
$\bullet \bullet \bullet \circ \circ \mid \bullet \bullet \circ \circ \circ \circ$
$\bullet \bullet \bullet \circ \circ \mid \bullet \bullet \bullet \circ \circ \circ$
- ○○○○|••••○○
- ○○○○○|•••••○
$\circ \circ \circ \circ \circ \circ \mid \bullet \bullet \bullet \bullet \bullet \bullet$

Importance of states: not same logic as for correlations, but BA basis still pretty good

Time dependence of observables

‘Canonical order parameter'

$$
\Psi(t)=\sum_{\alpha=1}^{N} \sqrt{\frac{1}{4}-\left\langle S_{\alpha}^{z}(t)\right\rangle^{2}}
$$

Asymptotic pairing order parameter

Plotted against mean-field prediction (Barankov \& Levitov, PRL 2006)

Δ_{s} BCS gap for initial g
Δ_{0} BCS gap for final g
Δ actual OP after quench

Sequential quenches

Generic

 situation, here for 2 quenches:Sequential

At $\mathrm{t}=0$, the initial quench populates excited states of H_{g}

As the quench lasts, each 'arrow' rotates at the appropriate frequency

The dequench repopulates states of original Hamiltonian
When arrows 'add up to zero': state destruction When arrows realign: state reconstruction

State occupation probabilities after double quench (quench-dequench)

Ground state disappears and reappears ('collapse and revival'); excited states nontrivially weighted

Weight distribution among excited states: look at IPRs

$$
I_{q, r}=\sum_{\alpha>0}\left|A_{\alpha}\right|^{2 q} /\left(\sum_{\alpha>0}\left|A_{\alpha}\right|^{2}\right)^{q}
$$

Predicting state occurrences

‘Continuous’ sieve of Eratosthenes:
O States ordered in decreasing quench weight
O Times kept: such that phases align to a specified tolerance
O High level alignment = constructive interference for that state

Phase timelines: progressively erase non-aligned times

State occupation probabilities after

 double quench (quench-dequench)Ground state disappears and reappears; excited states nontrivially weighted

Weight distribution among excited states: look at IPRs

$$
I_{q, r}=\sum_{\alpha>0}\left|A_{\alpha}\right|^{2 q} /\left(\sum_{\alpha>0}\left|A_{\alpha}\right|^{2}\right)^{q}
$$

Work and its

Fourier transform for quench/ dequench sequence

Conclusions \& open problems

Dynamical correlations in integrable models: now accessible from ABACUS, q groups

- Provides extensive, quantitative predictions for experiments

To do list/work in progress:

- Better classification of solutions to Bethe eqns

Ferromagnetic spin chains
Q group approach: other regimes/polarizations
Finite temperatures
Nested systems
Postdoc positions available !!
Quenches from integrability: other cases
Non-integrable deformations: RG using integrability (TSA, NRG)

