Correlations and quenches in integrable systems

Jean-Sébastien Caux Universiteit van Amsterdam

Work done in collaboration with:

R. Hagemans, J. M. Maillet, R. Pereira,
J. Sirker, I. Affleck, S. R. White,
J. Mossel, I. Pérez Castillo, A. Klauser
P. Calabrese, N. Slavnov, A. Faribault

Plan of the talk

Correlation dynamics

Systems which can be treated using 'exact' methods Short overview of the methods used Example I: quantum spin chains 3 approaches: lattice, q group, field theory Example 2: one-d Bose gas repulsive, attractive Example 3: the Richardson model Quantum quenches **General comments** ... quenches in the Richardson model

The contract: calculate dynamical correlation functions of local operators in interacting models

General form: $\langle \mathcal{O}(1)\mathcal{O}^{\dagger}(2) \rangle$ some local operator

Ground state, prepared state, thermal average, ...

Difficulty: multiparticle eigenstates are not obtained as simple products of single-particle states (alt., not created using simple products of local ops)
 Exact methods (integrability): traditionally restricted to equilibrium thermodynamics

Correlation functions: elements

$$S^{a,\bar{a}}(q,\omega) = 2\pi \sum_{\mu} [\langle 0|\mathcal{O}_{q}^{d}|\mu\rangle]^{2} \delta(\omega - E_{\mu} + E_{0})$$

I) Eigenstates basis: energies, states (+ norms)
 Bethe Ansatz; quantum groups

- We need to be able to compute the matrix elements of the operators we're interested in
 Algebraic Bethe Ansatz; q. groups
 - 3) We need to be able to perform the sum over intermediate states

Models which we can treat: Heisenberg spin-1/2 chain

$$H = \sum_{j=1}^{N} \left[J(S_{j}^{x}S_{j+1}^{x} + S_{j}^{y}S_{j+1}^{y} + \Delta S_{j}^{z}S_{j+1}^{z}) - H_{z}S_{j}^{z} \right]$$

(finite lattice BA; quantum groups)

Interacting Bose gas (Lieb-Liniger)

$$\mathcal{H}_N = -\sum_{j=1}^N \frac{\partial^2}{\partial x_j^2} + 2c \sum_{1 \le j < l \le N} \delta(x_j - x_l)$$

(BA for finite particle numbers)

Richardson model (+ Gaudin magnets)

$$H_{BCS} = \sum_{\substack{\alpha=1\\\sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha\sigma}^{\dagger} c_{\alpha\sigma} - g \sum_{\substack{\alpha,\beta=1}}^{N} c_{\alpha+}^{\dagger} c_{\beta-}^{\dagger} c_{\beta+} c$$

What we can calculate:

DYNAMICAL STRUCTURE FACTOR

$$S^{a\bar{a}}(q,\omega) = \frac{1}{N} \sum_{j,j'=1}^{N} e^{iq(j-j')} \int_{-\infty}^{\infty} dt e^{i\omega t} \langle S_j^a(t) S_{j'}^{\bar{a}}(0) \rangle_c$$

DENSITY-DENSITY FUNCTION

$$S(k,\omega) = \int dx \int dt e^{-ikx + i\omega t} \langle \rho(x,t)\rho(0,0) \rangle$$

ONE-BODY FN

$$G_2(x,t) = \langle \Psi^{\dagger}(x,t)\Psi(0,0) \rangle$$

Bragg spectroscopy, interference experiments, ... (zero temperature only (for now !))

Specific cases treated:

Repulsive

Attractive

Richardson

Finite BA numerics Analytics (q groups)

General XXZ AFM, Hz done XXX gapless AFM, Hz=0 XXZ gapped AFM, Hz=0 XXZ gapless AFM, Hz=0 no go done: (2)+4 sp done: 2 sp done: 2 sp (t.b.p.)

Finite BA numerics done Analytics (brute force) no go done

Finite BA numerics done

Quenches

done (t.b.p.)

Method I: Bethe Ansatz

July 2, 1906 – March 6, 2005

Hans Bethe, 1931

$$H = \sum_{j=1}^{N} \left[J(S_{j}^{x}S_{j+1}^{x} + S_{j}^{y}S_{j+1}^{y} + \Delta S_{j}^{z}S_{j+1}^{z}) - H_{z}S_{j}^{z} \right]$$

Exact solution through Bethe Ansatz:

Eigenstate with M down spins fully characterized by set of rapidities $\{\lambda_j\}, \quad j = 1, ..., M$

$$\Psi(j_1, ..., j_M | \lambda_1, ..., \lambda_M) = \sum_P^{M!} A(P | \{\lambda\}) e^{i \sum_{a=1}^M k(\lambda_{P_a}) j_a}$$
Known amplitudes

The M rapidities are solutions of the Bethe equations $\theta_1(\lambda_j) - \frac{1}{N} \sum_{l=1}^M \theta_2(\lambda_j - \lambda_l) = 2\pi \frac{I_j}{N}, \quad j = 1, ..., M$

Eigenstates: labeled by set of quantum numbers Ground state:

Solving the BE: nontrivial in general, still: it's feasible

Deformed strings (XXX)

M = 2: Bethe, Vladimirov, Essler Korepin Schoutens, ... Wide pairs, narrow pairs, extra real solutions for N > 22

Beyond strings: important for completeness, finite size, ... Full understanding of solutions to BE remains to be obtained

Algebraic Bethe Ansatz

Like '2nd quantization' for Bethe Ansatz Introduce family $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$ of nonlocal operators which act in Hilbert space of model

- $B(\lambda)$ creation operator, increasing particle number by I
 - Wavefunctions: $|\Psi(\{\lambda\})\rangle = \prod_{j} B(\lambda_j)|0\rangle$

provided the rapidities satisfy Bethe equations

Mapping ABA ops to local ops: quantum inverse problem (Maillet 1999)

For spin chains: $A(\lambda), B(\lambda), C(\lambda), D(\lambda) \longleftrightarrow S_j^a$

State norms: Gaudin-Korepin formula Form factors: Slavnov's theorem

Det representation of form factors from the Algebraic Bethe Ansatz

$$\begin{split} |\langle \{\mu\}|S_{q}^{z}|\{\lambda\}\rangle|^{2} &= \frac{|F_{M}^{z}(\{\mu\},\{\lambda\})|^{2}}{|N_{M}(\{\mu\})N_{M}(\{\lambda\})|} = \prod_{j=1}^{M} \left|\frac{\sinh(\mu_{j}-i\zeta/2)}{\sinh(\lambda_{j}-i\zeta/2)}\right|^{2} \prod_{j>k=1}^{M} \left|\sinh^{2}(\mu_{j}-\mu_{k})+\sin^{2}\zeta\right|^{-1} \times \\ &\times \prod_{j>k=1}^{M} \left|\sinh^{2}(\lambda_{j}-\lambda_{k})+\sin^{2}\zeta\right|^{-1} \frac{\left|\det[\mathbf{H}(\{\mu\},\{\lambda\})-2\mathbf{P}(\{\mu\},\{\lambda\})]\right|^{2}}{\left|\det\mathbf{\Phi}(\{\mu\})\det\mathbf{\Phi}(\{\lambda\})\right|} \end{split}$$

All matrices are given explicitly as functions of the rapidities of the eigenstates involved: $\mathbf{H}_{ab}(\{\mu\},\{\lambda\}) = \frac{1}{\sinh(\mu_a - \lambda_b)} \left[\prod_{j \neq a} \sinh(\mu_j - \lambda_b - i\zeta) - \left[\frac{\sinh(\lambda_b + i\zeta/2)}{\sinh(\lambda_b - i\zeta/2)} \right]^N \prod_{j \neq a} \sinh(\mu_j - \lambda_b + i\zeta) \right],$

(Kitanine, Maillet, Slavnov, Terras 1999 & 2000) String states: need modified determinants (Caux, Hagemans, Maillet 2005)

Integrability for correlations: generic features

Exact realization of excited states (spinons, Lieb types I, II, Gaudinos,...), irrespective of their energy

Action of local operators: accurately captured by using only a handful of BA excitations

incredibly efficient basis for many physically relevant correlations

Zero field chain: transverse SF

Zero field chain: longitudinal SF

 $S^{-+}, \Delta = 1/4$

 $S^{+-}, \Delta = 1/4$

 $S^{zz}, \Delta = 1/4$

 $S^{tot}, \Delta = 1/4$

Method 2: analytics (XXX, h = 0) Infinite model, zero field: possesses $U_a(\hat{sl}_2)$ quantum group symmetry Representation theory of q group eigenstates and form factors (Jimbo, Miwa, ...) Excitations: built up of even numbers of spinons Two spinon part of the structure factor: Bougourzi, Couture, Kacir 1996; Karbach, Müller, B., Fledderjohann, Mütter 1997 Two spinon states carry 72.89% of integrated intensity (71.30% of first frequency moment) **Remarkable**: measure 0 set in Hilbert space carries majority of correlation weight ! Missing part: higher spinon numbers

Four spinon part of zero-field structure factor in the thermodynamic limit

(Abada, Bougourzi, Si-Lakhal 1997, revised in JSC & R. Hagemans JSTAT 2006)

At each point, 4 spinon SF is two-fold integral:

$$S_4(k,\omega) = C_4 \int_{\mathcal{D}_K} dK \int_{\Omega_l(k,\omega,K)}^{\Omega_u(k,\omega,K)} d\Omega \frac{J(k,\omega,K,\Omega)}{\left\{ \left[\omega_{2,u}^2(K) - \Omega^2 \right] \left[\omega_{2,u}^2(k-K) - (\omega-\Omega)^2 \right] \right\}^{1/2}}$$

4-spinon continuum:

Integration regions: intersection of two 2-spinon continua

Analytics (II): gapped XXZ, h = 0

(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel & Pérez Castillo, JSTAT 2008)

Spinon excitations:

$$e(\beta) = I \operatorname{dn}(\beta), \quad p(\beta) = \operatorname{am}(\beta) + \frac{\pi}{2}, \quad I \equiv \frac{JK}{\pi} \operatorname{sinh}\left(\frac{\pi K'}{K}\right)$$

Dispersion relation: $e_1(p) = I\sqrt{1-k^2\cos^2(p)}, \quad 0 \le p \le \pi$

Nontrivial 2-spinon continuum: 'Folding up' of continuum at small momentum transfer (curvature of dispersion relation changes sign as fn of momentum)

EXAGETS diverse below twice the gap

Method 3: Field theory approach (small-q limit) / DMRG / BA for longitudinal structure factor

(Pereira, Sirker, Caux, Hagemans, Maillet, Affleck, White: PRL 2006, JSTAT 2007)

Straight free boson:
$$\mathcal{H}_{LL} = \frac{v}{2} \begin{bmatrix} \Pi^2 + (\partial_x \phi)^2 \end{bmatrix} \text{ nonzero}$$
simply gives
$$S^{zz} (q, \omega) = K |q| \delta (\omega - v |q|)$$

$$\delta \mathcal{H}(x) = \eta_{-} \begin{bmatrix} (\partial_x \phi_L)^3 - (\partial_x \phi_R)^3 \end{bmatrix} + \eta_{+} \begin{bmatrix} (\partial_x \phi_L)^2 \partial_x \phi_R - (\partial_x \phi_R)^2 \partial_x \phi_L \end{bmatrix}$$

$$(+\zeta_{-} \begin{bmatrix} (\partial_x \phi_L)^4 + (\partial_x \phi_R)^4 \end{bmatrix} + \zeta_{+} (\partial_x \phi_L)^2 (\partial_x \phi_R)^2$$

$$(+\zeta_{3} \begin{bmatrix} \partial_x \phi_L (\partial_x \phi_R)^3 + \partial_x \phi_R (\partial_x \phi_L)^3 \end{bmatrix} + \lambda \cos \left(4\sqrt{\pi K} \phi + 4k_F x \right)$$
non-integrable Zero field

General appearance of the small q lineshape:

As for interacting fermions (Pustilnik, Glazman & al.)

Finer structure for XXZ: can be investigated using BA

Peak region: 2p

Advantages/ disadvantages of the 3 approaches presented here

Quantum group
 Exact result

Zero field only

2 & 4 sp only

Finite T

ABACUS

Any integrable chain Any field Accurate at any energy Finite N Finite T

FIELD THEORY
Not only for integrable cases
Small window of q

Fine structure in w: tough

Finite T

Lieb-Liniger Bose gas

Density-density (dynamical SF)

(J-S C & P Calabrese, PRA 2006)

$$S(k,\omega) = \frac{2\pi}{L} \sum_{\alpha} |\langle 0|\rho_k |\alpha \rangle|^2 \delta(\omega - E_{\alpha} + E_0)$$

Correspondence with excitations

One-particle dynamical function

$$G_2(x,t) = \langle \Psi^{\dagger}(x,t)\Psi(0,0)\rangle_N$$

(J-S C, P Calabrese & N Slavnov, JSTAT 2007)

The attractive Lieb-Liniger model: analytical solution

Bethe eqns: $e^{i\lambda}$

 \square

$$\lambda_a L = \prod_{a \neq b} \frac{\lambda_a - \lambda_b - i\bar{c}}{\lambda_a - \lambda_b + i\bar{c}}, \quad a = 1, ..., N$$

bound state solutions: strings $\lambda_{\alpha}^{j,a} = \lambda_{\alpha}^{j} + \frac{i\bar{c}}{2}(j+1-2a) + i\delta_{\alpha}^{j,a}$.

(J. B. McGuire, 1964; F. Calogero & A. DeGasperis, 1975; Y. Castin & C. Herzog, 2001)

(J. B. McGuire, 1964; F. Calogero & A. DeGasperis, 1975; Y. Castin & C. Herzog, 2001)

Ground state: single N string with zero momentum

Excitations: 'partition' N atoms into bound states

Analytical solution for CFs

(J.-S.C & P. Calabrese PRL 2007; JSTAT 2007)

Single-particle coherent part + two-particle continuum

Single-particle part: leads to Mössbauer-like effect (gas reacts like a single massive particle)

The 2-component Bose gas (special case of Yang permutation model)

$$H = -\sum_{a=1}^{N_C} \sum_{i=1}^{N_a} \frac{\partial^2}{\partial x_{a,i}^2} + 2c \sum_{(a,i)<(b,j)} \delta(x_{a,i} - x_{b,j})$$

$$Optimizer Dynamics: hum... nested BA$$

$$Optimizer Dynamics: hum... nested BA$$

$$Optimizer Dynamics: OK !$$

$$\epsilon(\lambda) = \lambda^2 - \mu - \Omega - a_2 * T \ln(1 + e^{-\epsilon(\lambda)/T}) - \sum_{a=1}^{\infty} a_a * T \ln(1 + e^{-\epsilon_a(\lambda)/T})$$

$$c(\pi) = \pi \quad \mu \quad u_2 = 1 \quad (1 + c) \quad \sum_{n=1}^{\infty} u_n = 1$$

$$\epsilon_1(\lambda) = f * T \ln(1 + e^{-\epsilon(\lambda)/T}) + f * T \ln(1 + e^{\epsilon_2(\lambda)/T})$$

The 2-component Bose gas

Populations as a function of total chemical potential

Populations as a function of temperature: contrast with single component case

Waiting for experimental data...

The Richardson model

$$H_{BCS} = \sum_{\substack{\alpha=1\\\sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha\sigma}^{\dagger} c_{\alpha\sigma} - g \sum_{\substack{\alpha,\beta=1}}^{N} c_{\alpha+}^{\dagger} c_{\beta-}^{\dagger} c_{\beta+} c$$

(R.W. Richardson, 1963; R.W. Richardon & N. Sherman, 1964)

"Reduced BCS": ground state is BCS in th. limit, grand-canonical. Exactly solvable in canonical ensemble.

Eigenstates are Bethe, Rapidities: (Bethe) Richardson equations

 $H = \sum_{\alpha}^{N} \varepsilon_{\alpha} S_{\alpha}^{z} - g \sum_{\alpha}^{N} S_{\alpha}^{+} S_{\beta}^{-}$

 $\alpha = 1$

 $\alpha.\beta=1$

$$|\{w_j\}\rangle = \prod_{k=1}^{N_r} \mathcal{B}(w_k)|0\rangle \qquad \frac{1}{g} = \sum_{\alpha=1}^{N} \frac{1}{w_j - \varepsilon_\alpha} - \sum_{k\neq j}^{N_r} \frac{2}{w_j - w_k}, \quad j = 1, \dots, N_r$$

Pseudospin representation: $S_{\alpha}^{z} = b_{\alpha}^{\dagger}b_{\alpha} - 1/2, \quad S_{\alpha}^{-} = b_{\alpha}, \quad S_{\alpha}^{+} = b_{\alpha}^{\dagger}$

$$b_{\alpha} = c_{\alpha-}c_{\alpha+}, \qquad b_{\alpha}^{\dagger} = c_{\alpha+}^{\dagger}c_{\alpha-}^{\dagger}$$

Solving the Richardson equations

(relatively) straightforward for the ground state

For excited states: can become a real challenge !!

(Richardson, 1964; Schechter, Imry, Levinson & von Delft, 2001; von Delft & Ralph, 2001; Yuzbashyan, Baytin & Altshuler, 2003; Roman, Sierra & Dukelsky, 2003; Snyman & Geyer, 2006; Sambataro, 2007)

The Richardson model: (static) correlation functions

(A. Faribault, P. Calabrese & J-S C, PRB 2008)

(Following up on ABA work by J. von Delft & R. Poghossian, 2002 and H.-Q. Zhou, J. Links, R. H. McKenzie & M. D. Gould, 2002-3)

 $\langle S_1^z S_\alpha^z \rangle$

Quenches: some trivialities

Sudden change of interaction parameter

(Barouch & McCoy, ..., Calabrese & Cardy, ... Cazalilla, Lamacraft, Klich, Lannert & Refael, ...)

At quench time: $|\Psi_g^0$ Subsequent time evolution:

$$\Psi_{g}^{0}\rangle = \sum_{\alpha} |\Psi_{g'}^{\alpha}\rangle \langle \Psi_{g'}^{\alpha}|\Psi_{g}^{0}\rangle \equiv \sum_{\alpha} M_{g'g}^{\alpha0}|\Psi_{g'}^{\alpha}\rangle$$
$$|\Psi(t)\rangle = \sum M_{g'g}^{\alpha0} e^{-i\omega_{g'}^{\alpha}t} |\Psi_{g'}^{\alpha}\rangle$$

 $\boldsymbol{\alpha}$

Crucial building block:

$$\left\langle \Psi_{g'}^{\alpha} | \Psi_{g}^{\beta} \right\rangle \equiv M_{g'g}^{\alpha\beta}$$

We know how to calculate this for Richardson !!

Quench matrix elements

Quench matrix elements

Quench: dominant excitations

Promoting 'blocks' of spins from under to above the Fermi level

Contribution to square amplitude of resulting state

Importance of states: not same logic as for correlations, but BA basis still pretty good

Time dependence of observables

'Canonical order parameter'

$$\Psi(t) = \sum_{\alpha=1}^{N} \sqrt{\frac{1}{4} - \langle S_{\alpha}^{z}(t) \rangle^{2}}$$

Asymptotic pairing order parameter

Plotted against mean-field prediction (Barankov & Levitov, PRL 2006)

 $\Delta_s \quad \text{BCS gap for initial g} \\ \Delta_0 \quad \text{BCS gap for final g}$

∆ actual OP after quench

Sequential quenches

Generic situation, here for 2 quenches:

 $Q_{\beta\alpha}(t_q) = \sum M_{g_0g_1}^{\beta\gamma} M_{g_1g_0}^{\gamma\alpha} e^{-i\omega_{\gamma}t_q}$

'Quench propagator' for quench-dequench

> Possible to focus on specific excited states ?

 $\gamma \in \mathcal{H}_{g_1}$

At t = 0, the initial quench populates excited states of H_g

As the quench lasts, each 'arrow' rotates at the appropriate frequency

The dequench repopulates states of original Hamiltonian When arrows 'add up to zero': state destruction When arrows realign: state reconstruction

State occupation probabilities after double quench (quench-dequench)

Ground state disappears and reappears ('collapse and revival'); excited states nontrivially weighted

Weight distribution among excited states: look at IPRs

 $I_{q,r} = \sum_{\alpha > 0} |A_{\alpha}|^{2q} / (\sum_{\alpha > 0} |A_{\alpha}|^{2})^{q}$

Predicting state occurrences

'Continuous' sieve of Eratosthenes:

States ordered in decreasing quench weight
 Times kept: such that phases align to a specified tolerance

High level alignment = constructive interference for that state

Phase timelines: progressively erase non-aligned times

State occupation probabilities after double quench (quench-dequench)

Ground state disappears and reappears; excited states nontrivially weighted

Weight distribution among excited states: look at IPRs

Work and its Fourier transform for quench/ dequench sequence

Conclusions & open problems

Oynamical correlations in integrable models: now accessible from ABACUS, q groups

Provides extensive, quantitative predictions for experiments

To do list/work in progress:

- Better classification of solutions to Bethe eqns
- Ferromagnetic spin chains
- Q group approach: other regimes/polarizations
- **Finite temperatures**
- Nested systems
 Postdoc positions available !!
- Quenches from integrability: other cases
- Non-integrable deformations: RG using integrability (TSA, NRG)