・ ロ ト ・ 御 ト ・ ヨ ト ・ ヨ ト

Density fluctuations in a very elongated Bose gas : from ideal gaz to quasi-condensate

Isabelle Bouchoule, Jérôme Estève, Jean-Baptiste Trebbia, Thorsten Schumm, Alain Aspect, Chris Westbrook, Karen Kheruntsyan and Gora Shlyapnikov

Institut d'Optique, Palaiseau.

Evora, November 2008

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ultracold gases and quantum correlated systems physics

Cold atoms experiments :

- Large variety of confining potentials
- Interaction parameter may be changed
- No coupling to a noisy environment
- Fermions and/or Bosons
- ...

Correlated systems in cold atomic gases :

- MOTT transition with fermions and Bosons
- BEC-BCS cross over in fermion gases
- Fermionic gases at unitarity (infinite interactions)
- Fermionic gases with nonequal Fermi levels
- ...

Physics in systems of reduced dimension

- Very different physics from 3D systems
- Enhanced effect of interactions
- 1D case : exact solutions exist

Contribution of cold atom field

- Realisation of reduced dimensional systems by strong confinement in 1 or 2D
- Well controlable systems
- Chip experiment well suited to study 1D physics

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas
- 2 Experimental study of the cross-over towards quasi-bec
 - Observation of bunching effect
 - Inhibition of bunching in the quasi-bec regime
- Experimental proof of the failure of Hartree-Fock to explain the transition towards a quasi-bec

▲□▶▲□▶▲□▶▲□▶ □ のQで

Other results

5 Conclusion

Outline

D Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas
- 2 Experimental study of the cross-over towards quasi-bec
 Observation of bunching effect
 Inhibition of bunching in the quasi-bec regime
- 3 Experimental proof of the failure of Hartree-Fock to explain the transition towards a quasi-bec

4 Other results

Ideal 1D Bose gases

No BEC phenomena in 1D systems.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Physics is very different in 1D systems. Enhanced fluctuations Physics governed by interactions

Interacting 1D Bose gas

Coupling constant : g

$$H = -\frac{\hbar^2}{2m} \int dz \psi^+ \frac{\partial^2}{\partial_z^2} \psi + \frac{g}{2} \int dz \psi^+ \psi^+ \psi \psi,$$

Exact solution :Lieb-Liniger Thermodynamic : Yang-Yang (60') Parameters : $t = T\hbar^2/mg^2$, $\gamma = mg/\hbar^2 n$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Nearly ideal gas regime : bunching phenomena

For each quantum state, Boltzmann distribution \rightarrow particle number fluctuations : $\langle n^2 \rangle - \langle n \rangle^2 = \langle n \rangle + \langle n \rangle^2$

shot noise

▲□▶▲□▶▲□▶▲□▶ □ のQで

$$\langle n(z) n(z') \rangle = \langle n \rangle^2 g_2(z'-z)$$

$$g_2 - 1$$

$$l_c = \lambda_{dB} : |\mu| \gg T$$

$$l_c \simeq \hbar^2 n/(mT) : |\mu| \ll T$$

$$z' - z$$

Bunching effect \rightarrow density fluctuations. correlation length increases with density Bunching : correlation between particles. Quantum statistic Theory for pure 1D gaz Experimental study of the cross-over towards quasi-bec Failure of Hartree-Fock Other results Conclusion

Highly degenerate gas : classical field limit

Interferences between all modes : $\langle I(r)I(0)\rangle$

$$I(r) = |\psi(r)|^2$$

$$\psi(r) = \sum_k \psi_k e^{ikr}$$

bunching phenomena : speckle

▲□▶▲□▶▲□▶▲□▶ □ のQで

Crossover towards quasi-condensate

Reduction of density fluctuations at low temperature/high density Cross-over temperature :

$$\frac{1}{N}H_{int} \propto gn \simeq |\mu| \quad \Rightarrow \quad T_{c.o.} \simeq \frac{\hbar^2 n^2}{2m} \sqrt{\gamma}$$

- \star For $T \ll T_{c.o.}$: quasi-bec regime
- bunching effect killed

Theory for pure 1D gaz Experimental study of the cross-over towards quasi-bec Failure of Hartree-Fock Other results Conclusion

1D weakly interacting homogeneous Bose gas

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Cross-over towards quasi-bec in a one-dimensional gas trapped in a harmonic potential

Cross-over towards quasi-bec when peak density n_0 reaches $n_{c.o.}$. approaching crossover from ideal Bose gas side, we find

$$N_{c.o.} \simeq \frac{k_B T}{\hbar \omega} \ln \left(t^{1/3} \right) \qquad T_{c.o.} \simeq \frac{N \hbar \omega}{\ln \left(\left(\frac{N \hbar^3 \omega}{mg^2} \right)^{1/3} \right)}$$

• Validity of LDA : $l_c \ll \frac{1}{n} \frac{dn}{dz}$ At cross-over : $l_c \simeq \frac{\hbar}{\sqrt{mgn_{co}}}$ \Rightarrow condition for LDA $\hbar\omega \ll (mg^2T^2/\hbar^2)^{1/3}$ If not satisfied : finite size condensation phenomena

Comparison with exact results

Lieb-Liniger and Yang-Yang thermodynamic : exact solution that describes the crossover

• Density profiles $t = k_B T \hbar^2 / (mg^2) = 10^5, N_{c.o.} \hbar \omega / T = \frac{1}{3} \ln(t) = 3.6$

- Atom number at cross over in good agreement with approximate formula
- Decoherent quantum regime can be clearly identified

Realization in a 3D world

- 1D dynamic
 - Transverse confinement : ω_{\perp}
 - Gas energy scales $\ll \hbar \omega_{\perp}$. At cross-over : $T \ll \hbar \omega_{\perp}$
 - ullet transverse wave function of atoms : Gaussian ground state ψ_\perp
- Effective 1D coupling constant
 - Low energy scattering $(\hbar/\sqrt{mE} \ll R_e)$: scattering length *a*
 - Case $a \ll l_{\perp} = \sqrt{\hbar/m\omega_{\perp}}$: 3D collision physics $\Rightarrow g = 2\hbar\omega_{\perp}a$
- LDA condition : $\omega \ll \omega_{\perp} (T/\hbar\omega_{\perp})^{2/3} (a/l_{\perp})^{2/3}$ Easily satisfied
- *t* parameter achievable
 - 1D condition $\Rightarrow t \ll (l_{\perp}/a)^2$
 - \Rightarrow difficult to obtain very high values of *t* experimentally.

Outline

Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas
- 2 Experimental study of the cross-over towards quasi-bec
 Observation of bunching effect
 Inhibition of bunching in the quasi-bec regime
- 3 Experimental proof of the failure of Hartree-Fock to explain the transition towards a quasi-bec

▲□▶▲□▶▲□▶▲□▶ □ のQで

4 Other results

Realisation of very anisotropic traps on an atom chip

Use of a H shape trap

Transverse confinement produced by central wire $(I_1 + I_2 = 3A)$ and $B_{ext} (B_{ext} = 30G)$:

 $\omega_{\perp} = 2\pi \times 2800 Hz$

Longitudinal confinement :

 $\omega_z \propto (I_1 - I_2)^2 : 6Hz \rightarrow 20Hz$ Lower value limited by potential roughness

Experimental apparatus

- ⁸⁷Rb atoms loaded from a dispenser source.
- Surface MOT transfered into the magnetic trap $(3 \times 10^6 \text{ atoms})$
- Radio-frequency evaporative cooling : $T \simeq 1.5 \hbar \omega_{\perp}$ for a few thousand atoms

Absorption images

• Imaging geometry

- 2 pictures taken :
- * With atoms and trap still on
- * Without atoms (delay of 200 ms)

Atom per pixel : $n_{at} = \frac{\Delta^2}{\sigma} \ln(\frac{I_2}{I_1})$.

Error if variation of density on a scale smaller than pixel size and high optical density

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Noise measurement

Inspired by Föling et al. Nature 434, 481, M. Greiner et al., PRL 94, 110401

Statistical analysis over about 300 images taken in the same condition.

Reference curve : average over 20 images (running average) and normalised to the same N_{tot}

Running average : remove small long term drift Normalisation to N_{tot} : remove shot to shot total atom number fluctuations

Atom-number fluctuations in an ideal Bose gas

Pixel size $\Delta \gg l_c$

Thermodynamic in each pixel.

- For each eigenstate : $\langle n^2 \rangle \langle n \rangle^2 = \langle n \rangle + \langle n \rangle^2$
- G occupied eigenstates

$$\langle N_t^2 \rangle - \langle N_t \rangle^2 = \langle N_t \rangle + \sum_i \langle n_i \rangle^2$$

For equally occupied states,

$$\left\langle N_{t}^{2} \right
angle - \left\langle N_{t}
ight
angle^{2} = \left\langle N_{t}
ight
angle + rac{1}{G} \left\langle N_{t}
ight
angle^{2}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- To observe bunching : G should not be too high
- Ratio bunching/shot noise : $\langle N_t \rangle / G = psd$

Slope smaller than 1 : due to finite optical resolution δ

Contribution of each atom on the absorption in a given pixel reduced by a factor $\propto \frac{\delta}{\Delta}$ \Rightarrow slope of shot noise reduced

▲□▶▲□▶▲□▶▲□▶ □ のQで

For Gaussian resolution of rms width δ , reduction by $\kappa = \frac{\Delta}{2\sqrt{\pi\delta}}$. Measured reduction $\kappa = 0.17 \rightarrow \delta = 10\mu \text{m}$. Measured resolution : $8\mu \text{m}$ Theory for pure ID gaz Experimental study of the cross-over towards quasi-bee Failure of Hartree-Fock Other results Conclus Bunching effect in atom number fluctuations in the optical images

$$\rightarrow \left\langle N^2 \right\rangle - \left\langle N \right\rangle^2 = \left\langle N \right\rangle + \frac{\lambda_{dB}}{\sqrt{2}\Delta} \left(\frac{\hbar\omega_{\perp}}{4k_BT} \right)^2 \left\langle N \right\rangle^2$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

More precise calculation of the bunching effect

Fluctuations computed using the ideal Bose gas exact calculations

• For $|\mu| \gg k_B T$ (highly non degenerate),

$$\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle + \langle N \rangle^2 \frac{\lambda_{dB}}{\sqrt{2}\Delta} \tanh^2(\hbar\omega_{\perp}/2k_BT)$$

Effective number of populated states smaller when gas more degenerate.

• For $|\mu| \ll k_B T$ (highly degenerate),

$$\langle N^2 \rangle - \langle N \rangle^2 \simeq \langle N \rangle + \langle N \rangle^3 \frac{\hbar^2}{mk_B T \Delta^2}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Failure of Hartree-Fock Oth

her results Conclusio

Observation of atomic bunching and evidence for quantum decoherent regime

Temperature deduced from longitudinal profile.

Dotted : non-degenerate gas approximation Dashed-dotted : Exact formula

イロト イポト イヨト イヨト

Expected atom number fluctuations in a one dimensional system in quasibec regime

Pixel size Δ much larger than healing length $\xi = \hbar / \sqrt{mgn}$ \Rightarrow Relevant excitations are phonons

Energy of a phonon of wave vector k :

$$H_k = L\left(\frac{g}{2}\delta\rho_k^2 + n\frac{\hbar^2k^2}{2m}\theta_k^2\right)$$

Thermodynamic equilibrium :

$$\frac{k_B T}{2} = L \frac{g}{2} \delta \rho_k^2 \qquad (k_B T \gg gn)$$

Atom number fluctuations : $VarN = \int_{\Lambda} \int_{\Lambda} \left\langle \delta \rho(z) \delta \rho(z') \right\rangle$

$$\Rightarrow VarN = \Delta \frac{k_BT}{g}$$

Experimental study of the cross-over towards quasi-bec Failure of Hartree-Fock Other results

Expected atom number fluctuations in a nearly one dimensional system in quasibec regime

- $n \ll 1/a$: Purely one dimensional case recovered. $(g = 2\hbar\omega_{\perp}a)$
- *n* of the order or larger than 1/a: Transverse breathing associated with a longitudinal phonon has to be taken into account.

Thermodynamic argument :

$$\operatorname{Var}(N) = k_B T \left(\frac{\partial N}{\partial \mu} \right)_T$$

$$\Rightarrow \operatorname{Var}(N) = k_B T \Delta \frac{\sqrt{1 + 4na}}{2\hbar\omega_{\perp} a}$$

In good agreement with a 3D Bogoliubov calculation of Var(N). ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Experimental results in the quasibec regime

- Temperature fitted from the wings of the profile
- Good agreement with theory for low temperature

Estève et al. PRL 96, 130403

Conclusion on density fluctuations measurement

Most features of weakly interacting 1D Bose gases observed

Outline

Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas
- 2 Experimental study of the cross-over towards quasi-bec
 Observation of bunching effect
 - Inhibition of bunching in the quasi-bec regime
- 3 Experimental proof of the failure of Hartree-Fock to explain the transition towards a quasi-bec

4 Other results

5 Conclusion

Theory for pure 1D gaz Experimental study of the cross-over towards quasi-bec Failure of Hartree-Fock Other results Conc

Success of Hartree-Fock theory in 3D Bose gases

3D ideal Bose gases : BEC for $\rho_c = 2.612.../\lambda_{dB}^3$ For weak interactions ($\rho a^3 \ll 1$), Mean-field theories accurate. •For $\rho < \rho_c$: Hartree-Fock theory variational method : non interacting Bosons that experienced V_{eff} .

$$\Rightarrow V_{eff}(r) = 2gn(r), \qquad g = 4\pi\hbar^2 a/m$$

- ρ_c unchanged
- shift of chemical potential by $2g\rho$.
- for a gas trapped in harmonic potential, small shift of N_c (Gerbier et al., Phys. Rev. Lett. 92, 030405 (2004))

• Beyond mean-field

- Validity of Mean-Field (Landau-Ginzburg criteria) : $|T - T_c|/T_c > a\rho^{1/3}$.
- Beyond mean-field effects :
 - small shift of T_c ,

Theory for pure 1D gaz Experimental study of the cross-over towards quasi-bec Failure of Hartree-Fock Other results Conclus

Expected failure of Hartree-Fock theory to describe cross over towards quasi-bec in a 1D gas

• Hartree-Fock theory

Gas described by an ideal Bose gas

 \Rightarrow atomic correlations introduced by interactions neglected

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \Rightarrow failure in 1D

Density profile through the transition towards quasibec

Very elongated trap : $2\pi * \omega_{\perp} = 2.75$ kHz, $2\pi * \omega_z = 15$ Hz. In situ density profile by absorption imaging

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Calculation of Hartree-Fock longitudinal profile

We assume :

• Longitudinal local density approximation $\mu_{loc} = \mu - 1/2m\omega_z^2 z^2$ Local linear density is that of gas of independent Bosons that experience

$$H_{HF} = \frac{\hat{p}_z^2}{2m} + H_{2D}^{harm} + 2g\rho(r)$$

 $\rho \mbox{ computed}$

- by iteration (μ small)
- by minimization over $\rho = e^{-r^2/2\sigma^2}(a + br^2 + cr^4 + dr^6)$

Assumptions verified *a posteriori*. (1D diagonalization of the effective longitudinal potential)

Theory for pure 1D gaz Experimental study of the cross-over towards quasi-bec Failure of Hartree-Fock Other results Conclusion

Failure of Hartree-Fock theory : a quasibec without condensation

Hartree-Fock calculation

*Population in the ground state $N_0/N_{tot} \simeq 3 \times 10^{-3} \ll 1$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The appearance of quasi-bec is not explained by Hartree-Fock theory. First failure of mean field theory in a weakly interacting regime. *J.-B. Trebbia et al. PRL* **97**, 250403 (2006)

Outline

Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas
- 2 Experimental study of the cross-over towards quasi-bec
 Observation of bunching effect
 Inhibition of bunching in the quasi-bec regime
- 3 Experimental proof of the failure of Hartree-Fock to explain the transition towards a quasi-bec

Other results

5 Conclusion

Other experimental results

• Phase fluctuations measurement in weakly interacting gases. $\langle \psi^+(z)\psi(0)\rangle = ne^{-mTz/2n\hbar^2}$

Dettmer et al. PRL 87, 160406 (2001), Richard et al. PRL 91, 010405 (2003)

• Quantum phase fluctuations in weakly interacting 1D gas

S. Hofferberth et eal., Nature Physics 4, 489 (2008)

• Strongly interacting 1D gases : fermionization

Kinoshita et al. PRL 95, 190406 (2005)

• 2D gases : Berinskii-Kosterlitz-Thouless transition

Hadzibabic et al., Nature 441 1118 (2006)

Outline

Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas
- 2 Experimental study of the cross-over towards quasi-bec
 Observation of bunching effect
 Inhibition of bunching in the quasi-bec regime
- 3 Experimental proof of the failure of Hartree-Fock to explain the transition towards a quasi-bec

▲□▶▲□▶▲□▶▲□▶ □ のQで

4 Other results

Conclusion

Prospects

- Study of 1D gases in the strong interaction regime. expected : $\omega_{\perp} = 40$ kHz, n = 1 at/ μ m
- Study of density fluctuations in 2D gases. Use of rf dressed potentials
- Study of correlation length of density fluctuations in 1D gases

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Collaborators

Members of the chip experiment Theoreticians collaborators

- Chris Westbrook
- Jérôme Estève
- Thorsten Schumm
- Jean-Baptiste Trebbia
- Carlos Garrido-Alzar
- Julien Armijo

- Karen Kheruntsyan
- Gora Shlyapnikov

Micro-fabrication

- LPN laboratory
- Dominique Mailly

▲□▶▲□▶▲□▶▲□▶ □ のQで