Strongly interacting Fermi mixtures

G.V. Shlyapnikov

LPTMS, Orsay, France University of Amsterdam

Outline

- Introduction
- Strongly interacting regime in Fermi gases
- Mixture of heavy and light fermions. BEC side
- BCS side
- How wide is the strongly interacting regime?

Two-component Fermi gases. Experiments ⁴⁰K ⁶Li

Dilute limit $nR_e^3 \ll 1$ Ultracold limit $\Lambda_T \gg R_e$ Quantum degeneracy \rightarrow JILA 1998 40 K At present $n \sim 10^{13} - 10^{14} \text{cm}^{-3}$; $T \sim 1 \mu \text{K}$ Superfluid behavior through vortex formation \rightarrow MIT BEC of bosonic molecules \rightarrow JILA, Innsbruck, ENS, MIT, Rice, Duke Wide resonance a<0 BCS $\varepsilon_0 = \frac{\hbar^2}{ma^2}$ S.I.R **B**₀ B R weakly bound a > 0**Molecules** BEC a≫R

Strongly interacting regime

T = 0 $k_F|a| \gg 1$ \rightarrow Only one distance scale $n^{-1/3}$ Only one energy scale $E_F \sim \hbar^2 n^{2/3}/m$ Universal thermodynamis (J. Ho) Remarkable experiments with imbalanced gases (MIT and elsewhere)

Positive side of the resonance (a > 0). Gas of bosonic dimers $na^3 \ll 1 \Rightarrow$ weakly interacting Bose gas

Dimers \rightarrow The highest rovibrational state \Rightarrow Remarkable collisional satability

 $\alpha_{rel} \sim (k_{eff}R_e)^{2?} \sim (R_e/a)^{2?} \Rightarrow C(\hbar R_e/m)(R_e/a)^s; \quad s = 2.55$

 $\tau \sim (\alpha_{rel} n)^{-1} \sim \text{ seconds}$ Petrov et al 2003)

. – p.3/14

Bose-Einstein condensates of molecules

 $BEC \Rightarrow JILA$, Innsbruck, MIT, ENS, Rice, Duke

Mixtures of heavy and light fermions

Heavy and light fermions ⁶Li⁴⁰K ⁶Li¹⁷¹Yb

 $a > 0 \Rightarrow$ weakly bound molecules BEC $a < 0 \Rightarrow$ BCS pairing

Long-range intermolecular repulsion

Molecules of heavy and light fermions **Born-Oppenheimer picture**

$$U(R) = 2\left(\frac{\hbar^2}{maR}\right) \exp(-2R/a)$$

$$U(R) = 2\left(\frac{\hbar^2}{maR}\right) \exp(-2R/a)$$

$$U(R) = 2\left(\frac{\hbar^2}{maR}\right) \exp(-2R/a)$$

$$U(R) = 2\left(\frac{\hbar^2}{maR}\right) \exp(-2R/a)$$

 $M >>> m \rightarrow$ Collisional stability independent of a

Weakly interacting regime on the BEC side

Molecule-molecule scattering amplitude $a_{dd} \approx a \ln \sqrt{(M/m)}$

BCS regime for atomic Fermi gas at a < 0

Superfluid pairing between heavy and light fermions

Transition temperature in the BCS approach $T_c \sim \sqrt{E_M E_m} \exp(-\pi/2k_F |a|)$

Effective interaction between heavy and light fermions in the medium

Gorkov-Melik-Barkhudarov second order contribution $\sim g^2 \nu \sim g(k_F |a|)$

 $T_c = 0,825 E_M \exp(-\pi/2k_F |a|)$ M.Baranov, C.Lobo, G.S. (2008)

Third order processes

Small parameter of the theory

Third order processes. For example:

 $g_{eff} \sim g^3 \nu_M \nu_m; \ \nu_M = M k_F / (2\pi^2 \hbar^2); \ \nu_m = m k_F / (2\pi^2 \hbar^2)$ $g_{eff}/g \sim (k_F a)^2 M/m$ Small parameter of the theory $k_F |a| \sqrt{\frac{M}{m}} \ll 1$

How wide is the strongly interacting regime ?

Mixture of heavy and light fermions in 2D

Superfluid transition in 2D

Kosterlitz-Thouless transition

BCS limit \rightarrow transition temperature very close to T_c BCS (Miyake, 1983) $m = M \Rightarrow T_c \sim E_F \exp\{-(1/2)\ln(E_F/\epsilon_0)\}$ GM approach $\Rightarrow T_c = 0.3\sqrt{\epsilon_o E_F}$ (Baranov, Petrov, G.S.) (2003) $M \gg m$ GM approach $T_C \approx \sqrt{\epsilon_0 E_F}$ Third order diagrams $g_{eff} \sim g^3 \nu_M \nu_m \sim \frac{g}{\ln^2(E_M/\epsilon_0)} \frac{M}{m}$

Small parameter of the theory $\sqrt{\frac{M}{m}} \ln^{-1}(E_m/\epsilon_0) \ll 1$

Quasi2D
$$\frac{|a|}{l_0}\sqrt{\frac{M}{m}}\ll 1$$

One is able to see deviations from the BCS regime at $|a| \ll l_0$ for Li-K

Conclusions

- Strongly interacting regime becomes much wider in mixtures of heavy and light fermions
- Mixtures in quasi2D geometries are good candidates to see the effect