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Overview

* Quantum information theory and many-body quantum systems
— Entanglement, area laws
— Parameterization of low-energy manifold of states

« Real-space and numerical RG methods




Quantum information science as an approach for studying
complex quantum many-body systems
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Entanglement

* From the point of view of

— Quantum information theory: resource that allows for quantum computation,
quantum communication

— Condensed matter theory: allows for quantum phase transitions, topological
quantum order

— Computational physics: nightmare because of exponentially large Hilbert space,
sign problem

« What can entanglement theory contribute to condensed matter physics?
Provides a simple and transparent formalism to describe many-body correlations
Identification of relevant/physical manifold of states

Natural connections between topological quantum order and quantum error
correction

Yields formalism to make quantitative statements about complexity of
thermalizing

Motivation for many experiments in optical lattices and cold atoms comes from
quantum information theory




Physical States for quantum spin systems

Attempt of a definition: physical states are the ones that can be created by
evolution of a a fiducial state (e.g. vacuum, ferromagnetic state, ...) with a
time-dependent quantum Hamiltonian containing only bounded 2-body
terms over a time that scales at most polynomial in the number of
particles/spins

H(t) Z Jaﬂ (t)gi“ ) Gj.ﬂ Basic assumption: there is some

symmetry between time and space:
afij time over which systems can evolve
does not scale exponentially in

‘l//(f)> =T exp{— iJ‘H(T)dZ' ‘Q> number of particles
0

— How much does this cover in Hilbert space?



How big is the physical Hilbert space?

» Consider Trotter expansion for time-dependent Hamiltonians:

7 exp[ ij dt H (1) + H, (z')] _ 7 exp[ ij dr' H (z')jf exp( ij dr' H, (z')] +0le?)

Solovay-Kitaev: given a standard universal gate set on N spins (cN gates), then

aﬁny 2-lﬁody unitary can be approximated with log(1/¢) standard gates such that
U-U,||<¢e

Given any quantum circuit acting on pairs and of polynomial depth N9, this can be

reproduced up to error € by using N9 log(Nd /¢) standard gates. The total number

of states that can hence be created using that many gates scales as

)
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Consider however the DN dimensional hypersphere; the number of points that are

e-far from each other scales doubly exponential in N: et
P

Conclusion: Hilbert space is a convenient illusion




What about ground states of local spin
Hamiltonians?

« Ground states can efficiently be simulated on a quantum computer using
adiabatic time evolution (assuming gaps are not exponentially small)

H(0) H(r)

* Are there more features that make ground states very special?

— They have extremal local correlations compatible with symmetries
(monogamy properties of entanglement!)

— They exhibit relatively a small amount of entanglement: area laws




Computational complexity of finding ground states

P: class of problems that can be solved efficiently using classical computer
BQP: class of problems that can be solved efficiently using quantum
computer

NP: class of problems whose solution can be checked efficiently using
classical computer

QMA: class of problems whose solution can be checked efficiently using
quantum computer




Kitaev: finding ground state of local (i.e. few-body) quantum Hamiltonian is
QMA-complete

Oliveira and Terhal ('04): general nearest neighbour Hamiltonian of spin 2
on a square lattice: finding ground state is QMA-complete

— Also: Aharonov, Gottesman, Kempe ‘07: 12-level system on a line

More physical models:
— Hubbard model with local varying magnetic field: QMA-complete

Huubbara = —t ; H’I_..:'-'H'j .8 +U ; Thy 1704, — ; B;-3,

<i,j>,8 1 i Schuch, FV ‘08

Heisenberg model with local varying magnetic field: QMA-complete

Consequences for density functional theory:

« if an efficient description exists for the universal functional, then QMA=P !
Schuch, FV ‘08

N-representability problem in quantum chemistry: QMA-complete
Liu, Christandl, FV '0

However: nature does not find the ground state itself in case of QMA, so we
should not worry too much!




Area laws

Quantifying the amount of correlations between A and B: mutual information

L= S(ﬂA)"‘ S(IOB)_S(IOAB)
All thermal states exhibit an exact area law (as contrasted to volume law)
P45~ exp(— BH )

S(pAB)
p
=1 5 S/BTV(H[/OA ® py _IOAB]):ﬂTr(HAB[pA ® py _pAB])
Cirac, Hastings, FV, Wolf ‘08
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« All correlations are localized around the boundary, which is a big constraint
« What happens at zero temperature?

— Classical: nothing

— Quantum: gapped systems still seem to obey area law, critical systems
might get a logarithmic correction (still exponentially smaller than what

we get for random states)




Area laws

Main picture: in case of ground states, entanglement is concentrated around the

boundary
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Critical: S(Pl,z,...,L ) <7 ¢
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Kitaev, Vidal, Cardy, Korepin, ...

Gapped S(pl,z,..., P )z al+---

Critical
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Topological entropy: detects topological quantum
order locally!
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Kitaev, Preskill, Levin, Wen




Area laws for 1-D systems

« If an area law applies, then a state can efficiently be parameterized by a so-
called matrix product state (MPS) / valence bond state / finitely correlated

state
Cirac, FV ‘06

— MPS: most general state in 1-D that obeys a strict area law by
construction: rank of reduced density operators is cst (D?)

— We want to bound the cost of approximating state that obeys area law
with a MPS for given precision as a function of number of spins:

H‘ ‘”gc>_ ‘ Vb >H sé D, < %Sth(c)

» Breaking of exponential wall: polynomial vs. exponential complexity

M. Hastings ‘07: every ground state of a gapped quantum spin Hamiltonian
in 1-D obeys an area law

* Identification of the relevant manifold
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* Class of MPS: VBS-picture
« 2-D analogue: PEPS / TPS




Properties of MPS/PEPS

Ground states of local frustration-free quantum Hamiltonians
— Possible to prove uniqueness (injectivity)

Obey area law by construction

Can be made translational invariant

correlation functions can be calculated efficiently

Levin-Wen models exhibiting topological quantum order: very simple
parameterization in terms of PEPS

Symmetries:

— String order parameter for unique GS implies a global symmetry
in the system

— Continuous symmetries impose strong conditions on form of
matrices because virtual degrees of freedom must form
irreducible representation of group if GS is unique: Lieb-Schultz-
Mattis in any dimension for MPS/PEPS

Holographic principle: mapping of quantum system to classical
system of same dimension




Connection to real-space RG methods

« MPS were already used by Wilson in analyzing Kondo problem
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« Other way of looking at NRG:

Construction of a
quantum circuit that
diagonalizes the low
energy spectrum of the
Hamiltonian




DMRG as variational MPS

Obviously, class of MPS is an interesting class of states as they
allow to simulate Kondo impurity

— Original problems when applied to translational invariant
systems: no separation of energies

— what happens if we use that class to do variational calculations?
DMRG! (S. White '92)

Reformulation of DMRG in terms of MPS has allowed for many
generalizations:

— MPS with periodic boundary conditions
Real-time evolution
Simulation of thermal states
Random systems
Dispersion relations




« What about other real-space RG methods; what classes of states do
they generate?

« Ma-Dasgupta-Fisher RG for random spin systems: [ — ZJ. S .S

e
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— Second order perturbation theory:
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» Perturbation theory gives rise to quantum circuits that can be
simulated efficiently on a classical computer

» Make it variational: allows to use it on Tl systems, ...: MERA (Vidal)




* More real-space RG methods: CORE

Basic idea: same as NRG, but block
different parts in parallel

Class of states obtained like that: tree
states (still efficiently simulatable on a
classical computer)

Clear how to generalize to 2D, 3D, ...

« Any more RG methods that can be made variational?




Some numerics with MPS

Dispersion relation in bilinear-
biquadratic spin 1 chain

Mott region

Superfluid
region

Mott-superfluid transition of bosons
in 1-D optical lattices at finite T

DMRG (PBC)

10 20 1

Simulating Heisenberg spin %
with PBC: MPS vs. DMRG




PEPS simulations: J1-J2-J3 Heisenberg model

* Frustrated quantum spin model that has been predicted to exhibit
exotic plaquette, columnar, ... order parameters but cannot be
simulated using quantum Monte Carlo due to frustration
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J,J;-Model Long Range Order

Structure Factor
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J,J;-Model

Long Range Order

Néel Order:

Q=(x,x)

Structure Factor

Jy1J,=0.5

No long range order!

(7, 7)

VBC wox
Plaquette Order (7’7)

J 1, =1

Néel Order on

four Sublattices:
0=(n/2,7/2)
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0.2



J,J,-Model Long Range Order

Structure Factor

J,1J,=0.6 J,1J, =1

5(3)

Néel Order: No long range order! Columnar Order:

Q=(7,7) Q=(r,0), (0,7)




Conclusion

Theory of quantum entanglement provides new tools to understand
structure of wavefunctions arising in strongly correlated quantum
many-body systems

|dentification of manifold of relevant physical states

Real-space RG methods can be rephrased and improved upon as
variaional methods

Long-term workshop on “entanglement and correlations in many-
body quantum systems” next year in Erwin Schrodinger Institute for
Mathematical physics in Vienna (Aug. 15-Oct. 15 2009)

Postdoc+PhD positions




