

Real-space renormalization group methods

QIT at University of Vienna:

Bogdan Pirvu

Enrique Rico

Kristian Temme

Johannes Wilms

Angie Qarry

Frank Verstraete

Close collaborators:

Ignacio Cirac (MPQ)

Matthew Hastings (Los Alamos)

Valentin Murg (MPQ)

Norbert Schuch (MPQ)

Michael Wolf (NBI)

Overview

- Quantum information theory and many-body quantum systems
 - Entanglement, area laws
 - Parameterization of low-energy manifold of states
- Real-space and numerical RG methods

Quantum information science as an approach for studying complex quantum many-body systems

Entanglement

- From the point of view of
 - Quantum information theory: resource that allows for quantum computation, quantum communication
 - Condensed matter theory: allows for quantum phase transitions, topological quantum order
 - Computational physics: nightmare because of exponentially large Hilbert space, sign problem
- What can entanglement theory contribute to condensed matter physics?
 - Provides a simple and transparent formalism to describe many-body correlations
 - Identification of relevant/physical manifold of states
 - Natural connections between topological quantum order and quantum error correction
 - Yields formalism to make quantitative statements about complexity of thermalizing
 - Motivation for many experiments in optical lattices and cold atoms comes from quantum information theory

Physical States for quantum spin systems

• Attempt of a definition: physical states are the ones that can be created by evolution of a a fiducial state (e.g. vacuum, ferromagnetic state, ...) with a time-dependent quantum Hamiltonian containing only bounded 2-body terms over a time that scales at most polynomial in the number of particles/spins

$$H(t) = \sum_{\alpha\beta ij} J_{ij}^{\alpha\beta}(t) \sigma_i^{\alpha} \otimes \sigma_j^{\beta}$$

$$|\psi(t)\rangle = \hat{T} \exp \left[-i\int_{0}^{t} H(\tau)d\tau\right] \Omega$$

Basic assumption: there is some symmetry between time and space: time over which systems can evolve does not scale exponentially in number of particles

– How much does this cover in Hilbert space?

How big is the physical Hilbert space?

• Consider Trotter expansion for time-dependent Hamiltonians:

$$\hat{T} \exp \left(-i \int_{0}^{\varepsilon} dt' H_{A}(t') + H_{B}(t')\right) = \hat{T} \exp \left(-i \int_{0}^{\varepsilon} dt' H_{A}(t')\right) \hat{T} \exp \left(-i \int_{0}^{\varepsilon} dt' H_{B}(t')\right) + O(\varepsilon^{2})$$

- Solovay-Kitaev: given a standard universal gate set on N spins (cN gates), then any 2-body unitary can be approximated with log(1/ε) standard gates such that ||U-U_ε|| < ε
- Given any quantum circuit acting on pairs and of polynomial depth N^d , this can be reproduced up to error ϵ by using $N^d \log(N^d/\epsilon)$ standard gates. The total number of states that can hence be created using that many gates scales as

$$(cN)^{N^d \log \frac{N^d}{\varepsilon}}$$

• Consider however the D^N dimensional hypersphere; the number of points that are ϵ -far from each other scales doubly exponential in N:

Conclusion: Hilbert space is a convenient illusion

What about ground states of local spin Hamiltonians?

 Ground states can efficiently be simulated on a quantum computer using adiabatic time evolution (assuming gaps are not exponentially small)

- Are there more features that make ground states very special?
 - They have extremal local correlations compatible with symmetries (monogamy properties of entanglement!)
 - They exhibit relatively a small amount of entanglement: area laws

Computational complexity of finding ground states

- P: class of problems that can be solved efficiently using classical computer
- BQP: class of problems that can be solved efficiently using quantum computer
- NP: class of problems whose solution can be checked efficiently using classical computer
- QMA: class of problems whose solution can be checked efficiently using quantum computer

- Kitaev: finding ground state of local (i.e. few-body) quantum Hamiltonian is QMA-complete
- Oliveira and Terhal ('04): general nearest neighbour Hamiltonian of spin ½
 on a square lattice: finding ground state is QMA-complete
 - Also: Aharonov, Gottesman, Kempe '07: 12-level system on a line
- More physical models:
 - Hubbard model with local varying magnetic field: QMA-complete

$$H_{\rm Hubbard} = -t \sum_{< i,j>,s} a^{\dagger}_{i,s} a_{j,s} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow} - \sum_{i} \vec{B}_{i} \cdot \vec{\sigma}_{i}$$

Schuch, FV '08

- Heisenberg model with local varying magnetic field: QMA-complete
- Consequences for density functional theory:
 - if an efficient description exists for the universal functional, then QMA=P!
 Schuch, FV '08
- N-representability problem in quantum chemistry: QMA-complete
 Liu, Christandl, FV '07
- However: nature does not find the ground state itself in case of QMA, so we should not worry too much!

Area laws

Quantifying the amount of correlations between A and B: mutual information

$$I_{AB} = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$$

All thermal states exhibit an exact area law (as contrasted to volume law)

$$\rho_{AB} \approx \exp(-\beta H)$$

$$F(\rho_{A} \otimes \rho_{B}) = Tr(H\rho_{A} \otimes \rho_{B}) - \frac{S(\rho_{A} \otimes \rho_{B})}{\beta} \ge Tr(H\rho_{AB}) - \frac{S(\rho_{AB})}{\beta}$$

$$\Rightarrow I_{AB} \le \beta Tr(H[\rho_{A} \otimes \rho_{B} - \rho_{AB}]) = \beta Tr(H_{AB}[\rho_{A} \otimes \rho_{B} - \rho_{AB}])$$

Cirac, Hastings, FV, Wolf '08

- All correlations are localized around the boundary, which is a big constraint
- What happens at zero temperature?
 - Classical: nothing
 - Quantum: gapped systems still seem to obey area law, critical systems might get a logarithmic correction (still exponentially smaller than what we get for random states)

Area laws

 Main picture: in case of ground states, entanglement is concentrated around the boundary

Gapped:
$$S(\rho_{1,2,\dots,L}) \approx \frac{c + \overline{c}}{6} \ln(\xi) + \dots$$

Critical:
$$S(\rho_{1,2,\dots,L}) \approx \frac{c + \overline{c}}{6} \ln(L) + \dots$$

Kitaev, Vidal, Cardy, Korepin, ...

Gapped
$$S(\rho_{1,2,\dots,L^2}) \approx a. L + \dots$$

Critical

Free fermions $S(\rho_{1,2,\cdots,L^2}) \approx a.L \ln L + \dots$ Wolf, Klich Critical spin: $S(\rho_{1,2,\cdots,L^2}) \approx a.L + \dots$ FV, Wolf

Topological entropy: detects topological quantum order locally!

$$S(\rho_{ABC}) - S(\rho_{AB}) - S(\rho_{AC}) - S(\rho_{BC}) + S(\rho_{A}) + S(\rho_{B}) + S(\rho_{C})$$

Kitaev, Preskill, Levin, Wen

Area laws for 1-D systems

 If an area law applies, then a state can efficiently be parameterized by a socalled matrix product state (MPS) / valence bond state / finitely correlated state

Cirac, FV '06

 MPS: most general state in 1-D that obeys a strict area law by construction: rank of reduced density operators is cst (D²)

 We want to bound the cost of approximating state that obeys area law with a MPS for given precision as a function of number of spins:

$$\left\| |\psi_{ex}^{N} \rangle - |\psi_{D}^{N} \rangle \right\| \le \varepsilon \qquad \qquad D_{N} \le \frac{cst}{\varepsilon} N^{f(c)}$$

- · Breaking of exponential wall: polynomial vs. exponential complexity
- M. Hastings '07: every ground state of a gapped quantum spin Hamiltonian in 1-D obeys an area law
 - Identification of the relevant manifold

Matrix product states et al.

Class of MPS: VBS-picture

2-D analogue: PEPS / TPS

Properties of MPS/PEPS

- Ground states of local frustration-free quantum Hamiltonians
 - Possible to prove uniqueness (injectivity)
- Obey area law by construction
- Can be made translational invariant
- correlation functions can be calculated efficiently
- Levin-Wen models exhibiting topological quantum order: very simple parameterization in terms of PEPS
- Symmetries:
 - String order parameter for unique GS implies a global symmetry in the system
 - Continuous symmetries impose strong conditions on form of matrices because virtual degrees of freedom must form irreducible representation of group if GS is unique: Lieb-Schultz-Mattis in any dimension for MPS/PEPS
- Holographic principle: mapping of quantum system to classical system of same dimension

Connection to real-space RG methods

MPS were already used by Wilson in analyzing Kondo problem

$$\left|\psi_{\alpha}^{[2]}\right\rangle = \sum_{i_{1},i_{2}} A_{i_{1}\alpha}^{i_{2}} \left|i_{1}\right\rangle \left|i_{2}\right\rangle$$

$$\left|\psi_{\beta}^{[3]}\right\rangle = \sum_{\alpha,i_3} A_{\alpha\beta}^{i_3} \left|\psi_{\alpha}^{[2]}\right\rangle \left|i_3\right\rangle$$

$$\left| \psi_{\tau}^{\left[N \right]} \right\rangle = \sum_{\substack{i_1, i_2, \dots \\ \alpha, \beta, \dots}} A_{i_1 \alpha}^{i_2} A_{\alpha \beta}^{i_3} A_{\beta \gamma}^{i_4} \dots A_{\sigma \tau}^{i_N} \left| i_1 \right\rangle \left| i_2 \right\rangle \dots \left| i_N \right\rangle = \sum_{i_1, i_2, \dots} A^{i_2} A^{i_3} A^{i_4} \dots A^{i_N} \left| i_1 \right\rangle \left| i_2 \right\rangle \dots \left| i_N \right\rangle$$

Other way of looking at NRG:

Construction of a quantum circuit that diagonalizes the low energy spectrum of the Hamiltonian

DMRG as variational MPS

- Obviously, class of MPS is an interesting class of states as they allow to simulate Kondo impurity
 - Original problems when applied to translational invariant systems: no separation of energies
 - what happens if we use that class to do variational calculations?
 DMRG! (S. White '92)
- Reformulation of DMRG in terms of MPS has allowed for many generalizations:
 - MPS with periodic boundary conditions
 - Real-time evolution
 - Simulation of thermal states
 - Random systems
 - Dispersion relations

– ...

- What about other real-space RG methods; what classes of states do they generate?
- Ma-Dasgupta-Fisher RG for random spin systems: $H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i . \vec{S}_j$

– Second order perturbation theory:

$$\begin{bmatrix} -\varepsilon^{2}AB^{-1}A^{*} & O(\varepsilon^{3}) \\ O(\varepsilon^{3}) & Q \end{bmatrix} = \begin{bmatrix} I & \varepsilon X \\ -\varepsilon X^{*} & I \end{bmatrix} \begin{bmatrix} 0 & \varepsilon A \\ \varepsilon A^{*} & B \end{bmatrix} \begin{bmatrix} I & -\varepsilon X \\ \varepsilon X^{*} & I \end{bmatrix}$$

- Perturbation theory gives rise to quantum circuits that can be simulated efficiently on a classical computer
- Make it variational: allows to use it on TI systems, ...: MERA (Vidal)

More real-space RG methods: CORE

Basic idea: same as NRG, but block different parts in parallel

Class of states obtained like that: tree states (still efficiently simulatable on a classical computer)

Clear how to generalize to 2D, 3D, ...

Any more RG methods that can be made variational?

Some numerics with MPS

Dispersion relation in bilinearbiquadratic spin 1 chain

Mott-superfluid transition of bosons in 1-D optical lattices at finite T

Simulating Heisenberg spin ½ with PBC: MPS vs. DMRG

PEPS simulations: J1-J2-J3 Heisenberg model

• Frustrated quantum spin model that has been predicted to exhibit exotic plaquette, columnar, ... order parameters but cannot be simulated using quantum Monte Carlo due to frustration

$$H = J_1 \sum_{\langle ij \rangle} \mathbf{s}_i \Box \mathbf{s}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{s}_i \Box \mathbf{s}_j + J_3 \sum_{\langle \langle \langle ij \rangle \rangle \rangle} \mathbf{s}_i \Box \mathbf{s}_j$$

Long Range Order

Structure Factor

$$S(\mathbf{Q}) = \frac{1}{N} \sum_{kl} e^{i\mathbf{Q} \Box (\mathbf{r}_k - \mathbf{r}_l)} < \mathbf{s}_k \Box \mathbf{s}_l >$$

10x10, D=3

Long Range Order

Structure Factor

Néel Order:

No long range order!

Néel Order on

Long Range Order

Structure Factor

Néel Order:

$$Q = (\pi, \pi)$$

No long range order!

Columnar Order:

$$Q = (\pi, 0), (0, \pi)$$

Conclusion

- Theory of quantum entanglement provides new tools to understand structure of wavefunctions arising in strongly correlated quantum many-body systems
- Identification of manifold of relevant physical states
- Real-space RG methods can be rephrased and improved upon as variaional methods
- Long-term workshop on "entanglement and correlations in manybody quantum systems" next year in Erwin Schrodinger Institute for Mathematical physics in Vienna (Aug. 15-Oct. 15 2009)
- Postdoc+PhD positions