Universal Theory of Nonlinear Luttinger Liquids Adilet Imambekov Yale University

arXiv:0806.4779

in collaboration with Leonid Glazman (Yale) Earlier work: Bosons: PRL 100 206805 (2008)

Outline

Universal Theory of Nonlinear Luttinger Liquids

curvature + interaction in 1D?

- Linear Luttinger liquid theory (bosonization)
- Universal Theory of Nonlinear Luttinger Liquids: refermionize!
- Universality beyond low energy limit
- Conclusions

Motivation

 Transport in nanowires: Coulomb drag, momentum-energy resolved tunneling

- Ultracold atomic gases^{Isdl model^(a)}
- Neutron scattering on spin chains
 Numerical methods for simulation of dynamics in 1D

Luttinger liquid theory

aka bosonization (Haldane,1981) Refermionize !

Based on Tomonaga-Luttinger model: 1D interacting fermions with strictly linear single particle spectrum

excitations of the system linear bosonic of interacting fermions sound waves Bosonization–linear quantum hydrodynamics nonlinear, but still universal

Bosonization for fermions without spin

Spectral function in Tomonaga-Luttinger

Spectral function: probability to tunnel in a fermion

Spectrum nonlinearity in bosonization

Effect of Nonlinear Dispersion Relation

Universal crossover function $A(\varepsilon, k) \propto A\left(\frac{\varepsilon - v\kappa}{k^2/2m_*}\right)$

New Exponents

Diagonalization of Tomonaga-Luttinger

$$H = \frac{\mathrm{v}}{2\pi} \int dx \left[K (\partial_x \theta)^2 + \frac{1}{K} (\partial_x \varphi)^2 \right]$$

 θ and φ canonically conjugate bosonic fields Diagonalization: canonical Bogoliubov rotation

$$\widetilde{\varphi} = \varphi / \sqrt{K} \qquad \widetilde{\theta} = \theta \sqrt{K}$$

 $\widetilde{\theta}$ and $\widetilde{\varphi}$ are still canonically conjugate $H = \frac{v}{2\pi} \int dx \left[\left(\partial_x \widetilde{\theta} \right)^2 + \left(\partial_x \widetilde{\varphi} \right)^2 \right]$ Refermionize Free fermionic quasiparticle Hamiltonian

Refermionization of Tomonaga-Luttinger

$$\begin{split} \tilde{H}_{1} &= \mathrm{i} v \int dx \left(: \tilde{\Psi}_{\mathrm{L}}^{\dagger}(x) \nabla \tilde{\Psi}_{\mathrm{L}}(x) : -: \tilde{\Psi}_{\mathrm{R}}^{\dagger}(x) \nabla \tilde{\Psi}_{\mathrm{R}}(x) :\right) \overset{\text{A.V.Rozhkov,}}{2005} \\ \text{Fermion via "new" fermionic quasiparticle:} \\ \Psi_{\mathrm{R}}^{\dagger}(x) &= \tilde{F}_{\mathrm{R}}^{\dagger}(x) \tilde{\Psi}_{\mathrm{R}}^{\dagger}(x) \\ \bullet &= & \bullet \\ \text{fermion string + quasiparticle} \\ \text{Non-local "string" operator (like Jordan-Wigner):} \\ \tilde{F}_{R}^{\dagger}(x) &= \exp \left[-i \int^{x} dy \left(\frac{\delta_{+}}{2\pi} \tilde{\rho}_{R}(y) + \frac{\delta_{-}}{2\pi} \tilde{\rho}_{L}(y) \right) \right] \\ \text{Universal phase shifts} \\ \frac{\delta_{+}}{2\pi} &= 1 - \frac{1}{2\sqrt{K}} - \frac{\sqrt{K}}{2} \qquad \frac{\delta_{-}}{2\pi} &= \frac{1}{2\sqrt{K}} - \frac{\sqrt{K}}{2} \end{split}$$

Universal Hamiltonian

$$\begin{split} \tilde{H}_{1} &= \mathrm{i}v \int dx \left(: \tilde{\Psi}_{\mathrm{L}}^{\dagger}(x) \nabla \tilde{\Psi}_{\mathrm{L}}(x) :-: \tilde{\Psi}_{\mathrm{R}}^{\dagger}(x) \nabla \tilde{\Psi}_{\mathrm{R}}(x) :\right) \\ \tilde{H}_{2} &= \frac{1}{2m_{*}} \int dx \left(: (\nabla \tilde{\Psi}_{\mathrm{L}}^{\dagger}) (\nabla \tilde{\Psi}_{\mathrm{L}}) :+: (\nabla \tilde{\Psi}_{\mathrm{R}}^{\dagger}) (\nabla \tilde{\Psi}_{\mathrm{R}}) :\right) \\ \\ \begin{aligned} \mathbf{Q} \text{uasiparticles remain free!}^{*} \\ \text{New scaling limit:} \\ &= \frac{\varepsilon - \mathrm{v} \, k}{k^{2}/2m_{*}} \rightarrow \mathrm{const} \quad \frac{k}{k_{F}} \rightarrow 0 \\ \\ \\ &\text{Universal crossover function } A(\varepsilon, k) \propto A\left(\frac{\varepsilon - vk}{k^{2}/2m_{*}}\right) \end{split}$$

* for original interactions decaying faster than $\sim 1/x^2$

Understanding new singularities

Universal crossover

Other 1D Systems

Spectral function of 1D bosons (Lieb-Liniger) $A(\varepsilon, k) \propto |\varepsilon - \tilde{\xi}_k|^{\gamma_{\text{true}}}$ $\gamma_{\text{true}} = -\frac{1}{\sqrt{K}} + \frac{1}{2K}$

S=1/2 XXZ antiferromagnet in a field along z-axis

$$S^{-+}(k,\omega) = \sum_{i} e^{-ikj} \int dt \, e^{i\omega t} \left\langle S_{j}^{-}(t)S_{0}^{+}(0) \right\rangle$$
$$S^{-+}(k,\omega) \propto \text{const} + \left| \frac{1}{\omega - \left(v|k - \pi| \pm \frac{(k - \pi)^{2}}{2m_{*}} \right)} \right|^{\frac{\pm \frac{1}{\sqrt{K}} - \frac{1}{2K}}{2m_{*}}}$$

Beyond low energy limit (unpublished)

Position of the edge defines the singularities!

Conclusions

