Evora, 11/2008

Spin Liquid States in Frustrated Antiferromagnets

Leon Balents KITP

Evora, 11/2008

The David and Lucile Packard Foundation

Collaborators

Oleg Starykh, U. Utah

Gang Chen, UCSB

Masanori Kohno,
 NIMS, Japan

Andreas Schnyder,
 KITP

Quantum Spin Liquids

- QSL: a state of a magnet in which quantum fluctuations prevent order even at T=0.
- Many theoretical suggestions since Anderson
 (73)

"Resonating Valence Bond" QSL states

Magnons

Basic excitation: spin flip
 Carries "S^z"=± 1

 Periodic Bloch states: spin waves

> Quasi-classical picture: small precession

MnF₂

Image: B. Keimer

One dimension

Heisenberg model is a spin liquid
 No magnetic order $\langle \vec{S}(x) \cdot \vec{S}(x') \rangle \sim \frac{(-1)^{x-x'}}{|x-x'|} + \cdots$ Power law correlations of spins and dimers

Excitations are s=1/2 spinons
General for 1d chains

Spinons by neutrons

- Bethe ansatz:
 Spinon energy
 Spin-1 states
- $\epsilon_{s}(k) = \frac{\pi J}{2} |\sin k|$ $k = k_{1} + k_{2}$ $\epsilon = \epsilon_{s}(k_{1}) + \epsilon_{s}(k_{2})$

2-particle continuum

Theory vs experiment
 for KCuF₃ with
 anisotropy ≈30

B. Lake, HMI

QSL candidates

?

?

CsCu₂Cl₄ - spin-1/2 anisotropic triangular lattice

NiGa₂S₄ – spin–1 triangular lattice

 κ-(BEDT-TTF)₂Cu₂(CN)₃, EtMe₃Sb[Pd(dmit)₂]₂ triangular lattice organics

FeSc₂S₄ - orbitally degenerate spinel

Na₄Ir₃O₈ – hyperkagome

CS₂CuCl₄

 Spatially anisotropic triangular lattice

 \odot Cu²⁺ spin-1/2 spins

$$H = \frac{1}{2} \sum_{ij} \left[J_{ij} \vec{S}_i \cdot \vec{S}_j - \vec{D}_{ij} \cdot \vec{S}_i \times \vec{S}_j \right]$$

 $\vec{D} = D\hat{a}$

couplings:
 J=0.37meV
 J'=0.3J
 D=0.05J

R. Coldea et al

Neutron scattering

Coldea et al, 2001/03: a 2d spin liquid?

Very broad spectrum similar to 1d (in some directions of k space). Roughly fits power law. Fit of "peak" dispersion to spin wave theory requires adjustment of J,J' by 40% – in opposite directions!

2d theories

Arguments for 2d:
J'/J = 0.3 not very small
Transverse dispersion
Exotic theories:

- - J.Alicea, O.I.Motrunich & M.P.Fisher: Phys. Rev. Lett. 95, 247203 (2005).
 - S.V.Isakov, T.Senthil & Y.B.Kim: Phys. Rev. B 72, 174417 (2005).
 - Y.Zhou & X.-G.Wen: cond-mat/0210662.
 - F.Wang & A.Vishwanath: Phys. Rev. B 74, 174423 (2006).
 - C.-H.Chung, K.Voelker & Y. B. Kim: Phys. Rev. B 68, 094412 (2003).

Spin waves

- M.Y.Veillette, A.J.A.James & F.H.L.Essler: Phys. Rev. B 72, 134429 (2005).
- D.Dalidovich, R.Sknepnek, A.J.Berlinsky, J.Zhang & C.Kallin: Phys. Rev. B 73, 184403 (2006).
- R.Coldea, D.A.Tennant & Z.Tylczynski: Phys. Rev. B 68, 134424 (2003).

Dimensional reduction?

 Frustration of interchain coupling makes it less "relevant"
 First order energy correction vanishes

Leading effects on correlations are in fact O[(J')⁴/J³]!

Dimensional reduction?

Frustration of interchain coupling makes it less "relevant"
 First order energy correction vanishes.
 Numerics: J'/J < 0.7 is "weak"

Excitations

Build 2d excitations from 1d spinons
 Exchange: $\frac{J'}{2} \left(S_i^+ S_j^- + S_i^- S_j^+ \right)$

Expect spinon binding to lower inter-chain kinetic energy

Schroedinger equation

Broad lineshape: "free spinons"

Power law" fits well to free spinon result
Fit determines normalization

Bound state Compare spectra at J'(k)<0 and J'(k)>0:

Curves 24spinorth RAY w/experimentatheresultition

Transverse dispersion

Bound state and resonance

Solid symbols: experiment Note peak (blue diamonds) coincides with bottom edge only for J'(k)<0

Spectral asymmetry

Vertical lines: J'(k)=0.

Conclusions on Cs₂CuCl₄

 Simple theory works well for frustrated quasi-1d antiferromagnets

Frustration leads to a strong enhancement of one-dimensionality

The mystery of Cs₂CuCl₄ should be considered solved

Many (nearly all) other details of diverse experiments on this material may be understood in the same framework

AB₂X₄ spinels

cubic $Fd\overline{3}m$

 One of the most common mineral structures

Ommon valence:

𝔹 A²⁺,B³⁺,X^{2−}

⌀ X=0,S,Se

Deconstructing the spinel

A atoms: diamond lattice

Bipartite: not
 geometrically
 frustrated

Frustration Signature

FeSc₂S₄: $\theta_{CW} = 50 \text{ K}$ T > 30 mK: no long-range magnetic order no spin-glass

 $\frac{MnSc_2S_4}{AFM \text{ transition } @ 2 \text{ K}}$

Fritsch et al., PRL 92, 116401, 2004

Orbital degeneracy in FeSc₂S₄

Chemistry:
Fe²⁺: 3d⁶
1 hole in e_g level
Spin S=2
Orbital pseudospin 1/2
Static Jahn-Teller does not appear

Atomic Spin Orbit

Separate orbital and spin degeneracy can be split! $H_{SO} = -\lambda \left(\frac{1}{\sqrt{3}} \tau^x \left[(S^x)^2 - (S^y)^2 \right] + \tau^z \left[(S^z)^2 - \frac{S(S+1)}{3} \right] \right)$

 $\hat{} \lambda$

Sector Energy spectrum: singlet GS with gap = λ

Microscopically,

Ø Naive estimate λ ≈ 25K
 Ø should be reduced by dynamic JT

 $\lambda = \frac{6\lambda_0^2}{\Lambda}$

Spin orbital singlet

 \oslash Ground state of λ >0 term:

$$\left| -\frac{1}{\sqrt{2}} \right| S^{z} = 0 \left| -\frac{1}{\sqrt{2}} \right| \left| -\frac{1}{\sqrt{2}} \right| \left| S^{z} = 2 \right| + \left| S^{z} = -2 \right| \right|$$

Tue to gap, there is a stable SOS phase for $\lambda \gg J$.

Exchange

- Inelastic neutrons show significant dispersion indicating exchange
- Ø Bandwidth ≈ 20K similar order as $Θ_{CW}$ and estimated λ
- ⊘ Gap (?) 1-2K
 - Small gap is classic indicator of incipient order

Exchange

 Most general symmetry-allowed form of exchange coupling (neglecting SOI)

$$H_{ex} = \frac{1}{2} \sum_{ij} \left\{ J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + K_{ij} \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j + \tilde{K}_{ij} \boldsymbol{\tau}_i^y \boldsymbol{\tau}_j^y + \left[L_{ij} \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j + \tilde{L}_{ij} \boldsymbol{\tau}_i^y \boldsymbol{\tau}_j^y \right] \mathbf{S}_i \cdot \mathbf{S}_j \right\}$$

Exchange

 Neglecting SOI, a simplified superexchange calculation gives

 $H_{ex} = \frac{1}{2} \sum_{ij} \left\{ J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + K_{ij} \left(4 + \mathbf{S}_i \cdot \mathbf{S}_j \right) \left(1 + 4\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j \right) \right\}$

Largest coupling is AF spin interaction $S_i \cdot S_j$ More exchange processes

Ordered Phase $(J >> \lambda)$

 Ground state of H_{ex} is almost certainly ordered

Si Si Coupling is strongest

Complex multi-spiral ground states possible

Inclusion of weak SOI λ favors simpler
 commensurate "cubic" spin arrangements

spin order leads to induced orbital order

Quantum Critical Point

 \odot Full Hamiltonian H = H_{SO} + H_{ex}

Minimal Model

Indicates J₂ >> J₁

$$H_{min} = J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \langle \mathbf{S}_j \rangle + H_{SO}$$

Quantum Critical Point

Consequences of QCP

Power-law spin correlations \odot Scaling form for $(T_1T)^{-1} \sim f(\Delta/T)$ • Specific heat $C_v \sim T^3 f(\Delta/T)$ Possibility of pressure-induced ordering Impurity effects? Behavior in field? Can triplet be made to condense?

Behavior in field

This model

To Do List

 \oslash Effects of J_1 on QCP Transitions to incommensurate states? Phonons and Jahn-Teller effects More in-depth study of phases Higher order expansion about J=0 Spin-wave corrections for ordered states Disorder and fields

Conclusions on FeSc₂S₄

Orbital degeneracy and spin orbit provides an exciting route to quantum paramagnetism and quantum criticality

entangled spin-orbital singlet ground state in an S=2 magnet!

More for the future!

- ✓ SCu₂Cl₄ spin-1/2 anisotropic triangular lattice
- ? NiGa₂S₄ spin-1 triangular lattice
 - triangular lattice organics

- FeSc₂S₄ orbitally degenerate spinel
- ? Na4Ir3O8 hyperkagome
 - ⊘ ZnCu₃(OH)₆Cl₂ kagome