Holographic Thermalization: Quantum Revivals

Javier Abajo-Arrastia, Emilia da Silva, Esperanza Lopez, Javier Mas and Alexandre Serantes

arXiv:1403.2632[hep-th]

A QFT system:

- Strong coupling
- 2+1 dimensions
- Finite size system
- Out of equilibrium
- and Entanglement?

AdS/CFT

Questions from CMT and Holography:

- Thermalization?
- Revivals? Dephasing?
- Simple model for the evolution of Entanglement Entropy?
- Gravitational model? Dual interpretation of Revivals?
- Relation between Gravitational Dynamics and Entanglement?

Fast AdS/CFT, two sides:

QFT

• d dimensions: S2 x R

State (Vacuum)

 Strong coupling and large N Gravity

• d+1 dimensions: AdS4

Geometry (AdS4)

Einstein gravity

The observable: Holographic Entanglement Entropy

EE is a measure of quantum correlations between a subsystem and its complementary

EE QFT

 $S_A = -Tr_A(\rho_A \log \rho_A)$

HEE

$$S_A = \frac{Area(\gamma_A)}{4G_N}$$

 γ_A : extremal curve

arXiv:0905.0932[hep-th]

Our Holographic Model for Thermalization

Gravitational collapse of a scalar shell in AdS4

because

Scalar field in AdS4

Final Black Hole

Some state in QFT 2+1

Equilibirium State

Our Holographic Model: Bounces-Revivals

For small masses of the final BH: Bouncing geometry

The scalar field bounces with the boundary before (if) forming a BH

Large BH

Small BH

arXiv:1104.3702[gr-qc]

What we already know

Quantum quench in CFT2 on a infinite space: kinematical model for EE arXiv:cond-mat/0503393

AdS3 with an infalling shell of null dust: Vaidya model

arXiv:1006.4090[hep-th]

The radial position of the shell captures the separation of entangled components

arXiv:1302.5703 [hep-th]

What about 2+1 and Finite Size?

- 1 Entangled pairs behave much as in the non compact case
- 2 Bounce or collapse? Interactions are crucial
- 3 Partial reconstruction of the state at t0=L/2v. Revivals.

QFT interpretation: shape of the pulse

$$M = \frac{1}{2} \int_{0}^{\pi/2} \rho(t, x) dx$$

Broadness: entanglement over many length scales

 Heigth: measure of the number of strongly correlated pairs

Dephasing and Self Reconstruction: Narrow pulses

- Periodicites $t0 \gtrsim \pi \ (Mass \uparrow \Rightarrow t0 \uparrow)$
- Change of rho mostly at the origin
- Propagation of rho at cte v

- Clear image of propagation
- + interactions

Relaxation: Narrow pulses

- Fraction of the pulse sharpens and give rise to a horizon
- → Relaxation triggered by a subsystem

Stepwise growth of the BH

Dephasing, Self Reconstruction and Relaxation: Broad pulses

experiments?

- periodicity $t0 \gtrsim \pi/3$
- Below some mass no horizon formation
- Partial decoherence unfavored

Conclusions:

- Holographic model for revivals in 2+1 in a finite size system
- Different types of thermalization depending on the initial entanglement pattern (for small energies)
- Propagation + Interactions model for the dynamics of EE
- Holographic direction: entanglement scale
- Very deep and clear relation between dynamics of gravity and entanglement

Thank you!