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|. Motivation

Normal metals: Landau’s Fermi liquid theory

- Resistivity: p(T) = pg+ AT?
- Specific heat: C =% mp,T
« Enhanced Pauli susceptibility

Non-Fermi-liquid behavior: (anomalous metals)

deviations from Fermi liquid; power laws or log-dependence in
specific heat, magnetization, resistivity, etc.

Quantum critical point: no universality

Examples :
CePd,Si, , Celn,
CeCu; AUy, , YBRN,SI,, CeAuSh,

more than 100 known compounds and alloys
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FIG. 1. (a) Specific hcat € plotied as €/ 7 vs temperature T
(semilog) of CeCus —xAuy polycrystals, (b C/Twvs T ?semllog)
for a CeCussgsAup, single crystal lor different magn'etu_: field A
applied to the easy direction. Solid line for 8 =6 T indicates fit
of the resonunce-level model (see text).
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FIG. 12. Scaling plot of inelastic neutron-scattering data for
CeCusgAug, at q=(0.8 0 0) vs E/kgT. Solid line corresponds
to a fit of the scaling function Eq. (150) with «=0.74. Inset: The

quality of the scaling collapse varying with «. From Schroder
et al., 1998.

Dynamical susceptibility: E/T scaling

X1(q,E,T) =c{f(q) + (-iE+aT)} ; a=0.74

T of
CeCussAug, for different magnetic ficlds £ applied to the casy

Solid lines indicate fits with a 7T-linear (8 =0) and

“local critical behavior”
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FIG. 2. Low-temperature electrical resistivity of YbRh,Si, at
p = 0 measured along the a axis as a function of temperature,
obeying p(T) = pg + bT*", with ¢ = 1. (a) Temperature de-
pendence of the effective exponent &, defined as the logarithmic
derivative of Ap = p — pg with respect to 7. (b) p(T), plotted
as p vs T2, for B = 14 T applied along the ¢ axis. The position
of the symbols indicates the crossover temperature below which
a T? law is recovered.
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Non-Fermi liquid behavior and a superconducting dome

Systems with QCP somewhat related to the Hertz-Millis-Moriya

theory
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ll. Model

- Strong correlations in rare earth (actinide) systems
— bands of heavy guasi-particles (heavy fermions)
« weak remaining repulsive interaction after heavy
guasi-particles are formed (Landau’s FL theory)
 nesting of FS and remaining interactions yield itinerant AF
Ty — 0 yields QCP

Two heavy-electron pockets separated by Q

e,(k)=kz/2m £, (K)=E,-k2/2m



Interaction:

T 1 Hubbard limit:
H,, = Wilqlch, c; c Ci
i jkgggf j‘(q) 7ko ik+qo k! +qo' k! o W:V:U:P
-+ Z Viq c ikl Cok/ of ;
1k+qo 1k Cokt —qot €2k o P is Umklapp only
kk/qoo’ i :
; ; active iIf Q = G/2;
T ka fU(Q)Clkmcrczk’—qw’Clkﬁ"c?k’“ pairs of electrons:
qoa ..
' superconductivity
-+ Z 2Q Clk—l—qcrclk" qo' (2K o' C2ko + H.c. ]
kk/qoo!

Consider first case where Q Is not commensurate with lattice

Mean-field
e nesting of FS — SDW or CDW
« BCS-like equation with
gap A, T. maximum for perfect nesting

v Ic
* nesting mismatch ‘

Increasing | kg, — kg4 reduces
T.and A —» QCP
 logarithms to all order of perturbation



Ill. Renormalization Group

(a) Multiplicative RG

(b) Wilsonian RG

« eliminates electronic degrees of freedom
~AsksA — —(A=dA) ks (A=dA)

* energy variable : t=1In(A,/A\)
e sums the log-terms consistent

RG-flow diagram e

« weak-coupling

fixed point U=V=0 0.2}

+ strong-coupling fixed points
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U o.of

Instabilities: 0.2/1
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V-2U>0 CDW Lo ML
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V. Results

O = Y2 [Kep — Kpa| Vg
IS Fermi surface mismatch

Up-=0.2, VA= 10
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Crossover from FL to NFL

Phase diagram:
(from specific heat
and line-width)

Phase diagram:
YbRh,SI,
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V. Superconductivity: Q=G/2

 Pairs of electrons can be transferred between pockets

« Similar to iron pnictides (Chubukov (2009))

* SiX interaction vertices (rather than three) lead to six order parameters;
four of them are relevant

Ospw = Z(Cimt’fzm - CL{iCzu); Ocpw = Z(CJ{]{TCEkT + Ciklczlq);
k k

Og = Z(CL{TCLM + Cngcg—u): Og+ = Z(CL{TCLM - C%chg—ki)'
k k

* One-loop RG equations can be integrated analytically
- SDW and S* compete for the same portion of the FS (Celn,;, CePd,Si,)

18 0.010

T

15

—
[\

(C/T(CYT)




VI. Concluding remarks

Perturbative RG limited to small and intermediate coupling.
A strongly coupled system cannot return to weak coupling.
Qualitatively correct even for strong coupling.

T-dependence of C/T on logarithmic scale (as in experiment)
Effective mass diverges at QCP (as for some systems)
Resistivity linear or sublinear in T (as in experiment)
Crossover from FL to NFL in C/T and p(T) (as in experiment)
Deviations from Lorentzian Drude behavior

Dynamical spin-susceptibility (neutron scattering) depends on geometry of Fermi
surface and on q

de Haas-van Alphen amplitudes strongly suppressed at the QCP (large effective
mass)

For Q=G/2 pairs of electrons can be transferred between pockets
Superconducting dome above the QCP as in Celn,; and CePd,Si,

Coexistence of SDW and S* superconductivity

Two-band model is needed for localization (small vs large FS) and the dynamical
susceptibility



Field-tuned QCP in CeAuSh, analogous to

End-point of first order metamagnetic transition

m (. /Ce)

oD = =

=Y =Y,

Sr;RuU, 0,

L. Balicas et al.,
Phys. Rev. B 72,
064422 (2005)
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Resistivity

* NFL for tuned QCP
 Crossover from FL
to NFL for & > 9,

e p(T) roughly proportional to
guasi-particle line width
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Kubo formula

Quasi-particles not well-
defined for tuned QCP

Plot w o(w)
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Staggered dynamical susceptibility

Effective mass, quasi-particle lifetime and resistivity not very
sensitive to geometry of FS, but X”(Q,w)/w is.

Line-width proportional to T for tuned QCP

No central peak for off-critical FS mismatch

Differs from experiments

Position and height of inelastic peak is function of d and T
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Amplitudes of the dH-VA
oscillations for both pockets

The amplitude Is determined by
the quasi-particle self-energy
through a sum over Matsubara
poles

Amplitude strongly suppressed
due to the heavy mass

r I1s index of the harmonic

B=20T m*m=10
Problem if B is tuning parameter
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FIG. 1. (a) ESR spectra at 9.4 GHz (X band). Solid lines
represent fits to the data with a Lorentzian line shape showing
an asymmetry typical for metals. (b) Angle dependence of the
resonance field B, at T = 5 K. The single crystal is rotated in
the magnetic field B as illustrated in the drawing. Inset:
reciprocal B, for |¢| <<12°. The dotted line is a guide to
the eye that indicates the required vanishing of dB,./d¢ at
¢ = 0°. The bar yields uncertainty for Byes(qp =0°)~4T.
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