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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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Thermal (classical) phase transition
- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition
- Fluctuations regulated by parameter g in Hamiltonian

Lecture outline
Part I
- classical spin models
- Monte Carlo simulations
- finite-size scaling to study critical points
Part II
- quantum spin models
- quantum Monte Carlo methods (S=1/2 quantum spins)
- criticality in dimerized systems on 2 and 3 dimensions
[- valence-bond solids and “deconfined” quantum criticality in 2D]
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Classical spin models
Lattice models with “spin” degrees of freedom at the vertices
Classified by type of spin:
• Ising model: discrete spins, normally two-state σi = -1, +1
• XY model: planar vector spins (fixed length)
• Heisenberg model: 3-dimensional vector spins.

Statistical mechanics
• spin configurations C
• energy E(C)
• some quantity Q(C)
• temperature T (kB=1)

�Q⇥ =
1
Z

�

C

Q(C)e�E(C)/T

Z =
�

C

e�E(C)/T

E =
�

�ij⇥

Jij�i�j

E =
�

�ij⇥

Jij
⌅Si · ⌅Sj =

�

�ij⇥

Jij cos(�i ��j)

E =
�

�ij⇥

Jij
⌅Si · ⌅Sj

(Ising)

(XY)

(Heisenberg)
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� 2.269

Tc

J
=

2
ln(1 +

�
2)

• first-order transition versus h (at h=0) for T<Tc 
• continuous transition at h=0

For 2D square
lattice with 
nearest-neighbor
couplings

J = Ji =
�

j

JijMean-field solution: m = tanh[(Jm + h)/T ], (m = ��i⇥)

• Here J is the 
   sum of local
   couplings

J =
X

j

Jij

Phase transition in the Ising model
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Monte Carlo simulation of the Ising model
The Metropolis algorithm 
[Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); C1→ C2→ C3→ C4→...
• Cn+1 obtained by modifying (updating) Cn

Starting from any configuration, such a repeated stochastic process
leads to configurations distributed according to W
• the process has to be ergodic

- any configuration reachable in principle
• it takes some time to reach equilibrium 
   (typical configurations of the Boltzmann distribution)

Pchange(A� B)
Pchange(B � A)

=
W (B)
W (A) W (A) = e�E(A)/T

• changes satisfy the detailed-balance principle 

•⇥ •
Pchange(A� B) = Pselect(B|A)Paccept(B|A)

Pselect = 1/N, Paccept = min[W (B)/W (A), 1]

W (B)

W (A)
= e��E/T = e[E(A)�E(B)]/T is easy to calculate (only depends

on spins interacting with lipped spin)
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Metropolis algorithm for the Ising model. For each update perform:
• select a spin i at random; consider flipping it σi → -σi
• compute the ratio R=W(σ1,...-σi,...,σN)/W(σ1,...σi,...,σN)

- for this we need only the neighbor spins of i
• generate random number 0<r≤1; accept flip if r<R (stay with old config else)
• repeat (many times...)

Example
- 128×128 lattice
   (N=16384) at T/J=4
   (> Tc/J ≈ 2.27)

Simulation time unit
(Monte Carlo step or sweep)
- N spin flip attempts

“Measure” physical observables
(averaged over time) on the
generated configurations
- begin after equilibration 
   (when configurations are
   typical representatives of
   the Boltzmann distribution)
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Going closer to Tc
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Going below Tc....

8



Staying at same
T, speeding up
time by factor 10
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Squared magnetization for L×L Ising lattices

critical scaling
(non-trivial 
power-law)

disordered
(trivial power-
law 1/N = 1/L-2)

ordered
(size independent)

Time series of simulation data; magnetization vs simulation time for T<Tc

Time-scale of m reversals
diverges when L →∞
- symmetry breaking

Compute time-average of <m2> to carry out finite-size scaling

M
N

= m =
1
N

N�

i=1

�i

Order parameter
(magnetization)
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Finite-size scaling hypothesis
In general there are two relevant length scales
- system length L, physical correlation length ξ(T) (defined on infinite lattice) 

For ξ << L or ξ >> L one argument becomes irrelevant: 
g ! g(L) or g ! g(⇠) = f(T )

Use in “data collapse”. Example: susceptibility � = (hm2i � h|m|i2)/T
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FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ising model on several different L×L
lattices. (a) shows the temperature dependence, with the vertical line indicating Tc. Note the vertical log
scale. In (b) the data has been scaled using the exact values of the Ising exponents, γ = 7/4 and ν = 1,
and the exact value of Tc in t = (T −Tc)/Tc.

which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t $= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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⇥ = 1, � = 7/4

t = |T � Tc|
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yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
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We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality

168

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

In general physical quantities depend on both
hAi = f(T, L) = g(⇠, L)

Close to critical point: ξ(T) ~ |T-Tc|-ν (ν is a critical exponent) and when L ~ ξ(T): 

g ! Lg(⇠/L) ⇠ Lg(|T � Tc|�⌫L�1) = Lg⇤(|T � Tc|L1/⌫)
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Binder ratios and cumulants

Consider the dimensionless ratio

We know R2 exactly for N→∞

R2 =
�m4⇥
�m2⇥2

• for T<Tc: P(m)→δ(m-m*)+δ(m+m*)
       m*=|peak m-value|.  R2→1

• for T>Tc: P(m)→exp[-m2/a(N)]
     a(N)∼N-1 R2→3  (Gaussian integrals)

The Binder cumulant is defined as (n-component order parameter; n=1 for Ising)

U2 =
3
2

�
n + 1

3
� n

3
R2

⇥
⇥

⇤
1, T < Tc

0, T > Tc

Curves for different
L asymptotically cross 
each other at Tc

Extrapolate crossing
for sizes L and 2L
to infinite size
• converges faster than 
   single-size Tc defs.

2D Ising model; MC results

order parameter distribution
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Quantum spin models
• the spins have three (x,y,z) components, satisfy commutation relations
• interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components  

H =
�

⇥ij⇤

Jij
⌅Si · ⌅Sj =

�

⇥ij⇤

Jij [Sz
i Sz

j + 1
2 (S+

i S�
j + S�

i S+
j )]

H =
�

⇥ij⇤

Jij [Sx
i Sx

j + Sy
i Sy

j ] = 1
2

�

⇥ij⇤

Jij [S+
i S�

j + S�
i S+

j ]

H =
�

�ij⇥

JijS
z
i Sz

j = 1
4

�

�ij⇥

Jij�i�j (Ising)

(XY)

(Heisenberg)

�Q⇥ =
1
Z

Tr
�

Qe�H/T
⇥

Quantum statistical mechanics

Z = Tr
⇥

e�H/T
⇤

=
M�1�

n=0

e�En/T

Large size M of the Hilbert space; M=2N for S=1/2
- difficult problem to find the eigenstates and energies 
- we may be especially interested in the ground state (T→0)
   (for classical systems the ground state is often trivial)

+ many modifications and extensions... and local spin S=1/2,1,3/2,....
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Quantum antiferromagnets
Nearest-neighbor <i,j> interactions (Heisenberg) on some lattice 

Non-bipartite
- no bipartition is possible 
- frustrated antiferromagnetic interactions
- different kinds of order or no long-range order (spin liquid)

Lattices can be classified as

SA
SB

FIGURE 48. Effective description of the rotationally invariant Néel vector ms in terms of two large
spins, SA, SB, corresponding to the sum of the spins on the two sublattices. There is an effective antiferro-
magnetic coupling between these spins, leading to a singlet ground state and a “tower” of quantum rotor
excitations of total spin S = 1,2, . . . at energies ΔS ∼ S(S+1)/N above the ground state.

thus allowing for the symmetry breaking that is the starting point for spin-wave theory. In
the thermodynamic limit, the direction of the ordering vector is fixed (as the time scale
associated with its rotations diverges [169]), and the quantum rotor-states are then in
practice not accessed. They are neglected in standard spin-wave calculations (discussed
in Sec. 2.1) from the outset because the order is by construction locked to the z direction.
One can still access the rotor energies in spin-wave theory, by considering systems in
an external magnetic field, tuned to give a ground state with total magnetization Sz = S
[170, 171]. The rotor states are of great significance in finite clusters.
The effective coupling Jeff in (219) for a given system can be determined if we can

relate it to some physical quantity which depends on the rotor excitations. An obvious
choice is the uniform magnetic susceptibility, χ = d〈mz〉/dh. Calculating it for the two-
spin model when T → 0 gives χ = 3/Jeff. For the real Heisenberg model on a finite
cluster in dimensions d ≥ 2, χ should be dominated by the quantum rotor states when
T & 1/L, because the lowest spin wave energy scales as ∝ 1/L (while the quantum
rotor states scale as 1/Ld). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as

ΔS =
S(S+1)
3χN

, (220)

where χ should be evaluated in the limitN→∞ (first) and T → 0. Note that I= (3/2)Nχ
here plays the role of a moment of inertia, giving an analogy between (220) and the
energy spectrum of a rigid rotor in quantum mechanics.
The relation (220) can also be used as a way to compute the susceptibility of a

Heisenberg models numerically; by extracting the lowest energies as a function of S (for
small S, where the quantum-rotor mapping should apply). More precisely, the small-S
energies gives an estimate for χ as the N→ ∞, S→ 0 limit of the quantity χ(S,N):

1
χ(S,N)

=
3NS(ES−E0)
S(S+1)

. (221)

Here ES denotes the lowest energy for total spin S. Note that we have to subtract the
ground state energy (S = 0) because in the two-spin effective model we only computed
the excitation energies ΔS with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expect an S-independent behavior

252

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

Bipartite 
- nearest-neighbors i,j always 
  on different sublattices
- compatible with Neel order
- but other states possible

Fully ordered Neel state (ground state of H for classical spins) 
is not an eigenstate of H even on a bipartite lattice
- if there is order at T=0 it is reduced by quantum fluctuations 
Mermin-Wagner theorem (on breaking a continuous symmetry) implies:
- No Neel order in 1D Heisenberg model
- Neel order possible only at T=0 in 2D system
- Order possible also at T>0 in 3D

H = J
X

hi,ji

~Si · ~Sj , J > 0
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Quantum Monte Carlo

hAi = Tr{Ae��H}
Tr{e��H} !

P
c AcWcP
Wc

Rewrite the quantum-mechanical expectation value into a classical form

Different ways of doing it
- World-line methods for spins and bosons
- Stochastic series expansion for spins and bosons
- Fermion determinant methods
For ground state calculations we can also do projection from a “trial state”
| mi ⇠ Hm| 0i

| �i ⇠ e��H | 0i

| mi ! |0i when m ! 1

| �i ! |0i when � ! 1

Monte Carlo sampling in the space {c} with weights Wc (if positive-definite...)
(“sign problem” if
not the case)

Particularly simple and efficient schemes exist for S=1/2 models

H = �J

NbX

b=1

�1
4
� Si(b) · Sj(b)

�

No sign problem on bipartite lattices

(+ certain multi-spin terms)
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periodic “time” boundary conditions

Finite-temperature QMC 
(Stochastic series expansion, SSE)

!22"# and there is no explicit dependence in Eq. !26" on the
operator string !! ," ,e , f" and spin !i , j" indices. An example
configuration is shown in Fig. 4. On a bipartite lattice, the
weights are positive since minus signs present in the states
$Eq. !6"# compensate those arising from an odd number of
off-diagonal operators $Eq. !25"# !or, equivalently, all signs
could be eliminated by a sublattice rotation2".

C. Sampling method

We now briefly describe the Monte Carlo sampling pro-
cedures. Starting with VB configurations Vr , Vl !where nor-
mally one would take Vr=Vl for simplicity" and compatible
spin configurations Zr=Zl, an initial string containing only
diagonal operators Hab!1" can be used !consistent with the
constraint that each operator must act on two antiparallel
spins". Successive configurations maintaining the constraints
are generated with three types of updates.

In the first update—the “diagonal update”—the combined
string P!"

ef
= !P"

f
"TP!

e
!where the transpose T of an operator

sequence just corresponds to writing it in the reverse order,
corresponding to acting with it on a bra state instead of a ket"
containing 2m operators is traversed and each diagonal op-
erator in it is updated !moved to a randomly selected bond",
under the condition that it acts on antiparallel spins. This step
corresponds to changing the vertex breakup in the original
world-line loop scheme.1,2 As in the SSE method,5,10 the con-
straints are checked by keeping the single state Z!p−1",
which is needed for moving a diagonal operator at location p
in the string. This state is obtained by acting on the originally
stored ket spin configuration Zr!0"=Zr with the first p opera-
tors in the sequence. It is changed !by flipping two spins"
whenever an off-diagonal operator is encountered in the
course of traversing the positions p=1, . . . ,2m. At the end of
this procedure, the stored bra state is obtained, Zr!2m"=Zl,
for a valid configuration.

In a second updating stage—the loop update—a linked
list of operator vertices is first constructed. A vertex consists
of the spin states “entering” and “exiting” an operator, as
shown in Fig. 4. They connect, forming loops. The only dif-
ference with respect to the operator loops in the SSE method
is that a loop can now be connected to the ket or bra VB
state, and the valence bonds constitute parts of such loops

!replacing the periodic boundary conditions used at T#0".
To keep nonzero !indeed, constant" matrix elements of the
operators Hab, all spins on a loop have to be flipped together,
in the process changing also Hab!1"↔Hab!2". Each loop is
flipped with probability 1/2. In practice, all loops are con-
structed, and the random decision of whether or not to flip a
loop is made before the loop is constructed. Vertices in a
loop that is not to be flipped are just flagged as visited so that
the same loop is not traversed more than once !i.e., a loop
construction is always started from a vertex leg that has not
yet been visited".

The reason for constructing all the clusters and flipping
each with probability 1/2, instead of generating single clus-
ters starting from random seed locations and flipping them
with probability 1 !as in the classical Wolff method31", is that
the de facto loop structure is only changed when performing
the diagonal updates. One would therefore potentially gener-
ate the same cluster several times, which would lead to lower
efficiency compared to uniquely identifying all clusters and
flipping each at most once. In principle, one could modify
the algorithm with combined diagonal and cluster updates
but this is more complicated and would probably not lead to
improvements in efficiency in most cases.

A flipped loop including one or several VBs will cause
spin flips in the stored spin configurations Zl or Zr. In the
loop updating procedure, we do not have to explicitly keep
track of any other spins than those in Zl and Zr. The four
spins at the operators !the vertex legs" are irrelevant at the
loop updating stage because all the vertices automatically
involve only operations on antiparallel spins, both before and
after a loop flip. For each vertex encountered when con-
structing a loop, we therefore simply have to change the
operator-type index, 1↔2, in the list of operators !i.e., the
same list P!"

ef
used in the diagonal update and to construct

the linked vertex list".
The third type of update—the state update—is identical to

the VB reconfigurations described in Sec. III for the varia-
tional calculation. Normally one would use an amplitude-
product state with coefficients in Eq. !9", which enter in the
weight $Eq. !26"#. Reconfigurations of the bonds can be car-
ried out with either two-bond or bond-loop moves, as ex-
plained in Sec. III. They only change the loop connections at
the VB “end caps.”

D. Measuring observables

When measuring operator expectation values, one can go
back to a pure VB !=loop" representation, using the estimator
$Eq. !23"#. This corresponds to summing over all loop orien-
tations. Most quantities of interest can be expressed in terms
of the loops in the transposition graph corresponding to
%Vl!"" &Vr!!"'.2,23,29,30 Note that these transposition-graph
loops can also be obtained from the “space-time” loops con-
structed in the updates, by connecting the sites !in practice,
just assigning a label, the loop number $i" crossed by the
same loop at the propagation midpoint !indicated by a
dashed line in Fig. 4". The space-time loops can also provide
access to imaginary-time correlation functions2 in the ground
state !see Sec. IV A". Since there are no differences in the

FIG. 4. !Color online" A VB-spin-operator configuration con-
tributing to %%&!−H"2m&%' for a four-site system with m=2. The
arcs to the left and right indicate VB states %Vl&, &Vr' and the two
columns of filled and open circles represent ↑ and ↓ spins of com-
patible spin states %Zj

l
&, &Zj

r
'. The spins at the four operators !verti-

ces" are also indicated. There are three loops, part of which consist
of VBs. Expectation values are evaluated at the midpoint indicated
by the dashed line.

ANDERS W. SANDVIK AND HANS GERD EVERTZ PHYSICAL REVIEW B 82, 024407 !2010"

024407-6

open boundaries capped by 
valence bonds (2-spin singlets)
[AWS, HG Evertz, PRB 2010]

Ground state projection

Trial state can conserve relevant 
ground state quantum numbers 
(S=0, k=0,...)

X

↵�

f�f↵h�|(�H)m|↵i

Sampling of operator sequences
and boundary states using efficient
loop updates
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Does it work?
Compare with exact results
• 4×4 exact diagonalization
• Bethe Ansatz; long chains

⇐ Energy for long 1D chains
• SSE results for 106 sweeps
• Bethe Ansatz ground state E/N
• SSE can achieve the ground
   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒
• SSE results from 1010 sweeps
• improved estimator gives smaller
   error bars at high T (where the
   number of loops is larger)
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Spin correlation function of the Heisenberg chain (T=0)

C(r) = h~Si · ~Si+ri
If there is long-range Neel order C(r)→(-1)r<m2>
- but not possible in 1D
- exact results and low-energy field theory predict critical state 

SSE T→0 results agree with this form

0 5 10
m   (r = 2m)

10-4

10-3

10-2

10-1

C
(r

)

N = 1024
N = 4096

FIGURE 66. Spin correlation function at distances r = 2m for chains of length N = 1024 and 4096.
The error bars are smaller than the symbols. The solid curve is of the expected form Ar−1 ln(r/r0)1/2,
with A = 0.21 and r0 = 0.08. The dashed curve shows the form ∝ r−1 for comparison. These results
were obtained using inverse temperatures β = 213 and 214 for N = 1024 and 4096, respectively, which is
sufficient for T → 0 convergence.

5.3.1. The Heisenberg chain

Spin correlations at T = 0. In Sec. 4.3.1 we discussed Lanczos results for the spin
correlation function of the Heisenberg chain and saw some hints of the expected loga-
rithmic correction to the ∼ 1/r critical behavior (Fig. 34). The system sizes accessible
with the Lanczos method are not sufficient for studying these scaling corrections quanti-
tatively, however. As we saw above, with the SSE method unbiased studies of the ground
state is possible for chains of several thousand spins (with careful checks of the conver-
gence to the T → 0 limit). Fig. 66 shows the spin correlations for N = 1024 and 4096
at distances r = 2m, graphed on a log-log scale. To save time, only the correlations at
these distances were computed [for a scaling N log(N) of the time to carry out spatially
averaged measurements]. The results for the two system sizes coincide closely for r up
to 27, indicating convergence to the infinite size values up to this distance for N = 1024
(and therefore up to r ≈ 29 for N = 4096, since the convergence behavior should scale
approximately linearly with N).
The expected form |C(r)| = A ln1/2(r/r0)r−1 [57, 58, 59] is very well reproduced up

to r = 29 for N = 4096. The parameters A and r0 obtained from a fit are listed in the
figure caption. If one leaves the exponent σ = 1/2 of the logarithm as a free parameter
to be obtained from the data based on a fit, the exponent indeed comes out close to 0.5,
but with a rather large error bar of, roughly, ±0.1. To really investigate the exponent
carefully, one should further increase the chain length (which is possible in principle).
If one did not know about the existence of a log correction and tried to extract the

form of the spin correlations on the basis of numerical calculations alone, one might at
first sight conclude that the decay is ∝ 1/rα with α ≈ 0.85, based on the data in Fig. 66.
There are, however, small but significant deviations from a pure power-law, which can
be detected only if the relative statistical errors are sufficiently small. In the data shown
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pure 1/r form

including log

C(r) ! ln1/2(r/r0)

r
(�1)r
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2D S=1/2 antiferromagnetic Heisenberg model
H = J

�

�i,j⇥

Si · Sj

Long-range order: <ms2> > 0 for N→∞

⌃ms =
1
N

N�

i=1

�i
⌃Si, �i = (�1)xi+yi (2D square lattice)

Sublattice magnetization

 Quantum Monte Carlo 
- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger & Young 1988
ms = 0.30(2)
� 60 % of classical value
AWS & HG Evertz 2010

ms = 0.30743(1)

L⨉L lattices up to 256⨉256, T=0
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T=0 Néel-paramagnetic quantum phase transition
Example: Dimerized S=1/2 Heisenberg models
• every spin belongs to a dimer (strongly-coupled pair)
• many possibilities, e.g., bilayer, dimerized single layer

⇒ 3D classical Heisenberg (O3) universality class; QMC confirmed

Singlet formation on strong bonds ➙ Néel - disordered transition
  Ground state (T=0) phases

� = spin gaps

weak interactions

strong interactions

Experimental realization (3D coupled-dimer system): TlCuCl3
20
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FIGURE 5. QMC results for the squared sublattice magnetization in the two-dimensional Heisenberg
model with columnar dimerization. (a) shows results versus the coupling ratio g for different lattice sizes
and (b) shows the size dependence for several values of g. A quantum phase transition where the Néel
order vanishes occurs at g≈ 1.9.

renormalization-group treatments of one such field theory—the nonlinear σ -model in
2+1 dimensions [5, 84]. Based on symmetry arguments alone, one would then expect
the transition to be in the universality class of the 3D classical Heisenberg model. There
are, however, subtle issues in the quantum-classical mapping, and QMC simulations are
therefore needed to test various predictions. We will see examples of such comparisons
between results of simulations and field theories in Sec. 5.While results for the transition
in the bilayer (a) [85] and columnar dimer (b) [86] systems in Fig. 4 (and several
other cases [87, 88]) are in good agreement with the expectations, recent studies of
the staggered dimers (c) show unexpected deviations [89] that are still not understood.

2.4.2. Frustrated systems

The prototypical example of frustration is a system with antiferromagnetic inter-
actions on a triangular lattice. Looking at this problem first within the Ising model,
the spins on a single triangle cannot simultaneously be anti-parallel to both their
neighbors—there are six configurations with minimum energy, and these all have one
“frustrated” bond (two parallel neighbors), as shown in Fig. 6. Being a consequence of
the lattice, this is often referred to as geometric frustration. Upon increasing the system
size, the ground-state degeneracy grows with the system size, and in the ensemble in-
cluding all these configurations there is no order of any kind [90, 91]. In the case of the
classical XY (planar vector) or Heisenberg (vectors in three dimensions) model, there is,
however, order at T = 0 (but not at T > 0, according to the Mermin-Wagner theorem).
The energy is minimized by arranging the spins in a plane at 120◦ angle with respect
to their neighbors on the same triangle, as shown for a single triangle in Fig. 6. This is
referred to as a three-sublattice Néel state. There have been many studies of the S = 1/2
variant of this model. This was, in fact, the system for which the RVB spin-liquid state
was initially proposed [92]. There is now, however, compelling numerical evidence for
the three-sublattice Néel order actually surviving the quantum fluctuations [93, 94].
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SSE calculations to locate the critical point

Columnar
dimer system

1.8 1.85 1.9 1.95
g
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U
2  L = 8

 L = 16
 L = 32
 L =64
 L = 128

1.88 1.90 1.92 1.94
g
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ρ sL

 L = 8
 L = 16
 L = 32
 L = 64
 L = 128

FIGURE 75. Binder cumulant (left) and spin stiffness (in the x direction) multiplied by the system
length (right) of the dimerized Heisenberg model. The crossing points of these curves for different L tend
toward the critical value of the coupling ratio g. Error bars are much smaller than the symbols.

quantities of interest. This approach is discussed for various dimerized systems in, e.g.,
Refs. [85, 88] (as well as in many older works). Another approach is to study systems
at inverse temperature β = Lz, where z is the dynamic critical exponent (which we dis-
cussed in Sec. 3.6) [231]. This is motivated in the following way, by a generalization of
the finite-size scaling hypothesis (64): In a quantum system the scaling function f (ξ/L)
should be replaced by a function with two arguments, f (ξ/L,ξτ/Lτ), where the correla-
tion length in the imaginary time dimension depends on the spatial correlation length ξ
according to ξτ ∼ ξ z (which defines the dynamic exponent) and the length of the system
in the imaginary time direction is Lτ = c/T ∼ β (where c is a velocity). If we choose
β ∝ Lz, then the scaling function can be written as f [ξ/L,(ξ/L)z], which is a function
of the single argument ξ/L. Thus, the finite-size scaling procedures can be used exactly
as in the classical systems discussed in Sec. (3.3.2). This is the case also if we take the
limit β → ∞ for each L (in practice finite β large enough for convergence to this limit),
because then ξτ/Lτ → 0, and there is again only one argument ξ/L left in the scaling
function.
There is plenty of evidence already that z = 1 in dimerized Heisenberg models, and

we will here use systems with β = L. This allows for studies of larger systems than in
the β → ∞ limit, although it is not a priori clear which approach is in the end better,
since the corrections to the leading finite-size scaling behavior can be different. Here we
use L up to L = 128. We will also test explicitly that systems with β = L exhibit behavior
consistent with z = 1, by studying quantities which depend on z.
We first locate the critical coupling by examining quantities that should be size

independent at gc. Fig. 75 shows the g dependence of both the Binder cumulant and the
spin stiffness, with the latter multiplied by L to compensate for the expected quantum
critical scaling form ρs ∼ 1/L, obtained the classical form (99) with d→ d + z = 3.
The Binder cumulant is defined according to (77), with the number of components

n = 3. Note, however, that (77) is defined with the full scalar product m2 = m ·m in
(75), whereas with the SSE method we here only compute the z component expectation
values 〈m2z 〉 and 〈m4z 〉 (the off-diagonal components being more difficult to evaluate
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Curve crossing analysis: dimensionless quantities
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Crossing points drift as 
the system size is increased
- extrapolations necessary
- can use (L,2L) crossing points

gc(L) = gc(1) + aL�b

0.00 0.02 0.04 0.06 0.08 0.10
1/L

1.87

1.88

1.89

1.90

1.91

1.92

g c

 U2
 ρs (x)
 ρs (y)
 ξx/L
 ξy/L

FIGURE 76. Size dependent critical coupling for the dimerized Heisenberg model extracted from
(L,2L) crossing points of the Binder cumulant, the spin stiffness constants, and the correlation lengths.
The curves show fits to the form gc(L) = gc(∞)+ a/Lω .

[232]). One can easily find the geometrical factors relating these by integrating the z
component cos(Θ) of a classical 3D unit vector over the the angles, giving 〈m2〉= 3〈m2z 〉
and 〈m4〉= 5〈m2z 〉. For locating the critical point, these factors play no role, and we could
also use the plain Binder ratio defined as R2z = 〈m4z 〉/〈m2z 〉2.
Since the dimerized lattice does not have 90◦ rotational symmetry, the stiffness con-

stants in the x and y directions are different. Although the numerical values are indeed
quite different, their scaling behaviors close to the critical point is very similar, how-
ever [the x stiffness is approximately a factor 2 larger—the dimers are oriented in the x
direction as in Fig. 4(b)]. Only the x stiffness is shown in Fig. 75(b).
Curve crossings are indeed seen in Fig. 75 for both U2 and ρsL, and after some

significant drift of the crossing points (e.g., for systems of size L and 2L) for small
L, they seem to converge to roughly the same value in both cases. Note that the crossing
points for U2 and ρs approach gc from opposite directions, which can be useful for
bracketing the critical value [85, 88]. Crossing points can be located numerically by
fitting a polynomial of suitable order to some of the data points, repeating the procedure
several times with added Gaussian noise to compute error bars. Fig. 76 shows results
of such procedures for the Binder ratio, the x and y stiffness constants, as well as
the correlation lengths [computed using the definition (70)] in both the x and the y
direction. Fits to the data points of the form gc(L) = gc(∞) + a/Lω are also shown.
This form describes well all the data for L ≥ 10 (the sizes shown in the figure). All the
extrapolated values of gc fall within the range [1.9094,1.9096], and if the L = 10 data are
excluded the range narrows even further. The exponent ω is in the range 2∼ 2.5 for all
quantities (being largest forU2). Treating all five values obtained in these extrapolations
as independent statistical data gives gc = 1.90948(4) as a final estimate for the critical
point. This is in good agreement with (but with smaller error bar than) a recent estimate
gc = 1.9096(2) obtained using T → 0 data for the same quantities on lattices with L up
to 64. The crossing point shift exponents ω are also in good agreement.
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Different quantities give
consistent results: gc=1.90948(4)

What’s special with quantum-criticality?
- large T>0 quantum-critical fan where T is the only relevant energy scale
- physical quantities expect power laws governed by the T=0 critical point

2D Neel-paramegnet
“cross-over diagram”
[Chakravarty, Halperin, 
Nelson, PRB 1988]

T = 0 Néel order non-magnetic

high-T , lattice e�ects

�
⇢s
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Making connections with quantum field theory
Low-energy properties described by the (2+1)-dimensional nonlinear σ-model
- Chakravarty, Halperin, Nelson (1989), Chubukov, Sachdev, Ye (1994)
Expand O(3) order-parameter symmetry to O(N), large-N calculations
T>0 properties at quantum-critical coupling (N=3):

�(T ) =
1.0760

⇡c2
T E(T ) = E0 +

12 · 1.20206
5⇡c2

T 3

QMC results for bilayer model: gc = 2.5220(1), c(gc)=1.9001(2)
- L×L lattices with L up to 512 (no size-effects for T/J1 ≳ 0.03)

T and T3 prefactors agree with theory to within 3%
23



TlCuCl3 

From: M Matsumoto, B Normand, 
TM Rice, M Sigrist, PRB (2004)
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Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3

Masashige Matsumoto,1,2 B. Normand,3 T. M. Rice,1 and Manfred Sigrist1
1Theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
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Thallium copper chloride is a quantum spin liquid of S!1/2 Cu2" dimers. Interdimer superexchange
interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer
coupling. This gap is closed by an applied hydrostatic pressure of approximately 2 kbar or by a magnetic field
of 5.6 T, offering a unique opportunity to explore both types of quantum phase transition and their associated
critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered
and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions
may be considered as the Bose–Einstein condensation of triplet magnon excitations, and the respective phases
of staggered magnetic order as linear combinations of dimer-singlet and dimer-triplet modes. We focus on the
evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the
gapless !Goldstone" modes in the ordered regimes which correspond to phase fluctuations of the ordered
moment. The bond-operator description yields a good account of the magnetization curves and of magnon
dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental
predictions for pressure-dependent measurements.

DOI: 10.1103/PhysRevB.69.054423 PACS number!s": 75.10.Jm, 75.40.Cx, 75.40.Gb

I. INTRODUCTION

Thallium copper chloride1–3 presents an insulating, quan-
tum magnetic system of dimerized S!1/2 Cu2" ions. Inelas-
tic neutron scattering !INS" measurements of the elementary
magnon excitations4,5 reveal a strong dispersion in all three
spatial dimensions indicative of significant interdimer inter-
actions. The dispersion minimum gives a spin gap #0
!0.7 meV, which is significantly smaller than the antiferro-
magnetic !AF" dimer superexchange parameter J$5 meV.
The corresponding critical field, Hc!5.6 T, makes TlCuCl3
one of the few known inorganic systems in which the gap
may be closed by application of laboratory magnetic fields.2
Neutron-diffraction measurements at fields H#Hc revealed
that a field-induced AF order in the plane normal to the ap-
plied field appears simultaneously with the uniform
moment.6 Recent INS measurements of the magnon spectra
in finite fields,7 including those exceeding Hc ,8 have pro-
vided dynamical information concerning the elementary ex-
citations, in particular the linear Goldstone mode,9 in the
phase of field-induced magnetic order.
TlCuCl3 !Fig. 1" is one member of a group of related

compounds. The potassium analog KCuCl3 !Refs. 1,2,10–
13,7" is similarly dimerized, but has significantly weaker in-
terdimer couplings,14 resulting in a large spin gap of 2.6
meV. A further material in the same class, NH4CuCl3, has no
spin gap and exhibits magnetic order with a very small mo-
ment, but also shows a complicated low-temperature struc-
ture which gives rise to magnetization plateaus only at 1/4
and 3/4 of the saturation value.15 While the apparent increase
of interdimer couplings with anion size may suggest a con-
tribution of the anion to superexchange processes, it should
be noted that the physical origin of the properties of
NH4CuCl3 may be rather different from the other
members.16 Turning from chemical to physical pressure,

Tanaka et al.17 found by magnetization measurements under
hydrostatic pressure that TlCuCl3 has a pressure-induced
magnetically ordered phase, with a very small critical pres-
sure for the onset of magnetic order, Pc%2 kbar. Oosawa
et al.18 have shown very recently by elastic neutron-
scattering measurements under a pressure of 1.48 GPa that
the pressure-induced ordered phase has a strong staggered
moment !60% of the saturation value", again reflecting the
low value of Pc . The magnetic Bragg reflections are found
at reciprocal-lattice points Q!(0,0,2&) !following the nota-
tion of Ref. 4", as in the field-induced ordered phase of
TlCuCl3. The aim of the present work is to compare and
contrast the field- and pressure-induced ordered phases of the
system, and to provide a complete description of the static
magnetization and dynamical excitations at all fields and
pressures.

FIG. 1. Structure of TlCuCl3: small circles represent Cl$ ions,
medium-sized circles Cu2" ions, and large circles Tl" ions.
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Figure 4.1: Crystal structure of TlCuCl
3

: small circles represent Cl� ions, medium-sized

circles Cu2+ ions, and large circles Tl+ ions. Dimers are formed between S = 1

2

Cu2+ pairs,

with superexchange via Cl� [3–9]. This graph is from Ref. [10].

couplings are di↵erent.

A universal aspect of the ordering temperature, from systems close to the quantum-

critical point to deep inside the Néel phase, is uncovered based on an unbiased quantum

Monte Carlo calculation. A scaling procedure of direct relevance to experiments is devel-

oped. The results also provide new insights into the relevant energy scales present in the 3D

Néel state and demonstrate an e↵ective decoupling of thermal and quantum fluctuations.

4.1 TlCuCl3 and Dimer Spin Models

The strong interdimer interaction of TlCuCl
3

is revealed by elementary magnon exitation

with neutron scattering experiment [6, 88]. Quantum phase transitions can be realized in
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Quantum and classical criticality in a dimerized
quantum antiferromagnet
P. Merchant1, B. Normand2, K. W. Krämer3, M. Boehm4, D. F. McMorrow1 and Ch. Rüegg1,5,6*

A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations.
The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors,
quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal
fluctuations near such a point. However, direct and continuous control of these fluctuations has been di�cult to realize, and
complete thermodynamic and spectroscopic information is required to disentangle the e�ects of quantum and classical physics
around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum
dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram,
we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the
unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of
two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum
and thermal fluctuations can behave largely independently near a QCP.

In classical isotropic antiferromagnets, the excitations of
the ordered phase are gapless spin waves emerging on the
spontaneous breaking of a continuous symmetry1. The classical

phase transition, occurring at the critical (Néel) temperature TN,
is driven by thermal fluctuations. In quantum antiferromagnets,
quantum fluctuations suppress long-range order, and can destroy it
completely even at zero temperature2. The ordered and disordered
phases are separated by a QCP, where quantum fluctuations restore
the broken symmetry and all excitations become gapped, giving
them characteristics fundamentally di�erent from the Goldstone
modes on the other side of the QCP (Fig. 1). At finite temperatures
around a QCP, the combined e�ects of quantum and thermal
fluctuations bring about a regime where the characteristic energy
scale of spin excitations is the temperature itself, and this quantum
critical regime has many special properties3.

Physical systems do not often allow the free tuning of a
quantum fluctuation parameter through a QCP. The quantum
critical regime has been studied in some detail in heavy-fermion
metals with di�erent dopings, where the quantum phase transition
(QPT) is from itinerant magnetic phases to unusual metallic or
superconducting ones4–6, in organic materials where a host of
insulating magnetic phases become (super)conducting7,8, and in
cold atomic gases tuned from superfluid toMott-insulating states9,10.
However, the dimerized quantum spin system TlCuCl3 occupies
a very special position in the experimental study of QPTs. The
quantum disordered phase at ambient pressure and zero field has
a small gap to spin excitations. An applied magnetic field closes
this gap, driving a QPT to an ordered phase, a magnon condensate
in the Bose–Einstein universality class, with a single, nearly
massless excitation11,12.

Far more remarkably, an applied pressure also drives a QPT
to an ordered phase13, occurring at the very low critical pressure

pc = 1.07 kbar (ref. 14) and sparking detailed studies15,16. This
ordered phase is a di�erent type of condensate, whose defining
feature is a massive excitation, a Higgs boson or longitudinal
fluctuationmode of theweakly orderedmoment17,18. This excitation,
which exists alongside the two transverse (Goldstone) modes
of a conventional well-ordered magnet, has been characterized
in detail by neutron spectroscopy with continuous pressure
control through the QPT (ref. 19) and subsequently by di�erent
theoretical approaches20,21. TlCuCl3 is therefore an excellent system
for answering fundamental questions about the development of
criticality, the nature of the quantum critical regime, and the
interplay of quantum and thermal fluctuations by controlling both
the pressure and the temperature.

Here we present inelastic neutron scattering (INS) results that
map the evolution of the spin dynamics of TlCuCl3 throughout the
quantum critical phase diagram in pressure and temperature. The
spin excitations we measure exhibit di�erent forms of dynamical
scaling behaviour arising from the combined e�ects of quantum
and thermal fluctuations, particularly on crossing the quantum
critical regime and at the line of phase transitions to magnetic
order (Fig. 1). To probe these regions, we collected spectra up to
1.8 meV for temperatures between T =1.8 K and 12.7 K, and over
a range of applied hydrostatic pressures. Our measurements were
performed primarily at p = 1.05 kbar (' pc at the lowest
temperatures), 1.75 kbar and 3.6 kbar, and also for all pressures at
T = 5.8 K. Most measurements were made at the ordering
wavevector, Q0 = (0 4 0) reciprocal lattice units (r.l.u.), and so
concern triplet mode gaps. From the INS selection rules, only one
transverse mode of the ordered phase is observable at Q = Q0,
and it is gapped (�T2 = 0.38 meV) owing to a 1% exchange
anisotropy19. These features allow an unambiguous separation of
the intensity contributions from modes of each transverse or
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Figure 4 | Quantum and classical criticality. a, Scattered neutron intensity at p=pc as a function of temperature. Points show the energies ✏Q extracted
from the intensity for the modes becoming gapless (L and T1, yellow) and gapped (T2, black) as T !0. b, �Q as a function of T at p=pc. Error bars in a and
b indicate uncertainties in the resolution deconvolution. c, Complete experimental phase diagram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC) and renormalized classical (RC-AFM) phases. The dashed lines denote energy scales marking crossovers in behaviour. Grey
symbols denote TN(p) (ref. 14), blue symbols labelled TSL(p) show the limit of classical critical scaling in the data for the staggered magnetization, ms(T),
and the blue bars are taken from �Q/✏Q(T) (see text). d, Linear proportionality of the measured TN(p) and ms(p) (ref. 14). e, Scaling of TN and ms, including
one high-p data point (open circle) taken from ref. 25 for an absolute calibration of ms. Data for ms are normalized by Tmax =35 K, the maximum of the
magnetic susceptibility13,16. Red lines in d and e represent scaling behaviour discussed in the text and error bars are the statistical uncertainties in the
intensity measurements determining ms.

on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.
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Universality of the Neel temperature in 3D dimerized systems?
[S. Jin, AWS, PRB2012]
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FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares 〈m2

z〉 and
〈m2

sz〉 of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1

N

N∑

i=1

φiS
z
i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
〈m2

z〉/(NT ). We also study the Binder ratio R2 = 〈m4
sz〉/〈m2

sz〉2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown
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FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated 〈m2

sz〉 (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3〈m2

sz〉.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ〈Sδ〉. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, 〈Sδ〉 →
(ms/S)〈Sδ〉. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition 〈Sδ〉 =
〈S0〉. The final magnetization curve is given by (ms/S)〈S0〉.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares 〈m2

z〉 and
〈m2

sz〉 of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1

N

N∑

i=1

φiS
z
i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
〈m2

z〉/(NT ). We also study the Binder ratio R2 = 〈m4
sz〉/〈m2

sz〉2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown
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FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated 〈m2

sz〉 (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3〈m2

sz〉.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ〈Sδ〉. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, 〈Sδ〉 →
(ms/S)〈Sδ〉. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition 〈Sδ〉 =
〈S0〉. The final magnetization curve is given by (ms/S)〈S0〉.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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FIG. 5. (Color online) (a) Susceptibility vs temperature of the
staggered dimer model at different coupling ratios. The system size is
L = 12, for which the peak height and location are already L → ∞
converged. (b) The peak temperature vs the coupling ratio for the
three different models.

average coupling. In Fig. 5(a) we show examples of the
susceptibility close to its peak, and in Fig. 5(b) we show the
dependence of T ∗ on g for all three models. Normalizing TN

with T ∗ leads to remarkably good data collapse, as shown
in Fig. 4(c). Deviations from a common curve are barely
detectable. Although we cannot prove that this function is
really universal for all 3D networks of dimers, the results are
very suggestive of this.

Discussion. The universal behavior implies that the T > 0
disordering mechanism in the 3D Néel state is completely
governed by a single lattice-scale energy (which, as we have
shown here, can be taken as the peak temperature T ∗ of the
susceptibility) and the T = 0 sublattice magnetization ms . The
extended linear behavior seen in Figs. 4(b) and 4(c) shows
that the quantum and classical fluctuations at T < TN are
completely decoupled all the way from g = gc (excluding gc

itself, where TN = 0) to quite far away from the quantum-
critical point. Depending on a lattice-scale energy instead of
the quantum-critical spin stiffness, the linear behavior is not
fundamentally a quantum-critical effect. We have discussed
the linearity and decoupling of the fluctuations in terms of a
semiclassical mean-field theory, the validity of which implies
that the quantum-critical regime2 commences only above TN .
Deviations from linearity at larger ms show that the quantum
fluctuations are affected (become T dependent) here, due to
the high density of excited spin waves as T → TN because
TN is high. It is remarkable that this coupling of quantum
and classical fluctuations also takes place in an, apparently,
universal fashion for different systems. It would be interesting
to explain this more quantitatively, by deriving the full function
TN versus ms analytically. Progress in the linear regime has
been made recently in work parallel to ours.20

From a practical point of view, the data collapse of
TN/T ∗ versus ms is very useful, because all the quantities
involved can be measured experimentally and do not rely on
microscopic details. The universal curve can be used to test
the 3D Heisenberg scenario without adjustable parameters.
The universality likely applies not only to dimer networks, but
also to systems where the quantum fluctuations are regulated
in other ways.
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Couplings vs pressure not known experimentally
- plot TN vs ms to avoid  this issue and study universality
- but how to normalize TN? Three normalizations

- weaker copling J1
- sum Js of couplings per spin
- peak T* of magnetic susceptibility

26



T* normalization is in principle accessible experimentally
- some experimental susc. results available
- neutron data analyzed with this normalization

Same features observed in models and experiment
- experimental slope about 25% lower of g-factor 2 assumed
   (what exactly is the g-factor?)

Universality is not a feature of quantum-criticality
- extends far from the quantum critical point
- linear behavior is expected from semiclassical theory
   (decoupling of quantum and thermal fluctuations)
- deviations show coupling of quantum and thermal fluctuations
  (high TN, high density of excited spin waves)
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Figure 4 | Quantum and classical criticality. a, Scattered neutron intensity at p=pc as a function of temperature. Points show the energies ✏Q extracted
from the intensity for the modes becoming gapless (L and T1, yellow) and gapped (T2, black) as T !0. b, �Q as a function of T at p=pc. Error bars in a and
b indicate uncertainties in the resolution deconvolution. c, Complete experimental phase diagram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC) and renormalized classical (RC-AFM) phases. The dashed lines denote energy scales marking crossovers in behaviour. Grey
symbols denote TN(p) (ref. 14), blue symbols labelled TSL(p) show the limit of classical critical scaling in the data for the staggered magnetization, ms(T),
and the blue bars are taken from �Q/✏Q(T) (see text). d, Linear proportionality of the measured TN(p) and ms(p) (ref. 14). e, Scaling of TN and ms, including
one high-p data point (open circle) taken from ref. 25 for an absolute calibration of ms. Data for ms are normalized by Tmax =35 K, the maximum of the
magnetic susceptibility13,16. Red lines in d and e represent scaling behaviour discussed in the text and error bars are the statistical uncertainties in the
intensity measurements determining ms.

on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ〈Sδ〉. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, 〈Sδ〉 →
(ms/S)〈Sδ〉. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition 〈Sδ〉 =
〈S0〉. The final magnetization curve is given by (ms/S)〈S0〉.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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