

Effects of strain in MoS₂: band gap engineering & funnel effect Rafael Roldán

Instituto de Ciencia de Materiales de Madrid CSIC

Evora, October 2014

Transition Metal Dichalcogenides: new players

- Van der Waals 2D materials: Exfoliation from Bulk to 1 layer and few layers
- Semiconductor with large gap (~1.9 eV single-layer, ~1.3 eV bulk)
- Electronic structure highly sensitive to pressure/strain
- Strong Spin-Orbit coupling (~0.15eV MoS₂/ ~0.4eV WS₂)
- Strong photoluminescence
- Controllable valley and spin polarization
- Large on-off ratio in field effect transistors

Our focus

- Analytical tight-binding and DFT methods [E. Cappelluti et al., PRB 2013]
- Effects of spin-orbit interaction [RR et al., 2D Materials (in press)]
- Local strain-induced gap tuning [A. Castellanos et al., Nano Letters 2013]
- Screening properties [A. Castellanos et al., Advanced Materials 2013]
- Superconductivity [RR et al., PRB 2013]
- Spin relaxation [H. Ochoa and RR, PRB 2013]

• Optical and transport properties of disordered MoS₂ and WS₂ [S. Yuan et al., PRB(R) 2014]

Lattice structure of 2H-MX₂

Band structure: from multi-layer to single-layer

Splendiani et al., Nano Lett 10, 1271 (2010)

Indirect to direct gap transition

• Huge increase of photoluminescence peak in 1-layer compounds signalizing direct gap optical transitions without phonon assistance.

- Indirect gap probed from the I feature of the photoconductivity spectrum.
- Single-layer MoS₂ as the first atomically thin material that is an effective emitter of light.

Mak et al., PRL 105, 136805 (2010)

Strain in MoS₂

Electronic structure highly sensitive to pressure/strain

Scalise et al., Physica E (2012)

Strain engineering in MoS₂

• Interplay between mechanical deformations and electronic/optical properties

- Gap reduction from energy PL peaks
- Direct/indirect gap transition from peak intensities

Conley et al. Nano Lett 13, 3626 (2013)

He et al. Nano Lett 13, 2931 (2013)

Yang et al., Scientific Reports (2014)

Strain engineering in MoS₂

Possible at local scale?

2D crystals can be subjected to inhomogeneous strain: relevant for solar cells

Local strain-induced gap engineering in MoS₂

Buckling induced delamination process

A.Castellanos-Gómez, RR, E.Cappelluti, G.Steele, F.Guinea & H. van der Zant, Nano Letters 13, 5361 (2013)

Raman & Photoluminiscence spectra of strained MoS₂

- Simultaneous scanning Raman microscopy and photoluminescence
- Raman spectroscopy accounts for the changes of the vibrational modes induced by strain
- PL accounts for the direct transitions between the valence and conduction bands at the K point

Strain tuning the direct band gap trasition in MoS₂

Tight-binding model for MoS₂

<u>Theoretical model</u> to account for nonuniform strain

- Formidable task for DFT: huge supercells!!
- Affordable with tight-binding

1st task: Build a robust strainsensitive tight-binding description of MoS₂ (including Mo and S orbitals)

Tight-binding for 1-layer MoS₂: 11 bands & 12 TB parameters

Suitable generalization to multi-layer systems in a LEGO model, by simply adding few inter-layer hopping

E. Cappelluti, RR, J.A. Silva-Guillén, P. Ordejón and F. Guinea, PRB 88, 075409 (2013)

Including strain in the tight-binding description

2nd task: generalization of TB in locally modulated strained samples

- Within a Slater-Koster framework, hopping processes between two atoms depend only on the relative angle and on the relative distance
- We assume that the main contribution comes from the modulation of the hopping integrals on the distance, and we neglect the weak dependence on the relative angles

$$V_{i,j,\mu,\nu} \left[R_{ij\mu\nu}(x,y) \right] \approx V_{i,j,\mu,\nu} \left(R_{ij\mu\nu}^{0} \right) \left[1 - \beta_{i,j,\mu,\nu} \frac{\delta R_{ij\mu\nu}(x,y)}{R_{ij\mu\nu}^{0}} \right]$$
$$\mathbf{R}_{ij\mu\nu}(x,y) = \left[\hat{I} + \hat{\varepsilon}(x,y) \right] \cdot \mathbf{R}_{ij\mu\nu}^{0}$$
$$\beta_{i,j,\mu,\nu} = -\frac{d \log V_{i,j,\mu,\nu}(R)}{d \log R}$$

A.Castellanos-Gómez, RR, E.Cappelluti, G.Steele, F.Guinea & H. van der Zant, Nano Letters 13, 5361 (2013)

Including strain in a tight-binding description

Tight-binding in locally strained MoS₂

Assume β to be independent on the specific pair of atoms/orbitals: $\beta_{i,j,\mu,\nu} = \beta = 3$

Funnel effect

 A.Castellanos-Gómez, RR, E.Cappelluti, G.Steele, F.Guinea & H. van der Zant, Nano Letters 13, 5361 (2013)

Local Density of States along the wrinkle

$$N(\omega, n) = \lim_{\delta \to 0} \sum_{k_x, \mu} \operatorname{Im} \left[\frac{1}{\omega \hat{I} - \hat{H}(k_x) + i\delta} \right]_{n, \mu; n, \mu}$$

• Clear correlation between the local strain and the modulation

Estimation of the minimum gap from -80 -100 -

• Estimation of the band edges by looking at the inflection points $d^2 N(max)/dm^2$

Summary

- Transition Metal Dichalcogenides (MoS₂, WS₂,...) as a twodimensional semiconducting crystals: Interesting from a fundamental point of view and for applications
- Full tight-binding model applicable for single-layer and multi-layer transition metal dichalcogenides
- Extension to finite systems: nonoribbons, nanotubes, etc.
- Strain engineering as a possible route to tune the bandgap
- Local strain yields exciton trapping (good for photovoltaic applications)

Many thanks to...

<u>Theory</u> (Madrid) E. Cappellutti F. Guinea

Experiments (Delft)

A. Castellanos-Gómez Michele Buscema G. Steele H. van der Zant

 A.Castellanos-Gómez, RR, E.Cappelluti, M. Buscema, G.Steele, F.Guinea & H. van der Zant, Nano Letters 13, 5361 (2013)

...and thanks to you for your attention