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•Van der Waals 2D materials: Exfoliation from Bulk to 1 layer and few 
layers 

•Semiconductor with large gap (~1.9 eV single-layer, ~1.3 eV bulk)

•Electronic structure highly sensitive to pressure/strain

•Strong Spin-Orbit coupling (~0.15eV MoS2/ ~0.4eV WS2)

•Strong photoluminescence

•Controllable valley and spin polarization

•Large on-off ratio in field effect transistors

Transition Metal Dichalcogenides: new 
players 

For a (short) recent review, see R.Roldán et al., arXiv:1410.2154



• Analytical tight-binding and DFT methods  [E. Cappelluti et al., PRB 2013]

• Effects of spin-orbit interaction [RR et al., 2D Materials (in press)]

• Local strain-induced gap tuning [A. Castellanos et al., Nano Letters 2013]

• Screening properties [A. Castellanos et al., Advanced Materials 2013]

• Superconductivity [RR et al., PRB 2013]

• Spin relaxation [H. Ochoa and RR, PRB 2013]

• Optical and transport properties of disordered MoS2 and WS2      
[S. Yuan et al., PRB(R) 2014]

• ......
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gap is indirect with valence and conduction edges located
far from the K point. An effective lattice TB Hamilto-
nian was on the other hand proposed in Refs. 98, valid
in principle in the whole Brillouin zone. However, the
band structure of the single-layer lacks the characteristic
second minimum in the conduction band (see later dis-
cussion) that will become the effective conduction edge
in multilayer systems, so that also in this case the gen-
eralization to the multilayer compounds is doubtful. In
addition, the use of an overlap matrix makes the pro-
posed Hamiltonian unsuitable for a straightforward use
as a basis for QFT analyses. This is also the case for a re-
cent model proposed in Ref. 99, where the large number
(ninetysix) of free fitting parameters and the presence of
overlap matrix make such model inappropriate for prac-
tical use within the context of Quantum Field Theory.

In this paper we present a suitable tight-binding model
for the dichalcogenides valid both in the single-layer
case and in the multilayer one. Using a Slater-Koster
approach,100 and focusing on MoS2 as a representative
case, we analyze the orbital character of the electronic
states at the relevant high-symmetry points. Within this
context we show that the transition from a direct gap
to an indirect gap in MoS2 as a function of the number
of layers can be understood and reproduced in a natural
way as a consequence of a momentum/orbital selective
interlayer splitting of the main relevant energy levels. In
particular, we show that the pz orbital of the S atoms
plays a pivotal role in such transition and it cannot be
neglected in reliable tight-binding models aimed to de-
scribe single-layer as well as multi-layer systems. The
tight-binding description here introduced can represent
thus the paradigmatic model for the analysis of the elec-
tronic properties in multilayer systems in terms of intra-
layer ligands plus a finite number of interlayer hopping
terms. Such tight-binding model, within the context of
the Slater-Koster approach, provides also a suitable tool
to include in an analytical and intuitive way effects of
pressure/strain by means of the modulation of the in-
teratomic distances. The present analysis defines, in ad-
dition, the minimum constraints that the model has to
fulfill to guarantee a correct description of the band struc-
ture of multi-layer compounds.

The paper is structured as follows: in Section II we
present DFT calculations for single-layer and multi-layer
(bulk) MoS2, which will be here used as a reference for
the construction of a tight-binding model. In Section
III we describe the minimum tight-binding model for the
single-layer case needed to reproduce the fundamental
electronic properties and the necessary orbital content.
The decomposition of the Hamiltonian in blocks and the
specific orbital character at the high-symmetry points is
discussed. The extension of the tight-binding model to
the bulk case, taken as representative of multilayer com-
pounds, is addressed in Section IV. We pay special at-
tention to reveal the microscopic origin of the change
between a direct-gap to indirect-gap band structure. In
Section V we summarize the implications of our analysis
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FIG. 1: (a) Model of the atomic structure of MoS2. The bulk
compound has a 2H-MoS2 structure with two MoS2 layers
per unit cell, each layer being built up from a trigonal prism
coordination unit. The small green rectangle represents the
unit cell of a monolayer of MoS2, which is doubled (red ex-
tension) in the bulk crystal. (b) Detail of the trigonal prisms
for the two layers in the bulk compound, showing the lattice
constants and the definition of the structural angles used in
the text.

in the building of a reliable tight-binding model, and we
provide a possible set of tight-binding parameters for the
single-layer and multilayer case.

II. DFT CALCULATIONS AND ORBITAL
CHARACTER

In the construction of a reliable TB model for semi-
conducting dichalcogenides we will be guided by first-
principles DFT calculations taht will provide the refer-
ence on which to calibrate the TB model. We will fo-
cus here on MoS2 as a representative case, although we
have performed first-principle calculations for compari-
son also on WS2. The differences in the electronic struc-
ture and in the orbital character of these two compounds
are, however, minimal and they do not involve any differ-
ent physics. The structure of single-layer and multilayer
MoS2 is depicted in Fig. 1.
The basic unit block is composed of an inner layer of

Mo atoms on a triangular lattice sandwiched between
two layers of S atoms lying on the triangular net of al-
ternating hollow sites. Following standard notations,96

we denote a as the distance between nearest neighbor in-
plane Mo-Mo and S-S distances, b as the nearest neighbor
Mo-S distance and u as the distance between the Mo and
S planes. The MoS2 crystal forms an almost perfect trig-
onal prism structure with b and u very close to the their
ideal values b !

√

7/12a and u ! a/2. In our DFT cal-
culations, we use experimental values for bulk MoS2,96

namely a = 3.16 Å, u = 1.586 Å, and, in bulk systems,
a distance between Mo planes as c′ = 6.14 Å, with a
lattice constant in the 2H-MoS2 structure of c = 2c′.
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FIG. 1: (a) Schematic representation of the atomic structure ofMX2.
The bulk compound has a 2H-MX2 structure with two MX2 layers
per unit cell, each layer being built up from a trigonal prism coor-
dination unit. The small green rectangle represents the unit cell of
a monolayer of MX2, which is doubled (red extension) in the bulk
crystal. (b) Detail of the trigonal prisms for the two layers in the
bulk compound, showing the lattice constants and the de�nition of
the structural angles used in the text.

shown in Fig. 1. The basic unit block of MX2 is composed
of an inner layer of M atoms on a triangular lattice sand-
wiched between two layers ofX atoms lying on the triangu-
lar net of alternating hollow sites. We denote7 a as the dis-
tance between nearest neighbor in-planeM�M andX�X
distances, b as the nearest neighbor M � X distance and
u as the distance between the M and X planes. The MX2

crystal forms an almost perfect trigonal prism structure with
b and u very close to the their ideal values b '

p
7/12a

and u ' a/2. The experimental values of these lattice dis-
tances of the bulk compounds are given in Table I for the four
materials investigated.42,61,62 The in-plane Brillouin zone is
thus characterized by the high-symmetry points � = (0, 0),
K= 4⇡/3a(1, 0), and M= 4⇡/3a(0,

p
3/2).

DFT calculations are done using the S����� code,65,66

with the exchange-correlation potential of Ceperly-Alder67

as parametrized by Perdew and Zunger.68 We consider also
a split-valence double-⇣ basis set including polarization
functions.69 The energy cuto� and the Brillouin zone sam-
pling were chosen to converge the total energy. We account

a u c0

MoS2 3.160 1.586 6.140
WS2 3.153 1.571 6.160
MoSe2 3.288 1.664 6.451
WSe2 3.260 1.657 6.422

TABLE I: Lattice parameters used for DFT calculation for MX2,
as taken from Refs. 63, 64 and 62. a represents the M -M atomic
distance, u the internal vertical distance between the M plane and
the X plane, and c0 the distance between the M layers. In bulk
systems the z-axis lattice parameter is given by c = 2c0. All values
are in Å units.

FIG. 2: Band structure of single layer MoS2, MoSe2, WS2 and WSe2
obtained from DFT calculations, including SOC. Dashed vertical
lines indicate the position of the Q point in the BZ (see text).

for the spin-orbit interaction of the di�erent compounds fol-
lowing the method developed in Ref. 70. Figs. 2-4 show the
obtained band structures for single-layer, bilayer and bulk
samples of MX2. The lattice parameters used in this cal-
culation are given in Table I. A detailed description of the
orbital character of the bands can be found in Ref. 7. The va-
lence and conduction bands are made by hybridization of the
d
xy

, d
x

2�y

2 and d3z2�r

2 orbitals of the transition metal M ,
and the p

x

, p
y

and p
z

orbitals of the chalcogen atomsX . All
the single-layer compounds shown in Fig. 2 are direct gap
semiconductors, with the gap lying at the two inequivalent
K points of the hexagonal BZ. The most important orbital
contribution at the edge of the valence band at the K point
is due to a combination of d

xy

and d
x

2�y

2 of the metal M ,
which hybridize to p

x

and p
y

orbitals of the chalcogen atoms
X . On the other hand, the edge of the conduction band has
a main contribution due to d3z2�r

2 of M , plus a minor con-
tribution of p

x

and p
y

orbitals of X .7

The main di�erence between the MoX2 [Fig. 2(a) and (b)]
and WX2 [Fig. 2(c) and (d)] compounds is observed in the
splitting of the valence band for each case, which is due to
SOC. Whereas for the Mo compounds it is of the order of
⇠150 meV, for the heavier W compounds increases up to ⇠
400 meV. SOC also lead to a splitting of the conduction band
at both, the band edge at the K point,61 as well as at the sec-
ondary minimum Q which lies between the � and K points
of the BZ (indicated in Fig. 2-4 by a dashed vertical line). No-
tice that, since Q is not a high symmetry point of the BZ, the
minima of the conduction band for bilayer and bulk materi-
als do not lie exactly at the same point than for single layers.
This is why the minima of the conduction band in Figs. 3
and 4 are slightly shifted with respect to the single-layer Q
point.
Around the K and K’ points, it is possible to assign a

spin projection to the di�erent Bloch states along the nor-
mal to the MX2 plane. It is possible to de�ne a sign for
the SOC induced splitting of the band n from the di�erence

2H-MX2 M = Mo, W
 X = S, Se



Band structure: from multi-layer to 
single-layer

Splendiani et al., Nano Lett 10, 1271 (2010)
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•Huge increase of photoluminescence peak in 1-layer compounds signalizing direct gap 
optical transitions without phonon assistance.

•Indirect gap probed from the I feature of the photoconductivity spectrum.

•Single-layer MoS2 as the first atomically thin material that is an effective emitter of light.

Indirect to direct gap transition

Mak et al., PRL 105, 136805 (2010)

(from a negligible value) by about 3 orders of magnitude.
This dramatic rise corresponds to the onset of optical
absorption from the direct band edge [28].

In the following simplified treatment of the spectral
dependence of the photoconductivity, we neglect both ex-
citonic effects and the variation of matrix elements with
energy, factors that should be included in a more compre-
hensive theory. The absorbance Að@!Þ at photon energy@! near a direct band edge of energy Eg is then determined

by the joint density of states. For a two-dimensional (2D)
material like our atomically thin layers of MoS2, this is
described by a step function, !ð@!# EgÞ [1,29]. After
including a phenomenological broadening of 30 meV to
account for finite temperature and scattering rates, we find
that the photoconductivity spectrum of the monolayer
samples can be fit well to this simple model [Fig. 4(b)].
This indicates that monolayer MoS2 is indeed a direct-gap
material [28]. On the other hand, the photoconductivity
spectrum for bilayer MoS2 cannot be described by the

step-function response. We need to include the effect of
an indirect transition. Near an indirect band edge, the
corresponding absorbance can be represented by [1,29]

Að@!Þ / P
!½

@!#@"!#E0
g

1#expð#@"!=kTÞ þ
@!þ@"!#E0

g

expð@"!=kTÞ#1& / @!# E0
g.

Here E0
g and @"! denote, respectively, the indirect-gap

energy and that of the !th phonon mode, and kT is the
thermal energy. By taking this term into account, the
experimental bilayer MoS2 spectrum can be fit well by
an indirect transition at 1.6 eV, combined with a direct
transition at 1.88 eV [Fig. 4(b)].
The indirect-direct-gap crossover as a function of MoS2

thickness N is the result of a significant upshift of E0
g

induced by perpendicular quantum confinement. To under-
stand this, let us examine the electronic band structure of
bulk MoS2 (Fig. 1). The direct gap of '1:8 eV occurs
between c1 and v1 at the K point of the Brillouin zone
(transitions A) [3–5,7,12]. On the other hand, the maximum
of v1 and minimum of c1 are located at the # point and
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FIG. 3 (color online). (a) PL spectra for mono- and bilayer MoS2 samples in the photon energy range from 1.3 to 2.2 eV. Inset: PL
QYof thin layers for N ¼ 1–6. (b) Normalized PL spectra by the intensity of peak A of thin layers ofMoS2 for N ¼ 1–6. Feature I for
N ¼ 4–6 is magnified and the spectra are displaced for clarity. (c) Band-gap energy of thin layers ofMoS2, inferred from the energy of
the PL feature I for N ¼ 2–6 and from the energy of the PL peak A for N ¼ 1. The dashed line represents the (indirect) band-gap
energy of bulk MoS2.

FIG. 4 (color online). (a) Absorption spectra (left axis, normalized by N) and the corresponding PL spectra (right axis, normalized by
the intensity of the peak A). The spectra are displaced along the vertical axis for clarity. (b) Photoconductivity spectra for mono- (red
dots) and bilayer (green dots) samples [27]. The data are compared with the 2D model described in the text (blue lines). Eg and E0

g

inferred from the PL measurements, indicated by arrows, are included for comparison.

PRL 105, 136805 (2010) P HY S I CA L R EV I EW LE T T E R S
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Strain in MoS2
electronic structure highly sensitive to pressure/strain 
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Scalise et al, Physica E, in press 
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Strain engineering in MoS2

experiments 

Conley et al. Nano Lett 13, 3626 (2013) He et al. Nano Lett 13, 2931 (2013) 

global strain !

experiments 

Conley et al. Nano Lett 13, 3626 (2013) He et al. Nano Lett 13, 2931 (2013) 

global strain !

another direct band transition PL peak at 695.1 nm (1.784 eV), cor-
responding to the same direct band-to-band transition as observed in
as-synthesized MoS2 nanosheets. With the in-plane uniaxial tensile
strain, red shifts of direct band-to-band transition and indirect band
transition are observed by bending the PMDS substrate. Figure 3d
shows the PL peaks of the exfoliated MoS2 nanosheets with different
local strains extracted from Figure 3c.

MoS2 consists of weak bonds between different S-Mo-S layers as
illustrated in the stacked structure of Figure 4a. Each layer is elec-
trically neutral, such that nature of the forces between adjacent layers
is van der Waals’ type31. The van der Waals forces between S atoms in
adjacent layers dominates the interlayer forces. Figure 4b shows
atomic displacements of the four Raman-active modes. In the out-
of-plane A1g mode, the restoring force is primarily due to interlayer
van der Waals interaction32. With increasing the number of layers,
the additional ‘‘spring’’ between S atoms in neighboring layers
enhances the restoring force, resulting in an increase of the A1g mode
frequency. The in-plane E1

2g mode is a symmetric mode, which
vibrates out of phase as sketched in Figure 4b. The presence of the
interlayer interactions can also increase the effective restoring force
acting on the basal plane atoms31–33. It has been demonstrated that in
bulk graphite, this kind of inter-layer interactions affect the intra-
layer bonding and stiffen the in-plane lattice vibrations34. Similarly,
with an increase of number of layers in MoS2 there is an increase in

the frequency of the in-plane E1
2g mode. Compared to the Raman

spectrum of bulk MoS2, red shifts are observed for both A1g and E1
2g

modes of the as-synthesized MoS2 nanosheets. As characterized
above, there is a uniaxial tensile strain along [001] direction in the
as-synthesized MoS2 nanosheets grown from PH , 7 solution. The
out of plane uniaxial tensile strain weakens the interlayer interac-
tions, leading to a decrease in frequencies of both A1g and E1

2g modes.
The inset images in Figure 2a show that the average pore size of 3D
MoS2 networks grown from PH 5 7 solution is ,100 nm, smaller
than in 3D MoS2 networks grown from PH , 7 solution. In terms of
lattice strain, the difference in the curvature causes a larger strain
effect in MoS2 nanosheets grown from PH 5 7 solution as supported
by XRD (details in Supporting Information) and the red shifts of
both A1g and E1

2g modes observed in the Raman spectra, compared to
that of MoS2 nanosheets grown from PH , 7 solution. During the
sonication process, the 3D networks can be cracked to smaller sheets
of strain-released MoS2 as indicated in the inset of Figure 2a, causing
blue shifts of A1g and E1

2g modes compared to as-synthesized MoS2

nanosheets. However, mild red shifts (1 cm21) of both A1g and E1
2g

modes were still observed in strain-partially released MoS2
nanosheets, in contrast to bulk MoS2, due to residual strains in these
discontinuous nanosheets. This residual strain resulted from the
small curvatures observed in the sonicated MoS2 nanosheets with a

Figure 3 | (a) Raman spectra of the exfoliated MoS2 nanosheets on PDMS flexible substrate. The insets in (a) show the schematic illustrations of the
exfoliated MoS2 nanosheets on flexible substrate undergoing strain effect. The in-plane uniaxial tensile strain was introduced by bending the PDMS
flexible substrate. (b) The frequencies of E1

2g and A1g modes extracted from (a). The Raman peak shift error bar indicates the spectrometer resolution.
(c) The PL spectra of exfoliated MoS2 nanosheets with 0% (in black), 0.47% (in red), 1.21% (in blue) in-plane uniaxial tensile strain. (d) The PL peaks of
exfoliated MoS2 nanosheets on flexible substrate extracted from (c). The band-gap is decreases by an increase of in-plane uniaxial tensile strain.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5649 | DOI: 10.1038/srep05649 4

Yang et al., Scientific Reports (2014)

•Interplay between mechanical deformations and 
electronic/optical properties
•Gap reduction from energy PL peaks
•Direct/indirect gap transition from peak intensities

Experiments
with

uniform strain

5-10 layers



Possible at local scale?

2D crystals can be subjected to 
inhomogeneous strain: relevant for 
solar cells

Strain engineering in MoS2

No experimental 
works on local 

strain engineering 
in MoS2

Feng et al., Nature Photonics 6, 866 (2012)

Strain Exciton energy

Funnel effect:
Gap modulation             spatial migration of particle-hole pairs



!

Local strain-induced gap 
engineering in MoS2

A.Castellanos-Gómez, RR, E.Cappelluti, G.Steele, F.Guinea & H. van der Zant,  Nano Letters 13, 5361  (2013)

Buckling induced delamination process



Raman & Photoluminiscence spectra of 
strained MoS2
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Figure 2. Raman and Photoluminiscence spectra of strained MoS2. a Raman spectra measured on a 

flat (blue) and on a wrinkled (red) region of a 4 layers thick MoS2 flake. Although both the E1
2g and the 

A1g modes are shifted towards lower Raman shift, the E1
2g mode presents the higher shift. b 

Photoluminescence spectra measured on the flat region (blue) and on top of the wrinkle (red) in the 

same MoS2 flake. Notice that the red spectrum has been vertically shifted for clarity. The 

photoluminescence emission from the wrinkle is red shifted with respect to the one of the flat MoS2. 

(inset in b) Schematic diagram of the direct transitions (A and B exciton) at the K point, observed in the 

photoluminescence spectra. c AFM topography image of a 4L thick MoS2 flake with 4 wrinkles. d and e 

show the Raman shift of the E1
2g vibrational mode and the wavelength of the A exciton peak 

respectively, measured in the same region as c. 

topo

PL

Raman

Simultaneous scanning 
Raman microscopy and 
photoluminescence

Raman spectroscopy 
accounts for the changes 
of the vibrational modes 
induced by strain

PL accounts for the direct 
transitions between the 
valence and conduction 
bands at the K point



Strain tuning the direct band gap 
trasition in MoS2

•Direct local correlation 
between strain and bandgap

•The change in the direct gap 
is obtained from the shift of 
the A exciton in the PL spectra

•Theoretical tight-binding 
model (see later) predicts the 
right magnitude of the 
dependence (~ -36meV per % 
of strain) but linear behavior

•Origin of the non-linear 
behavior?     Funnel effect

tight-binding 



E. Cappelluti, RR, J.A. Silva-Guillén, P. Ordejón and F. Guinea, PRB 88, 075409 (2013)
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FIG. 2: Band structure and orbital character of single-layer
MoS2. The top left panel shows the full band structure while,
in the other panels, the thickness of the bands represents the
orbital weight, where the d-character (d2 = dx2−y2 , dxy, d1 =
dxz, dyz, d0 = d3z2−r2) refers to the Mo atom 4d orbitals,
while the p-character (pxy = px, py) refers to 2p orbitals of
sulfur.

The in-plane Brillouin zone is thus characterized by the
high-symmetry points Γ = (0, 0), K= 4π/3a(1, 0), and
M= 4π/3a(0,

√
3/2). DFT calculations are done using

the Siesta code.48,49 We use the exchange-correlation
potential of Ceperly-Alder101 as parametrized by Perdew
and Zunger.102 We use also a split-valence double-ζ basis
set including polarization functions.103 The energy cutoff
and the Brillouin zone sampling were chosen to converge
the total energy.
The electronic dispersion for the single-layer MoS2 is

nowadays well known. We will only focus on the block of
bands containing the first four conduction bands and by
the first seven valence bands, in an energy window of from
-7 to 5 eV around the Fermi level. Our DFT calculations
are shown in Fig. 2, where we show the orbital character
of each band. We use here the shorthand notation d2
to denote Mo 4dx2−y2 , 4dxyorbitals; d1 for the Mo 4dxz,
4dyz orbitals; d0 for the Mo 4d3z2−r2 orbital; pxy (or
simply p) to denote the S 3px, 3py orbitals; and pz (or
simply z) for the S 3pzorbital. The four conduction bands
and the seven valence bands are mainly constituted by
the five 4d orbitals of Mo and the six (three for each
layer) 3p orbitals of S, which sum up to the 93 % of the
total orbital weight of these bands.
A special role in the electronic properties of these ma-

terials is played by the electronic states labeled as (A)-
(D) and marked with black bullets in Fig. 2. A detailed
analysis of the orbital character of each energy level at
the main high-symmetry points of the Brillouin zone, as
calculated by DFT, is provided in Table I. We can notice
that an accurate description of the conduction and va-

energy main second other sym. TB
DFT (eV) orb. orb. orbs. label

Γ point
2.0860∗ 68 % px/y 29 % d2 3 % E Epd2,+(Γ)
1.9432∗ 58 % px/y 36 % d1 6 % O Epd1,+(Γ)
-1.0341 66 % d0 28 % pz 6 % E Ezd0,+(Γ)
-2.3300∗ 54 % d1 42 % px/y 4 % O Epd1,−(Γ)
-2.6801 100 % pz - 0 % O Ez(Γ)
-3.4869∗ 65 % d2 32 % px/y 3 % E Epd2,−(Γ)
-6.5967 57 % pz 23 % d0 20 % E Ezd0,−(Γ)

K point
4.0127 60 % d1 36 % pz 4 % O Ezd1,+(K)
2.5269 65 % d2 29 % pz 6 % E Ezd2,+(K)
1.9891 50 % d1 31 % px/y 19 % O Epd1,+(K)
0.8162 82 % d0 12 % px/y 6 % E Epd0,+(K)
-0.9919 76 % d2 20 % px/y 4 % E Epd2,+(K)
-3.1975 67 % pz 27 % d1 6 % O Ezd1,−(K)
-3.9056 85 % px/y - 15 % O Ep(K)
-4.5021 65 % pz 25 % d2 10 % E Ezd2,−(K)
-5.0782 71 % px/y 12 % d2 17 % E Epd2,−(K)
-5.5986 66 % px/y 14 % d0 20 % E Epd0,−(K)
-6.4158 60 % px/y 37 % d1 3 % O Epd1,−(K)

∗Double-degenerate level

TABLE I: Energy levels and orbital content of single-layer
MoS2 evaluated by DFT calculations. We report here the
first two main orbital characters belonging to the blocks Mo-
4d and S-3p, while the following column shows the remaining
character not belonging to these orbital group. Also show is
the association of each level with the corresponding eigenvalue
of the tight-binding model and the symmetry with respect to
the z → −z inversion (E=even, O=odd). The label Eαβ,±

in the last column denotes the orbital character of the TB
eigenstate, with α, β = p, z, d2, d1, d0, where p = px, py, z =
pz, d2 = dx2−y2 , dxy, d1 = dxz, dyz, d0 = d3z2−r2 . The index
± denotes the higher energy [(+) = antibonding] and the
lower energy [(−) = bonding].

lence band edges (A)-(B) at the K point involves at least
the Mo orbitals d3z2−r2 , dx2−y2 , dxy, and the S orbitals
px, py. Along this perspective, a 5-band tight-binding
model, restricted to the subset of these orbitals, was pre-
sented in Ref. 98, whereas even the S 3p orbitals were
furthermore omitted in Ref. 24.
The failure of this latter orbital restriction for a more

comprehensive description is however pointed out when
analyzing other relevant high-symmetry Brillouin points.
In particular, concerning the valence band, we can notice
a second maximum at the Γ point, labeled as (C) in Fig.
2, just 42 meV below the real band edge at the K point
and with main d0-pz orbital character. The relevance of
this secondary band extreme is evident in the multilayer
compounds (N ≥ 2), where such maximum at Γ increases
its energy to become the effective band edge.5,8

The band structure with the orbital character for the
bulk (N = ∞) case, representative of the multilayer case,
is shown in Fig. 3. A similar change of the topol-
ogy of the band edge occurs in the conduction band.
Here a secondary minimum, labeled as (D) in Fig. 2, at
Q = 4π/3a(1/2, 0), midway along the Γ-K cut, is present
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III. HOPPING INTEGRALS IN TERMS OF TWO-CENTER INTEGRALS (TIGHT-BINDING
PARAMETERS)

Using geometric analyses, the energy integral t
l,l

0 can be expressed in terms of the two-center parameters V
dd�

,
V

dd⇡

, V
dd�

, V
pp�

, V
pp⇡

, V
pd�

and V
pd⇡

, which, together with the crystal fields, represent the suitable tight-binding
parameters to be optimized.1 Assuming a trigonal prism with the out-of-plane S-S distance being the same as the
in-plane one s ⇡ a, then we have two di↵erent sets of hopping parameters, depending on the orientation. Following
the notation of Fig. 1, the integrals corresponding to each hopping process are given in Table II - V.

IV. LOCAL BANDGAP UPON LOCAL STRAIN IN A TIGHT-BINDING MODEL

In order to evaluate at the theoretical level the local modulation of the bandgap induced by a local strain, we employ
the Slater-Koster tight-binding Hamiltonian introduced in Sec. II. Since we are focused on the direct bandgap at the
K point, observable by means of photoluminescence, we consider, for sake of simplicity, the single-layer MoS

2

case,
that contains already all the relevant physics. It is worth to remind that, within the Slater-Koster framework, hopping
processes between two atoms depend only on the relative angle and on the relative distance R

ijµ⌫

= |R
ijµ⌫

|, through
the hopping integrals V

i,j,µ,⌫

(R
ijµ⌫

), where i, j are the indexes of the unit cell and the labels µ, ⌫ denote the specific
atom and orbital within the unit cell. In modeling the e↵ects of homogeneous and inhomogeneous strain, following
Refs. 3,4, we assume that the main contribution comes from the modulation of the hopping integrals V

i,j,µ,⌫

(R
ijµ⌫

)
on the distance, and we neglect the weak dependence on the relative angles.

For a given profile of the strain tensor "̂(x, y), assuming the characteristic length of the wrinkle to be much larger
than the lattice constant, we write thus

R
ijµ⌫

(x, y) =
h

Î + "̂(x, y)
i

· R0

ijµ⌫

, (26)

where R0

ijµµ

is the relative interatomic distance in the absence of strain. Therefore

V
i,j,µ,⌫

[R
ijµ⌫

(x, y)] ⇡ V
i,j,µ,⌫

�

R0

ijµ⌫

�

"

1� �
i,j,µ,⌫

�R
ijµ⌫

(x, y)

R0

ijµ⌫

#

, (27)

where �R
ijµ⌫

(x, y) = R
ijµ⌫

(x, y)� R0

ijµ⌫

. The deformation coupling �
i,j,µ,⌫

= �d log V
i,j,µ,⌫

(R)/d logR characterizes
the electron-phonon coupling strength relative to each hopping bond. There are at the moment no microscopical
evaluations of them from first-principle techniques. In the absence of this estimation, we assume �

i,j,µ,⌫

to be
independent on the specific pair of atoms/orbitals, �

i,j,µ,⌫

= � as it was shown in multilayer graphene.5

We model now the wrinkle-induced strain by means of a one-dimensional profile along the y-axis of the strain
tensor. For sake of simplicity we chose a half-sinusoidal function, and as a first approximation, we consider that the
membrane thickness does not change with the in-plane applied strain, this is, that the S-layers keep respectively the
z = ±a/2 positions with respect to the Mo layer. Then, we can use the strain tensor which, for deformations along

Crystal Fields �0 -1.016
�2 -2.529
�p -0.780
�z -7.740

Mo-Mo Vdd� -0.933
Vdd⇡ -0.478
Vdd� -0.442

S-S Vpp� 0.696
Vpp⇡ 0.278

Mo-S Vpd� -2.619
Vpd⇡ -1.396

TABLE I: Tight-binding parameters used in the calculations, as obtained in Ref. 1. All hopping terms and crystal fields are in
units of eV.
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Î + "̂(x, y)
i

· R0

ijµ⌫

, (26)

where R0

ijµµ

is the relative interatomic distance in the absence of strain. Therefore

V
i,j,µ,⌫

[R
ijµ⌫

(x, y)] ⇡ V
i,j,µ,⌫

�

R0

ijµ⌫

�

"

1� �
i,j,µ,⌫

�R
ijµ⌫

(x, y)

R0

ijµ⌫

#

, (27)

where �R
ijµ⌫

(x, y) = R
ijµ⌫

(x, y)� R0

ijµ⌫

. The deformation coupling �
i,j,µ,⌫

= �d log V
i,j,µ,⌫

(R)/d logR characterizes
the electron-phonon coupling strength relative to each hopping bond. There are at the moment no microscopical
evaluations of them from first-principle techniques. In the absence of this estimation, we assume �

i,j,µ,⌫

to be
independent on the specific pair of atoms/orbitals, �

i,j,µ,⌫

= � as it was shown in multilayer graphene.5

We model now the wrinkle-induced strain by means of a one-dimensional profile along the y-axis of the strain
tensor. For sake of simplicity we chose a half-sinusoidal function, and as a first approximation, we consider that the
membrane thickness does not change with the in-plane applied strain, this is, that the S-layers keep respectively the
z = ±a/2 positions with respect to the Mo layer. Then, we can use the strain tensor which, for deformations along

Crystal Fields �0 -1.016
�2 -2.529
�p -0.780
�z -7.740

Mo-Mo Vdd� -0.933
Vdd⇡ -0.478
Vdd� -0.442

S-S Vpp� 0.696
Vpp⇡ 0.278

Mo-S Vpd� -2.619
Vpd⇡ -1.396

TABLE I: Tight-binding parameters used in the calculations, as obtained in Ref. 1. All hopping terms and crystal fields are in
units of eV.

�i,j,µ,⌫ = �d log Vi,j,µ,⌫(R)

d logR

Within a Slater-Koster framework, hopping processes between two 
atoms depend only on the relative angle and on the relative distance

We assume that the main contribution comes from the modulation of the 
hopping integrals on the distance, and we neglect the weak dependence 
on the relative angles 

2nd task: generalization of TB in locally modulated strained samples

A.Castellanos-Gómez, RR, E.Cappelluti, G.Steele, F.Guinea & H. van der Zant,  Nano Letters 13, 5361  (2013)
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the armchair direction as in our case, reads

"̂(x, y) = "̂(y) = "
max

sin
⇣⇡y

L

⌘
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�� 0 0
0 1 0
0 0 0

1

A , (28)

where L represents the characteristic width of the wrinkle, "
max

the maximum strain attained at the top of the
wrinkles y = L/2, and � = 0.125 is the Poisson ratio of the MoS

2

membrane.6 Periodic boundary conditions were
chosen, "̂(y) = "̂(y+L), to avoid spurious midgap edge states. Notice that the vectors of interest here will be modified
as
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which correspond to the Mo-S hopping terms, whereas the vectors corresponding to the Mo-Mo and S-S terms are
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�

| = |1� "
n

�|a (32)

and a similar modification applies for the S-S vectors.
In Fig. 5 we show the band structure of a N = 100 MoS

2

ribbon under di↵erent strengths of strain. We can see
how the gap clearly changes from direct to indirect under the application of strain, as marked by the arrows. The top
panels are for an uniaxial non-uniform sinusoidal strain, whereas the bottom panels are for a uniform uniaxial strain
along the ribbon.

Finally, in Fig. 6 we show the strain dependence of the di↵erence between the direct gap of the unstrained and
the strained membranes. The results for an uniform uniaxial strain for the case of 2D-bulk and a finite ribbon match
perfectly, as it can be seen by the full red and dotted black lines. However, if one includes a non-uniform uniaxial
strain, as given by Eq. (28), the results are di↵erent: see the blue line of Fig. 6, which is the result fitting the
experimental data as shown in Fig. 3b of the main text. It is important to emphasize that, when comparing to
the experimental results, our only free parameter is �, since the tight-binding parameters that we have used are
exactly the same as the ones obtained for the bulk model,1 and the Poisson ratio is also taken from the experiments
� = 0.125.6

V. LOCAL DENSITY OF STATES

In this section we compute the local density of states (LDOS) along the size of the wrinkle, characterized by the
index n. We can define the LDOS as:

N(!, n) = lim
�!0

X

k

x

,µ

Im

"

1

!Î � Ĥ(k
x

) + i�

#

n,µ;n,µ

(33)

where the index µ runs over all the atoms and orbitals of the unit cell labeled by n, and where � is a small imaginary
part, representing at a phenomenological level the disorder/impurity damping, which should be set to zero in the
clean system.

The results for a wrinkle with N = 365, which has a length of L ⇡ 100 nm, are shown in Fig. 4 of the main
text, where the bending of the DOS along the wrinkle shows in a remarkable way the change in the gap due to the
nonuniform strain of the samples. A quantitative estimate of the band edges, and hence of the bandgap, is here
di�cult due to the unavoidable presence of a finite imaginary part � that smooths the features of the density of states
and induces finite spectral weight in the bandgap.

In order to provide a quantitative estimate of the bandgap, we performed a refined treatment of the data. To this
aim we consider first as a representative case a bulk system in the absence of any strain. The density of states is thus
shown as black line in the lower panel of Fig. 7. Also shown is here the numerical DOS N(!) obtained by Eq. (33)
with � = 0.1 eV. In an ideal clean two-dimensional electron gas, the band edge are characterized by a step function,
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x

) + i�

#

n,µ;n,µ

(33)

where the index µ runs over all the atoms and orbitals of the unit cell labeled by n, and where � is a small imaginary
part, representing at a phenomenological level the disorder/impurity damping, which should be set to zero in the
clean system.
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and induces finite spectral weight in the bandgap.
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Figure 4. Local density of states for non-uniform strained MoS2. a Density plot of the local 
electronic density of states as a function of the position in the strained region of the MoS2 ribbon shown 
in the inset in Figure 3b. b Line cuts along the position with minimum and maximum strain (denoted by 
two dashed lines in a). Inset in b) shows the calculated bandgap across the strained region of the MoS2 
ribbon. 
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electronic density of states as a function of the position in the strained region of the MoS2 ribbon shown 
in the inset in Figure 3b. b Line cuts along the position with minimum and maximum strain (denoted by 
two dashed lines in a). Inset in b) shows the calculated bandgap across the strained region of the MoS2 
ribbon. 
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FIG. 6: Di↵erence in energy of the band gap at the K point as a function of strain, for the case of uniaxial tension. The red
line is the result obtained from the 2D-bulk case, which matches perfectly the result for a ribbon with uniform uniaxial strain,
as shown by the dotted black line. The results of a wrinkle with a non-uniform (sinusoidal) modulation of the strain as given
by Eq. (28) are shown by the blue line. The size of the ribbons used in the calculation of the blue and dotted black lines is
L = 300a ⇠ 100nm and � = 4.5 in the two cases.

the other hand, it should be clarified that, in the presence of a finite damping smearing, this definition characterizes
the energy where the DOS significantly departs from its midgap low energy value, and it can be considered thus an
a slight underestimation of the real e↵ective band gap (see lower panel of Fig. 7). On the physical background, the
discrepancy of this estimate with respect to the e↵ective bandgap will be ruled by the magnitude of the imaginary
part �, so that this procedure is expected to provide a good estimate of the real bandgap within an error bar of ±�.
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FIG. 7: Estimation of the band gap in a smeared DOS. Lower panel: comparison between the bulk DOS in the absence of
strain (solid black line) and the smeared DOS obtained also in the absence of strain using Eq. (33) with a finite �. Upper
panel: second derivative of the DOS. The band edge are evaluatted by identifying the energies where the second derivative is
the highest in the energy window. This method slight estimates the bandgap.

Estimation of the band edges by 
looking at the inflection points

d2N(!, n)/d!2|!=EI = 0

Gap

Strain



Summary

•Transition Metal Dichalcogenides (MoS2, WS2,...) as a two-
dimensional semiconducting crystals: Interesting from a 
fundamental point of view and for applications 

•Full tight-binding model applicable for single-layer and multi-layer 
transition metal dichalcogenides

•Extension to finite systems: nonoribbons, nanotubes, etc.

•Strain engineering as a possible route to tune the bandgap

•Local strain yields exciton trapping (good for photovoltaic 
applications)
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