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Quenches in one-dimensional superlattices
Quantum dynamics in a

1D superlattice
Trotzky et al. (Bloch’s group),
Nature Phys. 8, 325 (2012).

Initial state |01010 . . . 1010〉

Unitary dynamics under the
“Bose-Hubbard” Hamiltonian

Experimental results (◦) vs
exact t-DMRG calculations

(lines) without free parameters

local observables (top)
vs

nonlocal observables (bottom)
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Relaxation dynamics after turning off a superlattice
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MR, A. Muramatsu, and M. Olshanii, PRA 74, 053616 (2006).
MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).
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Unitary dynamics after a sudden quench
If the initial state is not an eigenstate of Ĥ

|ψ0〉 6= |α〉 where Ĥ|α〉 = Eα|α〉 and E0 = 〈ψ0|Ĥ|ψ0〉,

then a few-body observable O will evolve following

O(τ) ≡ 〈ψ(τ)|Ô|ψ(τ)〉 where |ψ(τ)〉 = e−iĤτ/~|ψ0〉.

What is it that we call thermalization?

O(τ) = O(E0) = O(T ) = O(T, µ).

One can rewrite

O(τ) =
∑
α′,α

C?α′Cαe
i(Eα′−Eα )τ/~Oα′α where |ψ0〉 =

∑
α

Cα|α〉.

Taking the infinite time average (diagonal ensemble ρ̂DE ≡
∑
α |Cα|2|α〉〈α|)

O(τ) = lim
τ→∞

1

τ

∫ τ

0

dτ ′〈Ψ(τ ′)|Ô|Ψ(τ ′)〉 =
∑
α

|Cα|2Oαα ≡ 〈Ô〉DE,

which depends on the initial conditions through Cα = 〈α|ψ0〉.
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Description after relaxation (lattice models)

Hard-core boson (spinless fermion) Hamiltonian

Ĥ =

L∑
i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2

Dynamics vs statistical ensembles

Nonintegrable: t′ = V ′ 6= 0
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MR, PRL 103, 100403 (2009),
PRA 80, 053607 (2009), . . .

Integrable: t′ = V ′ = 0
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GGE

MR, Dunjko, Yurovsky, and
Olshanii, PRL 98, 050405 (2007), . . .
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Eigenstate thermalization
Eigenstate thermalization hypothesis
[Deutsch, PRA 43 2046 (1991); Srednicki, PRE 50, 888 (1994).]

The expectation value 〈α|Ô|α〉 of a few-body observable Ô in an
eigenstate of the Hamiltonian |α〉, with energy Eα, of a many-body
system is equal to the thermal average of Ô at the mean energy Eα:

〈α|Ô|α〉 = 〈Ô〉ME(Eα).

Nonintegrable
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∑
m λm Îm )
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MR, Dunjko, and Olshanii, Nature 452, 854 (2008).
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Time fluctuations and their scaling with system size
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Relative differences (struct. factor)

δN(τ) =

∑
k |N(k, τ)−Ndiag(k)|∑

kNdiag(k)

Bounds
(G) P. Reimann, PRL 101, 190403 (2008).
(G) Linden et al., PRE 79, 061103 (2009).
(N) Cramer et al., PRL 100, 030602 (2008).
(N) Venuti&Zanardi, PRE 87, 012106 (2013).

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 8 / 34

/home/mrigol/3_Presentation/Talks/VIDEOS/Bosons1D_NKLongT3.0.gif


Time fluctuations
Are they small because of dephasing?

〈Ô(t)〉 − 〈Ô(t)〉 =
∑
α′,α
α′ 6=α

C?α′Cαe
i(Eα′−Eα )tOα′α ∼

∑
α′,α
α′ 6=α

ei(Eα′−Eα )t

Nstates
Oα′α

∼
√
N2

states

Nstates
Otypical
α′α ∼ Otypical

α′α

Time average of 〈Ô〉

〈Ô〉 =
∑
α

|Cα|2Oαα

∼
∑
α

1

Nstates
Oαα ∼ Otypical

αα

One needs: Otypical
α′α � Otypical

αα

MR, PRA 80, 053607 (2009)
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Finite temperature properties of lattice models

Computational techniques for arbitrary dimensions
Quantum Monte Carlo simulations
Polynomial time⇒ Large systems⇒ Finite size scaling
Sign problem⇒ Limited classes of models

Exact diagonalization
Exponential problem⇒ Small systems⇒ Finite size effects
No systematic extrapolation to larger system sizes
Can be used for any model!

High temperature expansions
Exponential problem⇒ High temperatures
Thermodynamic limit⇒ Extrapolations to low T
Can be used for any model!
Can fail (at low T ) even when correlations are short ranged!

DMFT, DCA, DMRG, . . .
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Linked-Cluster Expansions

Extensive observables Ô per lattice site (O) in the thermodynamic limit

O =
∑
c

L(c)×WO(c)

where L(c) is the number of embeddings of cluster c

and WO(c) is the weight
of observable O in cluster c

WO(c) = O(c)−
∑
s⊂c

WO(s).

O(c) is the result for O in cluster c

O(c) = Tr
{
Ô ρ̂GC

c

}
,

ρ̂GC
c =

1

ZGC
c

exp−(Ĥc−µN̂c)/kBT

ZGC
c = Tr

{
exp−(Ĥc−µN̂c)/kBT

}
and the s sum runs over all subclusters of c.
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Linked-Cluster Expansions

In HTEs O(c) is expanded in powers of β and only a finite
number of terms is retained.

In numerical linked cluster expansions (NLCEs) an exact
diagonalization of the cluster is used to calculate O(c) at any
temperature.
(Spins models in the square, triangular, and kagome lattices)
MR, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006).
MR, T. Bryant, and R. R. P. Singh, PRE 75, 061118 (2007).
(t-J model in the square lattice)
MR, T. Bryant, and R. R. P. Singh, PRE 75, 061119 (2007).
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PRL 98, 207204 (2007), PRB 76, 184403 (2007), PRB 83, 134431 (2011), PRA 84, 053611 (2011), PRB 84, 224411 (2011),
PRB 85, 064401 (2012), PRA 86, 023633 (2012), PRL 109, 205301 (2012), CPC 184, 557 (2013), PRB 88, 125127 (2013), . . .
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Numerical Linked Cluster Expansions

i) Find all clusters that can be
embedded on the lattice

ii) Group the ones with the
same Hamiltonian (Topo-
logical cluster)

iii) Find all subclusters of a
given topological cluster

iv) Diagonalize the topological
clusters and compute the
observables

v) Compute the weight of each
cluster and compute the di-
rect sum of the weights

Bond clusters

c

2

L(c)

2

3 2

4 4

5 4

6 2

7 4

11

8 4

9 8
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MR et al., PRE 75, 061118 (2007).
B. Tang et al., CPC 184, 557 (2013).
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Numerical Linked-Cluster Expansions

Square clusters
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No. of squares topological clusters
0 1
1 1
2 1
3 2
4 5
5 11
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Numerical Linked-Cluster Expansions
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MR et al., PRE 75, 061118 (2007).
B. Tang et al., CPC 184, 557 (2013).
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Resummation algorithms

We can define partial sums

On =

n∑
i=1

Si, with Si =
∑
ci

L(ci)×WO(ci)

where all clusters ci share a given characteristic (no. of bonds, sites, etc).
Goal: Estimate O = limn→∞On from a sequence {On}, with n = 1, . . . , N .

Wynn’s algorithm:

ε(−1)n = 0, ε(0)n = On, ε(k)n = ε
(k−2)
n+1 +

1

∆ε
(k−1)
n

where ∆ε
(k−1)
n = ε

(k−1)
n+1 − ε

(k−1)
n .

Brezinski’s algorithm [θ(−1)n = 0, θ
(0)
n = On]:

θ(2k+1)
n = θ(2k−1)n +

1

∆θ
(2k)
n

, θ(2k+2)
n = θ

(2k)
n+1 +

∆θ
(2k)
n+1∆θ

(2k+1)
n+1

∆2θ
(2k+1)
n

where ∆2θ
(k)
n = θ

(k)
n+2 − 2θ

(k)
n+1 + θ

(k)
n .
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Resummation results (Heisenberg model)

Energy (square lattice)
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MR, T. Bryant, and R. R. P. Singh, PRE 75, 061118 (2007).
B. Tang, E. Khatami, and MR, Comput. Phys. Commun. 184, 557 (2013).
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Diagonal ensemble and NLCEs
The initial state is in thermal equilibrium in contact with a reservoir

ρ̂Ic =

∑
a e
−(Eca−µIN

c
a)/TI |ac〉〈ac|

ZIc
, where ZIc =

∑
a

e−(E
c
a−µ

INca)/TI ,

|ac〉 (Eca) are the eigenstates (eigenvalues) of the initial Hamiltonian ĤI
c in c.

At the time of the quench ĤI
c → Ĥc , the system is detached from the

reservoir. Writing the eigenstates of ĤI
c in terms of the eigenstates of Ĥc

ρ̂DE
c ≡ limτ ′→∞

1

τ ′

∫ τ ′

0

dτ ρ̂(τ) =
∑
α

W c
α |αc〉〈αc|

where
W c
α =

∑
a e
−(Eca−µIN

c
a)/TI |〈αc|ac〉|2

ZIc
,

|αc〉 (εcα) are the eigenstates (eigenvalues) of the final Hamiltonian Ĥc in c.

Using ρ̂DE
c in the calculation of O(c), NLCEs allow one to compute

observables in the DE in the thermodynamic limit.

MR, PRL 112, 170601 (2014).
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Models and quenches

Hard-core bosons in 1D lattices at half filling (µI = 0)

Ĥ =

L∑
i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2

Quench: TI , tI = 0.5, VI = 1.5, t′I = V ′
I = 0→ t = V = 1.0, t′ = V ′
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Ĥ =

L∑
i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2

Quench: TI , tI = 0.5, VI = 1.5, t′I = V ′
I = 0→ t = V = 1.0, t′ = V ′

NLCE with maximally
connected clusters
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Energy: EDE = Tr[Ĥρ̂DE]

Convergence:
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Few-body experimental observables in the DE

Momentum distribution

m̂k =
1

L

∑
jj′

eik(j−j
′)ρ̂jj′

0 π/4 π/2 3π/4 π

k

0.4
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0.7

(m
k
) 1

8

Initial

t’=V’=0, DE

t’=V’=0, GE

t’=V’=0.5, DE

t’=V’=0.5, GE
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Failure of the GGE based on local quantities
XXZ (integrable) Hamiltonian

Ĥ = J

(∑
i

σxi σ
x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)

Quench starting from the Neel state to different values of ∆ ≥ 1

Quench action solution differs from GGE based on local quantities:
B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, MR, and J.-S. Caux,
PRL 113, 117202 (2014).
B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, and G. Takács,
PRL 113, 117203 (2014).

Can we use NLCEs for ground states (pure states)?
Using the parity symmetry of the clusters:

|aec〉 =
1√
2

(| . . . ↑↓↑↓ . . .〉+ | . . . ↓↑↓↑ . . .〉)

|aoc〉 =
1√
2

(| . . . ↑↓↑↓ . . .〉 − | . . . ↓↑↓↑ . . .〉)

W c,e/o
α = |〈αe/oc |ae/oc 〉|2
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Results for spin-spin correlations

0.05

0.1

0.15

0.2

<
σ

1

z
σ

3

z
>

0.73

0.77

0.81

<
σ

1

z
σ

3
>

0.9

0.92

0.94

<
σ

1

z
σ

3

z
>

10 11 12 13 14 15 16 17 18

l

0.95

0.96

0.97
<

σ
1

z
σ

3

z
>

-0.45

-0.35

-0.25

<
σ

1

z
σ

2

z
>

DE
GE

-0.9

-0.88

-0.86

<
σ

1

z
σ

2

z
>

QA

Resum

-0.962

-0.96

-0.958

-0.956

<
σ

1

z
σ

2

z
>

10 11 12 13 14 15 16 17 18

l

-0.981

-0.98

-0.979

<
σ

1

z
σ

2

z
>

∆=7

∆=4

(a)∆=1

(b)

(c)

(d)

(e)

(f)

(g)

(h)∆=10
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Quench action, GGE, and NLCE
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B. Wouters et al., PRL 113, 117202 (2014).
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Conclusions

NLCEs provide a general framework to study the diagonal en-
semble in lattice systems after a quantum quench in the thermo-
dynamic limit.

NLCE results suggest that few-body observables thermalize in
nonintegrable systems while they do not thermalize in integrable
systems.

As one approaches the integrable point DE-NLCEs behave as
NLCEs for equilibrium systems approaching a phase transition.
This suggests that a transition to thermalization may occur as
soon as one breaks integrability.

The GGE based on known local conserved quantities does not
describe observables after relaxation, while the QA does, as sug-
gested by the NLCE results. New things to be learned about in-
tegrable systems!

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 29 / 34



Collaborators

Michael Brockmann (ITP Amsterdam)

Jean-Sébastien Caux (ITP Amsterdam)

Jacopo De Nardis (ITP Amsterdam)

Davide Fioretto (ITP Amsterdam)

Bram Wouters (ITP Amsterdam)

PRL 113, 117202 (2014).

Supported by:

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 30 / 34



Finite temperature properties of lattice models

Computational techniques for arbitrary dimensions
Quantum Monte Carlo simulations
Polynomial time⇒ Large systems⇒ Finite size scaling
Sign problem⇒ Limited classes of models

DQMC of a 2D system with: U = 6t, V = 0.04t, T = 0.31t and 560 fermions
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Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 31 / 34



Dispersion of the energy in the DE

Dispersion of the energy

∆E2 =
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L
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The dispersion of the energy (and of the particle number) in the DE depends
on the initial state independently of whether the system is integrable or not.

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 32 / 34



Few-body experimental observables in the DE

nn kinetic energy
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NLCEs vs exact diagonalization (equilibrium, t′ = 0)
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ED from L. Santos and MR, PRE 82, 031130 (2010).
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