

Full relativistic calculations on 2D materials

Ricardo Mendes Ribeiro

Workshop on correlations, criticality, and coherence in quantum systems Évora 6-10 October 2014

<ロト <回ト < 注ト < 注ト = 注

Universidade do Minho

Summary

- Introduction and motivation
- Relativistic calculations
- The Transition Metal Dichalcogenides
- Optical conductivity: band nesting
- Conclusions and future developments

Photoelectric devices with TMDC

Heterostructure of 2D materials

 $\mathsf{BN} \ / \ \mathsf{Gr} \ / \ \mathsf{TMDC} \ / \ \mathsf{Gr} \ / \ \mathsf{BN} \qquad \mathsf{TMDC} = \ \mathsf{MoS}_2, \ \mathsf{WS}_2, \ \mathsf{WSe}_2$

L. Britnell et al., Science 340 (2013) 1311

- External quantum efficiency $\sim 30\%$ (A)
- Larger quantum efficiency for lower intensities (B)
- Photocurrent increases 10x with gold nanoparticles (D, E)

・ロト ・回ト ・ヨト ・ヨ

e de Minhe

Full Relativistic Calculations

Basically, use Dirac KS equation instead of Schrödinger equation.

$$\left\{-i\hbar c\,\boldsymbol{\alpha}.\boldsymbol{\nabla}+(\beta-1)\,\boldsymbol{m}c^{2}+\boldsymbol{v}_{s}(\boldsymbol{r})+\mu_{B}\beta\boldsymbol{\Sigma}\cdot\boldsymbol{B}_{s}(\boldsymbol{r})\right\}\phi_{i}(\boldsymbol{r})=\varepsilon_{i}\phi_{i}(\boldsymbol{r})$$

with the 4-component spinors:

$$\phi_i(oldsymbol{r}) = egin{bmatrix} \phi_i^0(oldsymbol{r})\ \phi_i^1(oldsymbol{r})\ \phi_i^2(oldsymbol{r})\ \phi_i^3(oldsymbol{r}) \end{bmatrix}$$

Atomic energy levels: Non-Relativistic, Scalar-Relativistic, Full-Relativistic

	nl	NR-DFT (eV)	SR-DFT (eV)	j	RDFT (eV)
С	2p	-5.2887	-5.2855	0.5	-5.2876
С	2р			1.5	-5.2789
Cu	3d	-5.2137	-5.0378	1.5	-5.2024
Cu	3d			2.5	-4.9324
Мо	4d	-3.9908	-3.7529	1.5	-3.8112
Мо	4d			2.5	-3.6085
W	5d	-5.8050	-4.4802	1.5	-4.6458
W	5d			2.5	-3.9348

Copper on graphene

The differences are clear: even for a *light* system there is a notable Rashba-Dresselhaus effect.

Transition Metal Dichalcogenides (TMDC)

Conclusions

Transition Metal Dichalcogenides (TMDC)

Easy to esfoliate

Transition Metal Dichalcogenides

Hexagonal structures

Materials of type: MX₂

 $\mathsf{M}=\mathsf{Ti},\,\mathsf{V},\,\mathsf{Zr},\,\mathsf{Nb},\,\mathsf{Mo},\,\mathsf{Tc},\,\mathsf{Pd},\,\mathsf{Hf},\,\mathsf{Ta},\,\mathsf{W},\,\mathsf{Re},\,\mathsf{Pt};\qquad\mathsf{X}=\mathsf{S},\,\mathsf{Se},\,\mathsf{Te}$

Two types of structures:

Trigonal prismatic

Octaedric

Trigonal prismatic (T-) or octaedric (O-)?

Which is the prefered structure? (Lattice parameters (Å) and relative energy $\Delta E = E_O - E_T$ (eV))

м	O-MS ₂	T-MS ₂	ΔE	O-MSe ₂	T-MSe ₂	ΔE
Ti	3.48	3.41	-0.40	3.40	3.38	-0.33
V	3.25	3.23	0.03	3.34	3.35	-0.01
Zr	3.74	3.64	-0.50	3.60	3.56	-0.39
Nb	3.42	3.40	0.12	3.52	3.52	0.10
Mo	3.22	3.23	0.81	3.33	3.37	0.68
Tc	3.13	3.32	0.35	3.24	3.48	0.31
Pd	3.61	-		3.76	-	
w	3.23	3.21	0.86	3.84	3.76	0.74
Re	3.15	3.33	0.24	3.23	3.48	0.26
Pt	3.61	3.54	-1.67	3.78	3.70	-1.28

・ロト ・回ト ・ヨト ・ヨ

Description of TMDC

Band diagram of WS_2 , NR-DFT e RDFT calculations. On the right, the high symmetry points in the reciprocal space are shown.

Relativistic calculations

TMDC

A D F A B F A B F A B F

Electronic and optical properties

Among the TMDC single layers, we will take a look at the ones that are semiconductors.

These are, in trigonal form:

 $\mathsf{TiS}_2,\ \mathsf{ZrS}_2,\ \mathsf{MoS}_2,\ \mathsf{WS}_2,\ \mathsf{TiSe}_2,\ \mathsf{ZrSe}_2,\ \mathsf{MoSe}_2,\ \mathsf{WSe}_2.$

And in octahedral form:

 $TiS_2,\ ZrS_2,\ PdS_2,\ PtS_2,\ ZrSe_2,\ PdSe_2,\ PtSe_2.$

O-TiS₂

2.5 5 DOS (eV⁻¹cell⁻¹)

Λ K Μ

Introduction and motivation	Relativistic calculations	TMDC	Optical conductivity: band nesting	Conclusions

Optical conductivity: band nesting

Critical points: $\nabla_k (E_c - E_v) = 0.$

$$abla_k E_c =
abla_k E_v = 0 \Rightarrow \begin{cases} maximum \\ minimum \\ saddle point \end{cases}$$

on each band. These are the van Hove (VHS) singularities; give origin to peaks in the DOS. This, in general, can only occur in high symmetry points.

$$\nabla_k (E_c - E_v) = 0$$
, com $|\nabla_k E_c| \approx |\nabla_k E_v| > 0$, \equiv band nesting

Phys. Rev. B 88 (2013) 115205

Can happen anywhere in the BZ.

Band nesting \times van Hove singularities Critical points: $\nabla_k (E_c - E_v) = 0$

T-WS₂

a is the lattice constant.

Relativistic calculation

TMDC

 $O-TiS_2$

Map in BZ of $|\nabla_k (E_c - E_v)|$ for T-WS₂. *a* is the lattice constant.

Mapa na BZ de $|\nabla_k (E_c - E_v)|$ para o O-TiS₂. *a* is the lattice constant.

K' M

 $\begin{array}{ccc} & \bullet & & \bullet \\ |\nabla(E_c \text{-}E_v)| & (eV/(2\pi/a)) \end{array}$

2

0

Monte-Carlo

Nat. Commun. 5:4543 doi: 10.1038/ncomms5543 (2014)

(日)、

Experimental

PLE intensity map, PLE spectra, relative quantum yield (QE) of emission for band gap emission, and differential reflectance spectra.

Nat. Commun. 5:4543 doi: 10.1038/ncomms5543 (2014)

Conclusions and future developments

- Bi-dimensional materials will continue to surprise us with interesting properties;
- It is necessary to be alert to eventual relativistic phenomena;
- A simple criterion to find high optical absorption in materials has been established, for less obvious regions in the reciprocal space.

Collaborations / Sponsors

From NUS Graphene Research Centre

António H. Castro Neto

Alexandra Carvalho

Goki	Eda	group	(experiment)
------	-----	-------	--------------

From Manchester

Kostya Novoselov group (experiment)

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR Portugal

Governo da República Portuguesa

União Europeia - Fundos Estruturais

elativistic calculation

TMDC

Optical conductivity: band nesting

Conclusions

Thank you!

Bi-layers: observed transitions

W. Zhao et al., Nano Lett. 13 (2013) 5627

 $O-ZrS_2$

<ロト <回ト < 注ト < 注ト

Real part of the optical conductivity of WS_2 , TiS_2 , e ZrS_2 single layers.