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Photoelectric devices with TMDC
Heterostructure of 2D materials

BN / Gr / TMDC / Gr / BN TMDC= MoS2, WS2, WSe2

L. Britnell et al., Science 340 (2013) 1311

• External quantum efficiency ∼ 30% (A)
• Larger quantum efficiency for lower intensities (B)
• Photocurrent increases 10x with gold nanoparticles (D, E)
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L. Britnell et al., Science 340 (2013) 1311
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Full Relativistic Calculations

Basically, use Dirac KS equation instead of Schrödinger equation.{
−i}c ααα.∇∇∇+ (β − 1)mc2 + vs(rrr) + µBβΣΣΣ ·BBBs(rrr)

}
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Atomic energy levels: Non-Relativistic, Scalar-Relativistic, Full-Relativistic

nl NR-DFT (eV) SR-DFT (eV) j RDFT (eV)

C 2p -5.2887 -5.2855 0.5 -5.2876

C 2p 1.5 -5.2789

Cu 3d -5.2137 -5.0378 1.5 -5.2024

Cu 3d 2.5 -4.9324

Mo 4d -3.9908 -3.7529 1.5 -3.8112

Mo 4d 2.5 -3.6085

W 5d -5.8050 -4.4802 1.5 -4.6458

W 5d 2.5 -3.9348
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Copper on graphene

SR-DFT RDFT

The differences are clear: even for a
light system there is a notable

Rashba-Dresselhaus effect.
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Transition Metal Dichalcogenides (TMDC)
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Transition Metal Dichalcogenides (TMDC)

Materials like: MX2

M=transition metal; X=chalcogen

Easy to esfoliate
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Transition Metal Dichalcogenides
Hexagonal structures

Materials of type: MX2

M= Ti, V, Zr, Nb, Mo, Tc, Pd, Hf, Ta, W, Re, Pt; X= S, Se, Te

Two types of structures:

Trigonal prismatic No inversion

Octaedric Has inversion

(side) (top)
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Trigonal prismatic (T-) or octaedric (O-)?
Which is the prefered structure? (Lattice parameters (Å) and relative energy ∆E = EO − ET

(eV))

M O-MS2 T-MS2 ∆E O-MSe2 T-MSe2 ∆E

Ti 3.48 3.41 −0.40 3.40 3.38 −0.33

V 3.25 3.23 0.03 3.34 3.35 −0.01

Zr 3.74 3.64 −0.50 3.60 3.56 −0.39

Nb 3.42 3.40 0.12 3.52 3.52 0.10

Mo 3.22 3.23 0.81 3.33 3.37 0.68

Tc 3.13 3.32 0.35 3.24 3.48 0.31

Pd 3.61 – 3.76 –

W 3.23 3.21 0.86 3.84 3.76 0.74

Re 3.15 3.33 0.24 3.23 3.48 0.26

Pt 3.61 3.54 −1.67 3.78 3.70 −1.28
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Description of TMDC

Band diagram of WS2, NR-DFT e RDFT calculations. On the right, the
high symmetry points in the reciprocal space are shown.
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MoS2 monolayer,
trigonal prismatic
structure.

Wavefunctions in
the signaled
points of the band
diagram (blue
arrows).

Green arrows
show the nature
of the spin.
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Electronic and optical properties

Among the TMDC single layers, we will take a look at the ones that are
semiconductors.

These are, in trigonal form:

TiS2, ZrS2, MoS2, WS2, TiSe2, ZrSe2, MoSe2, WSe2.

And in octahedral form:

TiS2, ZrS2, PdS2, PtS2, ZrSe2, PdSe2, PtSe2.
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O-TiS2

O-ZrS2

T-MoS2

T-WS2
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O-PdS2 O-PtS2
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Optical conductivity: band nesting

Critical points: ∇k (Ec − Ev ) = 0.

∇kEc = ∇kEv = 0⇒


maximum

minimum

saddle point

on each band. These are the van Hove (VHS) singularities; give origin to
peaks in the DOS. This, in general, can only occur in high symmetry
points.

∇k (Ec − Ev ) = 0, com |∇kEc | ≈ |∇kEv | > 0, ≡ band nesting

Phys. Rev. B 88 (2013) 115205

Can happen anywhere in the BZ.
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Band nesting × van Hove singularities
Critical points: ∇k (Ec − Ev ) = 0

Charges move in opposite directions!
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T-WS2

Criterium: |∇k (Ec − Ev ) | < 1 eV.a/2π.

a is the lattice constant.
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O-TiS2
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Map in BZ of |∇k (Ec − Ev ) | for T-WS2. a is the lattice constant.
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Mapa na BZ de |∇k (Ec − Ev ) | para o O-TiS2. a is the lattice constant.
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Monte-Carlo

Nat. Commun. 5:4543 doi: 10.1038/ncomms5543 (2014)
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Experimental

PLE intensity map, PLE spectra, relative quantum yield (QE) of emission for band

gap emission, and differential reflectance spectra.

Nat. Commun. 5:4543 doi: 10.1038/ncomms5543 (2014)
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Conclusions and future developments

• Bi-dimensional materials will continue to surprise us with interesting
properties;

• It is necessary to be alert to eventual relativistic phenomena;

• A simple criterion to find high optical absorption in materials has
been established, for less obvious regions in the reciprocal space.
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Thank you!
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Bi-layers: observed transitions

W. Zhao et al., Nano Lett. 13 (2013) 5627
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O-ZrS2
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Real part of the optical conductivity of WS2, TiS2, e ZrS2 single layers.
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