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From correlated topological insulators 
to iridates and spin liquids

calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:

H0 ¼ #t
X

hiji
½dyi dj þ H:c:% þ

X

hhijii
½dyi t̂0ijdj þ H:c:%; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) pairs, respectively. The
transfer integral t between a NN pair is real and spin
independent as given by

t ¼ 1

3

ðpd"Þ2
!d # !p

ðpp#Þ þ 3ðpp"Þ
!d # !p

; (3)

where (pd"), (pp#), and (pp") are Slater-Koster parame-
ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=

ffiffiffi
3

p
is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by

t0 ¼ 1

6

ðpd"Þ2
!d # !p

" ðpd#Þ2
ð!0d # !pÞ2

þ ðpd#Þ2
ð!0d # !pÞð!d # !pÞ

#
(5)

with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
shows #t, while blue short-dashed, red dash-dotted, and green
long-dashed arrows indicate it0#x, it

0#y, it
0#z, respectively.

FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.
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We study theoretically the electronic states in a 5d transition metal oxide Na2IrO3, in which both the

spin-orbit interaction and the electron correlation play crucial roles. A tight-binding model analysis

together with the first-principles band structure calculation predicts that this material is a layered quantum

spin Hall system. Because of the electron correlation, an antiferromagnetic order first develops at the edge,

and later inside the bulk at low temperatures.

DOI: 10.1103/PhysRevLett.102.256403 PACS numbers: 71.70.Ej, 75.30.Kz, 75.80.+q, 77.80.!e

The nontrivial topology in condensed matter physics has
attracted great interest over the decades as highlighted by
the celebrated discovery of the quantum Hall (QH) effect
[1,2]. Haldane theoretically studied the QH effect on the
honeycomb lattice even without the Landau levels [3],
which suggested that the nontrivial topology is more ubiq-
uitous in solids than expected. A recent breakthrough in
this field is the theoretical and experimental discoveries of
the quantum spin Hall (QSH) effect in time-reversal sym-
metric insulators [4–14]. Intuitively it can be regarded as
two copies of QH systems with up and down spins, but it is
driven by the spin-orbit interaction (SOI) instead of the
external magnetic field. The Z2 topological number, which
distinguishes a topological insulator, i.e., a QSH insulator,
from an ordinary band insulator [4], is closely related to a
Kramers doublet protected by the time-reversal symmetry,
and corresponds to the presence or absence of gapless
helical edge modes in the semi-infinite system [8]. The
theoretical design of a topological insulator using HgTe/
CdTe quantum wells [13] was followed by the experimen-
tal realization [14], and now this novel state of matter has
been firmly established.

However, topological insulators have been limited to
semiconductors at low temperature. This is because we
need the large SOI and the fine-tuning of the band struc-
ture. Therefore one important development is to realize
more robust topological insulators at higher temperature by
the larger SOI. Another interesting development is to study
the interplay between the nontrivial topology and the elec-
tron correlation [15]. Generally the electron correlation is
stronger in d and f electrons than in s and p electrons.
When we look at transition metal ions in the periodic table,
the electron correlation is the strongest in 3d elements and
decreases to 4d and to 5d elements because d orbitals are
more and more extended, while the SOI increases as the
atomic number. Thus in 5d transition metal oxides, both
the SOI and the electron correlation become important

with the same order of magnitudes. In addition, a variety
of crystal structures and even tailor-made structures such
as superlattice are available in transition metal oxides.
These advantages will be useful to design topological
insulators.
In this Letter, we study theoretically the electronic states

of a newly synthesized compound Na2IrO3 [16] in terms of
the tight-binding model analysis and the first-principles
calculations as a representative example to propose a
way to design topological insulators in 5d transition metal
oxides by using the complex transfer integrals and the
lattice geometry. This material is predicted to be (i) a
QSH insulator, (ii) the edge antiferromagnet (AFM), and
(iii) the bulk AFM with decreasing temperature.
The 5d orbitals are rather extended and subject to the

large crystalline field. Under the octahedral crystalline
field, d orbitals are split into egðx2 ! y2; 3z2 ! r2Þ and
t2gðxy; yz; zxÞ orbitals by 10Dq of the order of 3 eV [17].
The SOI is quenched in eg orbitals but remains effective in
t2g orbitals, which form effectively the triplet with leff ¼ 1.

Explicitly, ðjyzi% ijzxiÞ=
ffiffiffi
2

p
correspond to jlzeff ¼ %1i,

while jxyi to jlzeff ¼ 0i. Including the SOI, we obtain the
states with the total angular momentum jeff ¼ 3=2 and
1=2. The wave functions with jeff ¼ 1=2 read as

jþ1=2i ¼ ðþjxy "iþ jyz #iþ ijzx #iÞ=
ffiffiffi
3

p
;

j!1=2i ¼ ð!jxy #iþ jyz "i! ijzx "iÞ=
ffiffiffi
3

p
:

(1)

The central idea is that the transfer integrals between these
complex orbitals and oxygen orbitals become complex. For
example, consider a pz orbital. The transfer integral be-
tween j% 1=2i and pz is proportional to e%i!, where ! is
the angle between the x axis and the bond direction. This
complex transfer integral is responsible for topological
states in iridates. Recently, a layered perovskite oxide
Sr2IrO4 was studied by angle-resolved photoemission,
x-ray absorption, optical conductivity, and first-principles
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Graphene as a topological insulator (TI) ?
Idea:   Dirac semi-metal + spin orbit coupling (SOC) = TI

Kane & Mele, PRL 95, 146802 + 226801 (2005); see also Halddane, PRL 1988
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tion, one can integrate out the bulk degrees of freedom in Eq.
!5" to obtain an effective action at the edge. The resulting
theory is an 1+1D quantum electrodynamics !QED" with a
nonlocal action for the gauge field. Whatever this nonlocal
action is, in the 1+1D QED the quantum fluctuations of the
gapless fermions open up a gap for the gauge field.24 This
suppresses the fluctuations of the gauge field at the edge
although the gauge field remains gapless in the bulk.

One may worry about the possibility of direct spin-spin
interactions between the two layers destabilizing the edge
modes. To examine the stability of the edge modes, one has
to consider all the gapless modes in the low energy theory
#Eq. !5"$. Since there is no tunneling between the two layers,
the lowest-order interlayer interactions that one can add are
two-body terms of the form

V% d!dx1"̄!!,x1,x2 = 0""!!,x1,x2 = 0"#̄!!,x1"#!!,x1" .

!6"

Since the edge modes in the first layer can only interact
locally with the bulk modes in the second layer the integra-
tion measure only has one spatial and one temporal compo-
nent. Neglecting gauge fluctuations and forward scatterings
of the edge modes, the free low energy theory is invariant
under a scale transformation !! ,x1 ,x2"=b!!! ,x1! ,x2!", "
=b−1"!, and #=b−1/2#! with b$1. The interlayer interaction
scales as V!=b−1V. If we include gauge fluctuations and for-
ward scatterings of the edge modes, the edge mode is de-
scribed by the Luttinger liquid with a nontrivial Luttinger
parameter K!1 and the spinons in the second layer are de-
scribed by the algebraic spin liquid. As a result, the scaling
dimension of the interlayer coupling will receive loop cor-
rections which are of the order of #V$=−1+O!1 /N"+O!K
−1". Given that N=4, the interlayer coupling may remain
irrelevant if the forward scattering is sufficiently weak. If the
interlayer coupling is irrelevant, the edge modes are stable.

V. PHYSICAL PROPERTIES AND DISCUSSION

Now we discuss physical manifestations of the FQSH
state. The longitudinal transport properties along the edge are
very different from those of QSH states or trivial insulators.
There will be a metallic thermal conductivity along the edge
due to the gapless edge mode. However, there will be no
charge conductivity because the spinon is charge neutral,
which is the signature of the spin-charge separation.

The most stark difference from the conventional QSH
state lies in the transverse spin transport induced by an ex-
ternal electromagnetic !EM" field. We put the system on a
cylinder with two edges at the ends of the cylinder. In the
usual QSH state with Sz conservation, upon threading a
magnetic-flux quantum through the halo of the cylinder, a
spin-up electron is transported from one edge to the other
while a spin-down electron is transported in the opposite
direction. This results in a transport of net spin S=1 from
one edge to the other. This is illustrated in Fig. 2!a". On the
other hand, in the FQSH phase, the edge modes are neutral
spinons which are not directly coupled to the external EM

field and there will be no such transverse spin transport. Al-
though spinons are indirectly coupled to external EM fields
through chargons, which are coupled to both the external and
internal gauge fields, the weak coupling cannot produce a
nonzero spin Hall transport because of a nontrivial quantum
order associated with the fractionalization. In the fractional-
ized phase, the tunneling rate of the internal gauge flux from
one value to another value is exponentially suppressed with
increasing system size and the flux through the cylinder is
precisely conserved at T=0 in the thermodynamic limit. The
internal gauge flux remains strictly at zero under the adia-
batic insertion of the flux. Therefore, the external flux does
not induce any transverse spin transport, as is illustrated in
Fig. 2!b", in sharp contrast to the QSH state. This insensitiv-
ity of the edge modes to EM fields can potentially be useful
in stabilizing the edge modes in an environment with fluctu-
ating EM fields which induce back scatterings between the
edge modes in QSH states.

In summary, we proposed and studied a simple model
which has both spin-orbit coupling and many-body interac-
tions. We found a region of the mean-field phase diagram
where a fractionalized quantum spin Hall state is stable and
argued that this state may survive the effects of fluctuations
under certain conditions. In the FQSH state, charge neutral
spinons form gapless edge modes which carry only spin,
unlike the conventional QSH state where the edge modes
carry both charge and spin. Due to the charge neutral edge
modes, the FQSH state shows a set of unique transport prop-
erties and electromagnetic responses which are distinct from
conventional states.
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APPENDIX A: DERIVATION OF THE BOSON ACTION
IN EQ. (2)

Since the constraint Lia=nia−1 is diagonal in site indices,
calculating its partition function can be reduced to calculat-
ing one site matrix elements of the form

FIG. 2. !Color online" !a" Transverse spin response to an applied
external magnetic field in the conventional quantum spin Hall
phase. Upon threading a magnetic-flux quantum, a spin up propa-
gates from one edge 1, say, to edge 2 and a spin down propagates
from edge 2 to edge 1. !b" The response in the fractionalized quan-
tum spin Hall phase. The external flux does not generate any trans-
verse spin transport because the edge modes are charge neutral
spinons.
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We study theoretically the electronic states in a 5d transition metal oxide Na2IrO3, in which both the

spin-orbit interaction and the electron correlation play crucial roles. A tight-binding model analysis

together with the first-principles band structure calculation predicts that this material is a layered quantum

spin Hall system. Because of the electron correlation, an antiferromagnetic order first develops at the edge,

and later inside the bulk at low temperatures.
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The nontrivial topology in condensed matter physics has
attracted great interest over the decades as highlighted by
the celebrated discovery of the quantum Hall (QH) effect
[1,2]. Haldane theoretically studied the QH effect on the
honeycomb lattice even without the Landau levels [3],
which suggested that the nontrivial topology is more ubiq-
uitous in solids than expected. A recent breakthrough in
this field is the theoretical and experimental discoveries of
the quantum spin Hall (QSH) effect in time-reversal sym-
metric insulators [4–14]. Intuitively it can be regarded as
two copies of QH systems with up and down spins, but it is
driven by the spin-orbit interaction (SOI) instead of the
external magnetic field. The Z2 topological number, which
distinguishes a topological insulator, i.e., a QSH insulator,
from an ordinary band insulator [4], is closely related to a
Kramers doublet protected by the time-reversal symmetry,
and corresponds to the presence or absence of gapless
helical edge modes in the semi-infinite system [8]. The
theoretical design of a topological insulator using HgTe/
CdTe quantum wells [13] was followed by the experimen-
tal realization [14], and now this novel state of matter has
been firmly established.

However, topological insulators have been limited to
semiconductors at low temperature. This is because we
need the large SOI and the fine-tuning of the band struc-
ture. Therefore one important development is to realize
more robust topological insulators at higher temperature by
the larger SOI. Another interesting development is to study
the interplay between the nontrivial topology and the elec-
tron correlation [15]. Generally the electron correlation is
stronger in d and f electrons than in s and p electrons.
When we look at transition metal ions in the periodic table,
the electron correlation is the strongest in 3d elements and
decreases to 4d and to 5d elements because d orbitals are
more and more extended, while the SOI increases as the
atomic number. Thus in 5d transition metal oxides, both
the SOI and the electron correlation become important

with the same order of magnitudes. In addition, a variety
of crystal structures and even tailor-made structures such
as superlattice are available in transition metal oxides.
These advantages will be useful to design topological
insulators.
In this Letter, we study theoretically the electronic states

of a newly synthesized compound Na2IrO3 [16] in terms of
the tight-binding model analysis and the first-principles
calculations as a representative example to propose a
way to design topological insulators in 5d transition metal
oxides by using the complex transfer integrals and the
lattice geometry. This material is predicted to be (i) a
QSH insulator, (ii) the edge antiferromagnet (AFM), and
(iii) the bulk AFM with decreasing temperature.
The 5d orbitals are rather extended and subject to the

large crystalline field. Under the octahedral crystalline
field, d orbitals are split into egðx2 ! y2; 3z2 ! r2Þ and
t2gðxy; yz; zxÞ orbitals by 10Dq of the order of 3 eV [17].
The SOI is quenched in eg orbitals but remains effective in
t2g orbitals, which form effectively the triplet with leff ¼ 1.

Explicitly, ðjyzi% ijzxiÞ=
ffiffiffi
2

p
correspond to jlzeff ¼ %1i,

while jxyi to jlzeff ¼ 0i. Including the SOI, we obtain the
states with the total angular momentum jeff ¼ 3=2 and
1=2. The wave functions with jeff ¼ 1=2 read as

jþ1=2i ¼ ðþjxy "iþ jyz #iþ ijzx #iÞ=
ffiffiffi
3

p
;

j!1=2i ¼ ð!jxy #iþ jyz "i! ijzx "iÞ=
ffiffiffi
3

p
:

(1)

The central idea is that the transfer integrals between these
complex orbitals and oxygen orbitals become complex. For
example, consider a pz orbital. The transfer integral be-
tween j% 1=2i and pz is proportional to e%i!, where ! is
the angle between the x axis and the bond direction. This
complex transfer integral is responsible for topological
states in iridates. Recently, a layered perovskite oxide
Sr2IrO4 was studied by angle-resolved photoemission,
x-ray absorption, optical conductivity, and first-principles
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Time–reversal invariant topological insulators [1] –
bulk insulators with metallic surfaces – are characterized
by a Z2 invariant [2, 3] and cannot be adiabatically con-
nected to trivial band insulator phases unless the single
particle gap closes. While Z2 topological insulators (TIs)
are robust against disorder [4], rigorous and general re-
sults about the fate of TIs in the presence of prominent
electron–electron interactions are limited [5]. Strongly
correlated TIs as well as exotic time–reversal invariant
Mott insulator phases have been predicted [6–12] apart
from more conventional magnetically ordered phases.

By analogy to the quantum Hall e�ect two–
dimensional TIs are also named quantum spin Hall
(QSH) insulators. They were originally proposed to be
realized in graphene [2] and later also in HgTe/CdTe
quantum wells [13] where subsequent experiments [14]
measuring a quantized conductance established the field
of TIs. They possess an odd number of pairs of time-
reversal conjugate counter-propagating edge states (the
helical edge states) [2, 13–15]. There are other promising
proposals to stabilize the QSH e�ect in real materials:
graphene endowed with heavy adatoms like indium and
thallium [16] and synthesized silicene [17] was shown to
exhibit a stable QSH phase. Particularly interesting are
Iridium–based materials like Na2IrO3 which have been
debated to possibly host QSH phase [18, 19]: in such
materials both spin orbit coupling (SOC) and electron–
electron interactions are quite strong. It is worth men-
tioning that all these systems have in common the un-
derlying honeycomb lattice; recently the existence of a
gapped quantum spin liquid on the honeycomb lattice
for intermediate interactions was shown using quantum
Monte Carlo (QMC) [20–22].

In this Letter, we investigate the interplay between
SOC and electron–electron interactions on the honey-
comb lattice and combine two very paradigmatic mod-
els: to capture the non–trivial band topology we con-
sider the Kane–Mele (KM) model [2] and to describe
interaction e�ects the Hubbard model, merging to the

Kane–Mele–Hubbard model (KMH) [8, 21–24]. Our goal
is to combine the cellular dynamical mean–field theory
(CDMFT) [25–27] and its real space extension with an-
alytical approaches, present our phase diagram at half
filling including temperature e�ects, and thoroughly ad-
dress the fate of helical edge states as a function of inter-
actions and SOC coupling. Additionally, we introduce
the plaquette-honeycomb model which illustrates that
the QSH phase is also stable toward lattice anisotropy.
The KMH Hamiltonian on the honeycomb lattice reads

H=�t
�

⇧ij⌃⇤

c†i⇤cj⇤+ i�
�

�ij⇥�⇥

⇥ijc
†
i�⇤

z
�⇥cj⇥ +U

�

i

ni⇤ni⌅

(1)
where i, j, label the sites on the honeycomb lattice, ci⇤
is the electron annhilation operator, ni⇤ = c†i⇤ci⇤, t is
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FIG. 1: (color online). Phase diagram of KMH model within
CDMFT, including the four phases: (i) topological band in-
sulator (TBI), (ii) magnetically ordered spin density wave
phase (SDW), (iii) non–magnetic insulator phase (SL), and
(iv) semi–metal (SM) region which is shown (from right to
left) for temperatures T = 0.025, 0.0125, and 0.005. Extrap-
olating T � 0, the SM region shrinks to a line, see main text.
Inset: Typical clusters as used within CDMFT.
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Time–reversal invariant topological insulators [1] –
bulk insulators with metallic surfaces – are characterized
by a Z2 invariant [2, 3] and cannot be adiabatically con-
nected to trivial band insulator phases unless the single
particle gap closes. While Z2 topological insulators (TIs)
are robust against disorder [4], rigorous and general re-
sults about the fate of TIs in the presence of prominent
electron–electron interactions are limited [5]. Strongly
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from more conventional magnetically ordered phases.
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dimensional TIs are also named quantum spin Hall
(QSH) insulators. They were originally proposed to be
realized in graphene [2] and later also in HgTe/CdTe
quantum wells [13] where subsequent experiments [14]
measuring a quantized conductance established the field
of TIs. They possess an odd number of pairs of time-
reversal conjugate counter-propagating edge states (the
helical edge states) [2, 13–15]. There are other promising
proposals to stabilize the QSH e�ect in real materials:
graphene endowed with heavy adatoms like indium and
thallium [16] and synthesized silicene [17] was shown to
exhibit a stable QSH phase. Particularly interesting are
Iridium–based materials like Na2IrO3 which have been
debated to possibly host QSH phase [18, 19]: in such
materials both spin orbit coupling (SOC) and electron–
electron interactions are quite strong. It is worth men-
tioning that all these systems have in common the un-
derlying honeycomb lattice; recently the existence of a
gapped quantum spin liquid on the honeycomb lattice
for intermediate interactions was shown using quantum
Monte Carlo (QMC) [20–22].

In this Letter, we investigate the interplay between
SOC and electron–electron interactions on the honey-
comb lattice and combine two very paradigmatic mod-
els: to capture the non–trivial band topology we con-
sider the Kane–Mele (KM) model [2] and to describe
interaction e�ects the Hubbard model, merging to the

Kane–Mele–Hubbard model (KMH) [8, 21–24]. Our goal
is to combine the cellular dynamical mean–field theory
(CDMFT) [25–27] and its real space extension with an-
alytical approaches, present our phase diagram at half
filling including temperature e�ects, and thoroughly ad-
dress the fate of helical edge states as a function of inter-
actions and SOC coupling. Additionally, we introduce
the plaquette-honeycomb model which illustrates that
the QSH phase is also stable toward lattice anisotropy.
The KMH Hamiltonian on the honeycomb lattice reads
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is the electron annhilation operator, ni⇤ = c†i⇤ci⇤, t is
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FIG. 1: (color online). Phase diagram of KMH model within
CDMFT, including the four phases: (i) topological band in-
sulator (TBI), (ii) magnetically ordered spin density wave
phase (SDW), (iii) non–magnetic insulator phase (SL), and
(iv) semi–metal (SM) region which is shown (from right to
left) for temperatures T = 0.025, 0.0125, and 0.005. Extrap-
olating T � 0, the SM region shrinks to a line, see main text.
Inset: Typical clusters as used within CDMFT.
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FIG. 1: (color online). Phase diagram of KMH model within
CDMFT, including the four phases: (i) topological band in-
sulator (TBI), (ii) magnetically ordered spin density wave
phase (SDW), (iii) non–magnetic insulator phase (SL), and
(iv) semi–metal (SM) region which is shown (from right to
left) for temperatures T = 0.025, 0.0125, and 0.005. Extrap-
olating T � 0, the SM region shrinks to a line, see main text.
Inset: Typical clusters as used within CDMFT.
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FIG. 1: (color online). Phase diagram of KMH model within
CDMFT, including the four phases: (i) topological band in-
sulator (TBI), (ii) magnetically ordered spin density wave
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Inset: Typical clusters as used within CDMFT.
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susceptibility peaks for an external field in the x direction (or
y direction) become even sharper as compared to Jλ = 0, the
peaks in the z component drop drastically. Already at small
Jλ = 0.1 this effect is rather pronounced, which evidences
that for finite Jλ, the spins favor the x-y plane. (We set J1 = 1
in this section.) With increasing Jλ, more weight of the z
susceptibility is transferred to the x and y components of χ .
For strong enough Jλ, the remnant magnetic fluctuations in
χ z are not of antiferromagnetic type anymore, which can be
seen in Fig. 4 for Jλ = 0.5 showing small maxima at M-point
positions. We do not observe any particular phase transition at
λ > 0. In particular, the magnetic order persists in the whole
parameter space. The frustration generated by the JλS
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terms has little effect because the spins can circumvent this
frustration by avoiding the z axes. With increasing Jλ, the
two sublattices become effectively decoupled such that in the
limit Jλ → ∞ both sublattices exhibit xy ferromagnetic order
independently.

B. Sodium iridate spin model

As for the KM spin model in the previous section, the
SI spin model becomes a simple isotropic nearest-neighbor
spin system in the limit Jλ̃ = 0 and hence shows Néel order
(upper left plot in Fig. 5). For finite but not too large Jλ̃,
the antiferromagnetic order persists; i.e., the position of the
ordering peaks in the susceptibility remains unchanged (Jλ̃ =
0.5 in Fig. 5). As the susceptibility looses its sixfold rotation
symmetry for finite Jλ̃, this manifests in the deformation of
the ordering peaks as compared to Jλ̃ = 0. Note that due
to the special connection between lattice directions and spin
directions in the SI spin model, the x, y, and z components
of the susceptibility transform into each other under k-space
rotations of 120◦ in the clockwise direction. Figure 5 illustrates
χ z which preserves the symmetries kx → −kx and ky → −ky .
Note that regardless of the particular phase, the value of the
susceptibility at the six K and K ′ points must always be equal.
This results from the fact that the three K points (or K ′ points)
are related by reciprocal lattice vectors among each other.

Furthermore, since the two sublattices are equivalent, the K
and K ′ points are likewise degenerate.

An interesting observation can be made regarding the orien-
tation of the antiferromagnetic order. Due to the equivalence of
the x, y, and z directions in spin space, the magnetic order can
point in each of these directions without any preference. Even
though SU(2) symmetry is explicitly broken, this property
holds for arbitrary spin orientations: Consider a magnetic field
B = vB pointing in some direction v =

∑
µ=x,y,z vµeµ with

|v| = 1. The corresponding susceptibility χv, i.e., the linear
response to such a perturbation, is defined as
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∂Bµ′
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cannot develop any off-diagonal elements before reach-

ing the magnetic instability in the RG flow,53 we have χµµ′ =
δµµ′χµ. It follows that

χv =
∑

µ=x,y,z
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µχµ. (9)

Since χx = χy = χ z at all K (′) points, we obtain

χv
K (′ ) = χ z
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K (′ ) . (10)

Hence, in linear response the low-energy physics of the system
is rotationally symmetric and the antiferromagnetic order can
point in any direction. This is a consequence of the Néel order
residing at high-symmetry points of the Brillouin zone as well
as the special connection between lattice directions and spin
directions in the SI spin model. However, this argument does
not hold for spin fluctuations away from the K or K ′ points.

FIG. 5. (Color online) Magnetic susceptibilities of the SI spin model for various values of Jλ̃ (J1 = 1). All susceptibilities shown refer
to a magnetic field in z direction. The x and y components of the susceptibility are obtained by k-space rotations of 120◦ in clockwise or
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to move due to the onset of incommensurability (Fig. 6). For large Jλ̃, new susceptibility peaks emerge which link to the change of unit cell
structure of magnetic order.
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susceptibility peaks for an external field in the x direction (or
y direction) become even sharper as compared to Jλ = 0, the
peaks in the z component drop drastically. Already at small
Jλ = 0.1 this effect is rather pronounced, which evidences
that for finite Jλ, the spins favor the x-y plane. (We set J1 = 1
in this section.) With increasing Jλ, more weight of the z
susceptibility is transferred to the x and y components of χ .
For strong enough Jλ, the remnant magnetic fluctuations in
χ z are not of antiferromagnetic type anymore, which can be
seen in Fig. 4 for Jλ = 0.5 showing small maxima at M-point
positions. We do not observe any particular phase transition at
λ > 0. In particular, the magnetic order persists in the whole
parameter space. The frustration generated by the JλS
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terms has little effect because the spins can circumvent this
frustration by avoiding the z axes. With increasing Jλ, the
two sublattices become effectively decoupled such that in the
limit Jλ → ∞ both sublattices exhibit xy ferromagnetic order
independently.

B. Sodium iridate spin model

As for the KM spin model in the previous section, the
SI spin model becomes a simple isotropic nearest-neighbor
spin system in the limit Jλ̃ = 0 and hence shows Néel order
(upper left plot in Fig. 5). For finite but not too large Jλ̃,
the antiferromagnetic order persists; i.e., the position of the
ordering peaks in the susceptibility remains unchanged (Jλ̃ =
0.5 in Fig. 5). As the susceptibility looses its sixfold rotation
symmetry for finite Jλ̃, this manifests in the deformation of
the ordering peaks as compared to Jλ̃ = 0. Note that due
to the special connection between lattice directions and spin
directions in the SI spin model, the x, y, and z components
of the susceptibility transform into each other under k-space
rotations of 120◦ in the clockwise direction. Figure 5 illustrates
χ z which preserves the symmetries kx → −kx and ky → −ky .
Note that regardless of the particular phase, the value of the
susceptibility at the six K and K ′ points must always be equal.
This results from the fact that the three K points (or K ′ points)
are related by reciprocal lattice vectors among each other.

Furthermore, since the two sublattices are equivalent, the K
and K ′ points are likewise degenerate.

An interesting observation can be made regarding the orien-
tation of the antiferromagnetic order. Due to the equivalence of
the x, y, and z directions in spin space, the magnetic order can
point in each of these directions without any preference. Even
though SU(2) symmetry is explicitly broken, this property
holds for arbitrary spin orientations: Consider a magnetic field
B = vB pointing in some direction v =

∑
µ=x,y,z vµeµ with

|v| = 1. The corresponding susceptibility χv, i.e., the linear
response to such a perturbation, is defined as
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ing the magnetic instability in the RG flow,53 we have χµµ′ =
δµµ′χµ. It follows that
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Hence, in linear response the low-energy physics of the system
is rotationally symmetric and the antiferromagnetic order can
point in any direction. This is a consequence of the Néel order
residing at high-symmetry points of the Brillouin zone as well
as the special connection between lattice directions and spin
directions in the SI spin model. However, this argument does
not hold for spin fluctuations away from the K or K ′ points.
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susceptibility peaks for an external field in the x direction (or
y direction) become even sharper as compared to Jλ = 0, the
peaks in the z component drop drastically. Already at small
Jλ = 0.1 this effect is rather pronounced, which evidences
that for finite Jλ, the spins favor the x-y plane. (We set J1 = 1
in this section.) With increasing Jλ, more weight of the z
susceptibility is transferred to the x and y components of χ .
For strong enough Jλ, the remnant magnetic fluctuations in
χ z are not of antiferromagnetic type anymore, which can be
seen in Fig. 4 for Jλ = 0.5 showing small maxima at M-point
positions. We do not observe any particular phase transition at
λ > 0. In particular, the magnetic order persists in the whole
parameter space. The frustration generated by the JλS
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terms has little effect because the spins can circumvent this
frustration by avoiding the z axes. With increasing Jλ, the
two sublattices become effectively decoupled such that in the
limit Jλ → ∞ both sublattices exhibit xy ferromagnetic order
independently.

B. Sodium iridate spin model

As for the KM spin model in the previous section, the
SI spin model becomes a simple isotropic nearest-neighbor
spin system in the limit Jλ̃ = 0 and hence shows Néel order
(upper left plot in Fig. 5). For finite but not too large Jλ̃,
the antiferromagnetic order persists; i.e., the position of the
ordering peaks in the susceptibility remains unchanged (Jλ̃ =
0.5 in Fig. 5). As the susceptibility looses its sixfold rotation
symmetry for finite Jλ̃, this manifests in the deformation of
the ordering peaks as compared to Jλ̃ = 0. Note that due
to the special connection between lattice directions and spin
directions in the SI spin model, the x, y, and z components
of the susceptibility transform into each other under k-space
rotations of 120◦ in the clockwise direction. Figure 5 illustrates
χ z which preserves the symmetries kx → −kx and ky → −ky .
Note that regardless of the particular phase, the value of the
susceptibility at the six K and K ′ points must always be equal.
This results from the fact that the three K points (or K ′ points)
are related by reciprocal lattice vectors among each other.

Furthermore, since the two sublattices are equivalent, the K
and K ′ points are likewise degenerate.

An interesting observation can be made regarding the orien-
tation of the antiferromagnetic order. Due to the equivalence of
the x, y, and z directions in spin space, the magnetic order can
point in each of these directions without any preference. Even
though SU(2) symmetry is explicitly broken, this property
holds for arbitrary spin orientations: Consider a magnetic field
B = vB pointing in some direction v =

∑
µ=x,y,z vµeµ with

|v| = 1. The corresponding susceptibility χv, i.e., the linear
response to such a perturbation, is defined as
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cannot develop any off-diagonal elements before reach-

ing the magnetic instability in the RG flow,53 we have χµµ′ =
δµµ′χµ. It follows that
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µχµ. (9)

Since χx = χy = χ z at all K (′) points, we obtain
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Hence, in linear response the low-energy physics of the system
is rotationally symmetric and the antiferromagnetic order can
point in any direction. This is a consequence of the Néel order
residing at high-symmetry points of the Brillouin zone as well
as the special connection between lattice directions and spin
directions in the SI spin model. However, this argument does
not hold for spin fluctuations away from the K or K ′ points.

FIG. 5. (Color online) Magnetic susceptibilities of the SI spin model for various values of Jλ̃ (J1 = 1). All susceptibilities shown refer
to a magnetic field in z direction. The x and y components of the susceptibility are obtained by k-space rotations of 120◦ in clockwise or
counterclockwise direction, respectively. (See Sec. VI B for more details.) While the Néel peaks initially persist for finite Jλ̃, the peaks start
to move due to the onset of incommensurability (Fig. 6). For large Jλ̃, new susceptibility peaks emerge which link to the change of unit cell
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susceptibility peaks for an external field in the x direction (or
y direction) become even sharper as compared to Jλ = 0, the
peaks in the z component drop drastically. Already at small
Jλ = 0.1 this effect is rather pronounced, which evidences
that for finite Jλ, the spins favor the x-y plane. (We set J1 = 1
in this section.) With increasing Jλ, more weight of the z
susceptibility is transferred to the x and y components of χ .
For strong enough Jλ, the remnant magnetic fluctuations in
χ z are not of antiferromagnetic type anymore, which can be
seen in Fig. 4 for Jλ = 0.5 showing small maxima at M-point
positions. We do not observe any particular phase transition at
λ > 0. In particular, the magnetic order persists in the whole
parameter space. The frustration generated by the JλS
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terms has little effect because the spins can circumvent this
frustration by avoiding the z axes. With increasing Jλ, the
two sublattices become effectively decoupled such that in the
limit Jλ → ∞ both sublattices exhibit xy ferromagnetic order
independently.

B. Sodium iridate spin model

As for the KM spin model in the previous section, the
SI spin model becomes a simple isotropic nearest-neighbor
spin system in the limit Jλ̃ = 0 and hence shows Néel order
(upper left plot in Fig. 5). For finite but not too large Jλ̃,
the antiferromagnetic order persists; i.e., the position of the
ordering peaks in the susceptibility remains unchanged (Jλ̃ =
0.5 in Fig. 5). As the susceptibility looses its sixfold rotation
symmetry for finite Jλ̃, this manifests in the deformation of
the ordering peaks as compared to Jλ̃ = 0. Note that due
to the special connection between lattice directions and spin
directions in the SI spin model, the x, y, and z components
of the susceptibility transform into each other under k-space
rotations of 120◦ in the clockwise direction. Figure 5 illustrates
χ z which preserves the symmetries kx → −kx and ky → −ky .
Note that regardless of the particular phase, the value of the
susceptibility at the six K and K ′ points must always be equal.
This results from the fact that the three K points (or K ′ points)
are related by reciprocal lattice vectors among each other.

Furthermore, since the two sublattices are equivalent, the K
and K ′ points are likewise degenerate.

An interesting observation can be made regarding the orien-
tation of the antiferromagnetic order. Due to the equivalence of
the x, y, and z directions in spin space, the magnetic order can
point in each of these directions without any preference. Even
though SU(2) symmetry is explicitly broken, this property
holds for arbitrary spin orientations: Consider a magnetic field
B = vB pointing in some direction v =

∑
µ=x,y,z vµeµ with

|v| = 1. The corresponding susceptibility χv, i.e., the linear
response to such a perturbation, is defined as

χv = ∂Mv
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where χµµ′ = ∂Mµ

∂Bµ′
|B→0 and M is the magnetization. Since

χµµ′
cannot develop any off-diagonal elements before reach-

ing the magnetic instability in the RG flow,53 we have χµµ′ =
δµµ′χµ. It follows that

χv =
∑

µ=x,y,z

v2
µχµ. (9)

Since χx = χy = χ z at all K (′) points, we obtain

χv
K (′ ) = χ z

K (′ )

∑

µ=x,y,z

v2
µ = χ z

K (′ ) . (10)

Hence, in linear response the low-energy physics of the system
is rotationally symmetric and the antiferromagnetic order can
point in any direction. This is a consequence of the Néel order
residing at high-symmetry points of the Brillouin zone as well
as the special connection between lattice directions and spin
directions in the SI spin model. However, this argument does
not hold for spin fluctuations away from the K or K ′ points.

FIG. 5. (Color online) Magnetic susceptibilities of the SI spin model for various values of Jλ̃ (J1 = 1). All susceptibilities shown refer
to a magnetic field in z direction. The x and y components of the susceptibility are obtained by k-space rotations of 120◦ in clockwise or
counterclockwise direction, respectively. (See Sec. VI B for more details.) While the Néel peaks initially persist for finite Jλ̃, the peaks start
to move due to the onset of incommensurability (Fig. 6). For large Jλ̃, new susceptibility peaks emerge which link to the change of unit cell
structure of magnetic order.
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susceptibility peaks for an external field in the x direction (or
y direction) become even sharper as compared to Jλ = 0, the
peaks in the z component drop drastically. Already at small
Jλ = 0.1 this effect is rather pronounced, which evidences
that for finite Jλ, the spins favor the x-y plane. (We set J1 = 1
in this section.) With increasing Jλ, more weight of the z
susceptibility is transferred to the x and y components of χ .
For strong enough Jλ, the remnant magnetic fluctuations in
χ z are not of antiferromagnetic type anymore, which can be
seen in Fig. 4 for Jλ = 0.5 showing small maxima at M-point
positions. We do not observe any particular phase transition at
λ > 0. In particular, the magnetic order persists in the whole
parameter space. The frustration generated by the JλS
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terms has little effect because the spins can circumvent this
frustration by avoiding the z axes. With increasing Jλ, the
two sublattices become effectively decoupled such that in the
limit Jλ → ∞ both sublattices exhibit xy ferromagnetic order
independently.

B. Sodium iridate spin model

As for the KM spin model in the previous section, the
SI spin model becomes a simple isotropic nearest-neighbor
spin system in the limit Jλ̃ = 0 and hence shows Néel order
(upper left plot in Fig. 5). For finite but not too large Jλ̃,
the antiferromagnetic order persists; i.e., the position of the
ordering peaks in the susceptibility remains unchanged (Jλ̃ =
0.5 in Fig. 5). As the susceptibility looses its sixfold rotation
symmetry for finite Jλ̃, this manifests in the deformation of
the ordering peaks as compared to Jλ̃ = 0. Note that due
to the special connection between lattice directions and spin
directions in the SI spin model, the x, y, and z components
of the susceptibility transform into each other under k-space
rotations of 120◦ in the clockwise direction. Figure 5 illustrates
χ z which preserves the symmetries kx → −kx and ky → −ky .
Note that regardless of the particular phase, the value of the
susceptibility at the six K and K ′ points must always be equal.
This results from the fact that the three K points (or K ′ points)
are related by reciprocal lattice vectors among each other.

Furthermore, since the two sublattices are equivalent, the K
and K ′ points are likewise degenerate.

An interesting observation can be made regarding the orien-
tation of the antiferromagnetic order. Due to the equivalence of
the x, y, and z directions in spin space, the magnetic order can
point in each of these directions without any preference. Even
though SU(2) symmetry is explicitly broken, this property
holds for arbitrary spin orientations: Consider a magnetic field
B = vB pointing in some direction v =

∑
µ=x,y,z vµeµ with

|v| = 1. The corresponding susceptibility χv, i.e., the linear
response to such a perturbation, is defined as
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∂Bµ′
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cannot develop any off-diagonal elements before reach-

ing the magnetic instability in the RG flow,53 we have χµµ′ =
δµµ′χµ. It follows that

χv =
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Since χx = χy = χ z at all K (′) points, we obtain
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Hence, in linear response the low-energy physics of the system
is rotationally symmetric and the antiferromagnetic order can
point in any direction. This is a consequence of the Néel order
residing at high-symmetry points of the Brillouin zone as well
as the special connection between lattice directions and spin
directions in the SI spin model. However, this argument does
not hold for spin fluctuations away from the K or K ′ points.

FIG. 5. (Color online) Magnetic susceptibilities of the SI spin model for various values of Jλ̃ (J1 = 1). All susceptibilities shown refer
to a magnetic field in z direction. The x and y components of the susceptibility are obtained by k-space rotations of 120◦ in clockwise or
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susceptibility peaks for an external field in the x direction (or
y direction) become even sharper as compared to Jλ = 0, the
peaks in the z component drop drastically. Already at small
Jλ = 0.1 this effect is rather pronounced, which evidences
that for finite Jλ, the spins favor the x-y plane. (We set J1 = 1
in this section.) With increasing Jλ, more weight of the z
susceptibility is transferred to the x and y components of χ .
For strong enough Jλ, the remnant magnetic fluctuations in
χ z are not of antiferromagnetic type anymore, which can be
seen in Fig. 4 for Jλ = 0.5 showing small maxima at M-point
positions. We do not observe any particular phase transition at
λ > 0. In particular, the magnetic order persists in the whole
parameter space. The frustration generated by the JλS
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terms has little effect because the spins can circumvent this
frustration by avoiding the z axes. With increasing Jλ, the
two sublattices become effectively decoupled such that in the
limit Jλ → ∞ both sublattices exhibit xy ferromagnetic order
independently.

B. Sodium iridate spin model

As for the KM spin model in the previous section, the
SI spin model becomes a simple isotropic nearest-neighbor
spin system in the limit Jλ̃ = 0 and hence shows Néel order
(upper left plot in Fig. 5). For finite but not too large Jλ̃,
the antiferromagnetic order persists; i.e., the position of the
ordering peaks in the susceptibility remains unchanged (Jλ̃ =
0.5 in Fig. 5). As the susceptibility looses its sixfold rotation
symmetry for finite Jλ̃, this manifests in the deformation of
the ordering peaks as compared to Jλ̃ = 0. Note that due
to the special connection between lattice directions and spin
directions in the SI spin model, the x, y, and z components
of the susceptibility transform into each other under k-space
rotations of 120◦ in the clockwise direction. Figure 5 illustrates
χ z which preserves the symmetries kx → −kx and ky → −ky .
Note that regardless of the particular phase, the value of the
susceptibility at the six K and K ′ points must always be equal.
This results from the fact that the three K points (or K ′ points)
are related by reciprocal lattice vectors among each other.

Furthermore, since the two sublattices are equivalent, the K
and K ′ points are likewise degenerate.

An interesting observation can be made regarding the orien-
tation of the antiferromagnetic order. Due to the equivalence of
the x, y, and z directions in spin space, the magnetic order can
point in each of these directions without any preference. Even
though SU(2) symmetry is explicitly broken, this property
holds for arbitrary spin orientations: Consider a magnetic field
B = vB pointing in some direction v =

∑
µ=x,y,z vµeµ with

|v| = 1. The corresponding susceptibility χv, i.e., the linear
response to such a perturbation, is defined as

χv = ∂Mv
∂B

∣∣∣∣
B→0

=
∂(

∑
µ=x,y,z Mµvµ)

∂B

∣∣∣∣
B→0

=
∑

µ′=x,y,z

∂(
∑

µ=x,y,z Mµvµ)

∂Bµ′

∂Bµ′

∂B

∣∣∣∣
B→0

=
∑

µ,µ′=x,y,z

vµχµµ′
vµ′ , (8)

where χµµ′ = ∂Mµ

∂Bµ′
|B→0 and M is the magnetization. Since

χµµ′
cannot develop any off-diagonal elements before reach-

ing the magnetic instability in the RG flow,53 we have χµµ′ =
δµµ′χµ. It follows that

χv =
∑

µ=x,y,z

v2
µχµ. (9)

Since χx = χy = χ z at all K (′) points, we obtain

χv
K (′ ) = χ z

K (′ )

∑

µ=x,y,z

v2
µ = χ z

K (′ ) . (10)

Hence, in linear response the low-energy physics of the system
is rotationally symmetric and the antiferromagnetic order can
point in any direction. This is a consequence of the Néel order
residing at high-symmetry points of the Brillouin zone as well
as the special connection between lattice directions and spin
directions in the SI spin model. However, this argument does
not hold for spin fluctuations away from the K or K ′ points.

FIG. 5. (Color online) Magnetic susceptibilities of the SI spin model for various values of Jλ̃ (J1 = 1). All susceptibilities shown refer
to a magnetic field in z direction. The x and y components of the susceptibility are obtained by k-space rotations of 120◦ in clockwise or
counterclockwise direction, respectively. (See Sec. VI B for more details.) While the Néel peaks initially persist for finite Jλ̃, the peaks start
to move due to the onset of incommensurability (Fig. 6). For large Jλ̃, new susceptibility peaks emerge which link to the change of unit cell
structure of magnetic order.
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FIG. 6. Dependence of the ordering vector Q

y

on J

�̃

in HSI.
The inset illustrates the evolution of the ordering peaks in the
Brillouin zone (thick hexagon: second Brillouin zone, thin
hexagon: first Brillouin zone; see also Fig. 5). In the limit
J

�̃

! 1, the system converges again towards a commensurate
ordering vector.

triangular sublattices. Hence, already the first Brillouin
zone, i.e. the Brillouin zone of a triangular sublattice,
contains the full information about � in k-space. The
susceptibility then becomes periodic with respect to this
smaller zone. Such a change of periodicity can be seen in
Fig. 5 at large J

�̃

where new peaks at k
x

= 0 emerge. In
the limit J

�̃

! 1 these new peaks reach the same height
as the ones at Q1 and finally become identical to them,
indicating the new periodicity in k-space. Fig. 7a shows
the susceptibility in the first Brillouin zone of the trian-
gular sublattice in this limit. From the peak positions,
one can easily derive the corresponding spin pattern in
real space. On each triangular sublattice the wave vec-
tor is half the one of the 120�-Néel order residing at the
corners of the first Brillouin zone. The unit cell contains
6⇥6 lattice sites as compared to the 3⇥3 unit cell of the
120�-Néel order. Hence, the order is commensurate and
the local magnetic moments along a lattice direction are
modulated with a periodicity of 6 sites. Taking into ac-
count both sublattices of the honeycomb lattice, we end
up with a unit cell containing 72 sites.

Our numerical conclusions for the SI spin model in the
limit J

�̃

! 1 can also be reconciled with an analytical
argument. Performing a transformation in spin space,
S

i

! S̃
i

, the system at this point can be mapped to
an SU(2) invariant antiferromagnetic Heisenberg model
on the triangular lattice, HSI =

P
ij

S̃
i

S̃
j

. For this map-
ping, we divide the triangular lattice into four sublattices
denoted by ”•”, ”xy”, ”xz” and ”yz”, each with a dou-
bled lattice constant (Fig. 7b). The relation between S

i

and S̃
i

depends on the sublattice,

i 2 ” • ” : S̃
i

= (Sx

i

, Sy

i

, Sz

i

) ,

i 2 ”xy” : S̃
i

= (�Sx

i

,�Sy

i

, Sz

i

) ,

i 2 ”xz” : S̃
i

= (�Sx

i

, Sy

i

,�Sz

i

) ,

FIG. 7. The SI spin model at J
�̃

! 1: (a) Magnetic suscep-
tibility displayed in the first Brillouin zone of the triangular
sublattice. The two ordering peaks correspond to the peaks
in Fig. 5 which emerge at J

�̃

& 5 and k

x

= 0. In the limit
J

�̃

! 1, these maxima reach the same hight as the ones at
Q1 = (± 2⇡

3 ,± 2
3

2⇡p
3
). (b) Mapping of the SI spin model at

J

�̃

! 1 to the antiferromagnetic Heisenberg model on the
triangular lattice: The lattice is divided into four sublattices
denoted by ”•”, ”xy”, ”xz” and ”yz”. As shown in Eq. (11)
the transformation from S

i

to S̃
i

depends on the sublattice
where i resides. The exchange couplings follow the convention
shown in Fig. 1.

i 2 ”yz” : S̃
i

= (Sx

i

,�Sy

i

,�Sz

i

) , (11)

e.i., while on sublattice ”•” the spins remain unchanged,
on the sublattice ”xy” the x- and y-components of the
spin operator acquire a minus sign, and so on (a similar
mapping for the Heisenberg-Kitaev model at ↵ = 0.5
is described in Ref. 40). Since the antiferromagnetic
Heisenberg model on the triangular lattice exhibits mag-
netic order via the 120�-Néel state45, it follows that the
SI spin model at J

�̃

! 1 is likewise magnetically or-
dered. The corresponding spin pattern in real space can
be found by applying the inverse of the above spin trans-
formation to the 120�-Néel state: Since the structure of
the spin rotations (Fig. 7b) has a periodicity of two lat-
tice sites in each lattice direction, the 3 ⇥ 3 unit cell of
the 120�-Néel order transforms back into a 6⇥6 unit cell,
as found within our PFFRG calculations.

VII. DISCUSSION

In view of our results for the SI model, we specu-
late about the implications for the phase diagram at in-
termediate U . We find the incommensurate phase for
J

�̃

/J1 � 0.53 where J
�̃

= 4�̃2/U and J1 = 4t2/U , imply-

ing a transition at �̃

t

⇡ 0.73 for large U . In Fig. 8, we
have replotted the phase diagram of Rüegg and Fiete25 in
a slightly modified way. Our reasoning is the following:
since the spin model corresponds to U ! 1, we extrap-
olated the phase boundary between “VBS (AFM)” and
“QSH*” of the phase diagram in Ref. 25 to larger U . As
the phase transition occurs for su�ciently large U ap-

proximately at �̃

t

⇡ 0.73 (Fig. 8), we speculate that the
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Layered honeycomb compound Na2IrO3

calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:

H0 ¼ #t
X

hiji
½dyi dj þ H:c:% þ

X

hhijii
½dyi t̂0ijdj þ H:c:%; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) pairs, respectively. The
transfer integral t between a NN pair is real and spin
independent as given by

t ¼ 1

3

ðpd"Þ2
!d # !p

ðpp#Þ þ 3ðpp"Þ
!d # !p

; (3)

where (pd"), (pp#), and (pp") are Slater-Koster parame-
ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=

ffiffiffi
3

p
is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by

t0 ¼ 1

6

ðpd"Þ2
!d # !p

" ðpd#Þ2
ð!0d # !pÞ2

þ ðpd#Þ2
ð!0d # !pÞð!d # !pÞ

#
(5)

with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
shows #t, while blue short-dashed, red dash-dotted, and green
long-dashed arrows indicate it0#x, it

0#y, it
0#z, respectively.

FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.
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states described above, leading to a Mott insulator with the
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coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4
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Now we focus on Na2IrO3, whose layered crystal struc-
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atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:
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ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=
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is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by
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with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
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FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.
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Anyons in an exactly solved model and beyond
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Abstract

A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors
are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may
differ in strength. The model is solved exactly by a reduction to free fermions in a static Z2 gauge
field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap
and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in
the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding
rules coincide with those of conformal blocks for the Ising model. We also consider a general theory
of free fermions with a gapped spectrum, which is characterized by a spectral Chern number m. The
Abelian and non-Abelian phases of the original model correspond to m = 0 and m = ±1, respectively.
The anyonic properties of excitation depend on m mod 16, whereas m itself governs edge thermal
transport. The paper also provides mathematical background on anyons as well as an elementary
theory of Chern number for quasidiagonal matrices.
! 2005 Elsevier Inc. All rights reserved.

1. Comments to the contents: what is this paper about?

Certainly, the main result of the paper is an exact solution of a particular two-dimen-
sional quantum model. However, I was sitting on that result for too long, trying to perfect
it, derive some properties of the model, and put them into a more general framework. Thus
many ramifications have come along. Some of them stem from the desire to avoid the use
of conformal field theory, which is more relevant to edge excitations rather than the bulk
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the lattice contains one vertex of each kind. Links are divided into three types, depending
on their direction (see Fig. 3B); we call them ‘‘x-links,’’ ‘‘y-links,’’ and ‘‘z-links.’’ The
Hamiltonian is as follows:

H ¼ "Jx

X

x-links
rx
jr

x
k " Jy

X

y-links
ry
jr

y
k " J z

X

z-links
rz
jr

z
k; ð4Þ

where Jx, Jy, and Jz are model parameters.

Table 2
Properties of anyons for m ” 2 (mod 4)
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Let us introduce a special notation for the individual terms in the Hamiltonian:

Kjk ¼
rx
jr

x
k; if ðj; kÞ is an x-link,

rx
jr

y
k; if ðj; kÞ is an y-link,

rx
jr

z
k; if ðj; kÞ is an z-link.

8
><

>:
ð5Þ

Table 3
Properties of anyons for m ” 2 (mod 4)
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y y y y y y

y y y y y

y y y y y y

y y y y y y
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z z z z z z z

z
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z z z z z

z

yx z

Fig. 3. Three types of links in the honeycomb lattice.
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Remarkably, all operators Kjk commute with the following operators Wp, which are asso-
ciated to lattice plaquettes (i.e., hexagons)

ð6Þ

Here, p is a label of the plaquette. Note that different operators Wp commute with each
other.

Thus, Hamiltonian (4) has the set of ‘‘integrals of motion’’ Wp, which greatly simplifies
the problem. To find eigenstates of the Hamiltonian, we first divide the total Hilbert space
L into sectors—eigenspaces of Wp, which are also invariant subspaces of H. This can be
written as follows:

L ¼ $
w1;...;wm

Lw1;...;wm ; ð7Þ

where m is the number of plaquettes. Each operator Wp has eigenvalues +1 and %1, there-
fore each sector corresponds to a choice of wp = ±1 for each plaquette p. Then we need to
solve for the eigenvalues of the Hamiltonian restricted to a particular sector Lw1;...;wm .

The honeycomb lattice has 1/2 plaquette per vertex, therefore m & n/2, where n is the
number of vertices. It follows that the dimension of each sector is '2n/2m ' 2n/2 (we will
in fact see that all these dimensions are equal). Thus splitting into sectors does not solve
the problem yet. Fortunately, it turns out that the degrees of freedom within each sector
can be described as real (Majorana) fermions, and the restricted Hamiltonian is simply a
quadratic form in Majorana operators. This makes an exact solution possible.

4. Representing spins by Majorana operators

4.1. A general spin-fermion transformation

Let us remind the reader some general formalism pertaining to Fermi systems. A system
with n fermionic modes is usually described by the annihilation and creation operators ak,
ayk (k = 1, . . .,n). Instead, one can use their linear combinations,

c2k%1 ¼ ak þ ayk; c2k ¼
ak % ayk

i
;

which are called Majorana operators. The operators cj (j = 1, . . . , 2n) are Hermitian and
obey the following relations:

c2j ¼ 1; cjcl ¼ %clcj if j 6¼ l. ð8Þ

Note that all operators cj can be treated on equal basis.
We now describe a representation of a spin by two fermionic modes, i.e., by four

Majorana operators. Let us denote these operators by bx, by, bz, and c (instead of c1,
c2, c3, and c4). The Majorana operators act on the 4-dimensional Fock space fM, whereas
the Hilbert space of a spin is identified with a two-dimensional subspace M ) fM defined
by this condition:
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We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange

interactions between Ir4þ ions in a family of layered iridates A2IrO3 (A ¼ Li;Na). Depending on the

microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable Kitaev

models. Exact diagonalization and a complementary spin-wave analysis reveal the presence of an

extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the Heisenberg

limit. The two phases are separated by an unusual stripy antiferromagnetic state, which is the exact ground

state of the model at the midpoint between two limits.

DOI: 10.1103/PhysRevLett.105.027204 PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An excep-
tion are frustrated magnets, in which the topology of the
underlying lattice and/or competing interactions lead to an
extensively degenerate manifold of classical states. In such
systems, exotic quantum phases of Mott insulators (spin
liquids, valence bond solids, etc.) can emerge as the true
ground states (for reviews, see Refs. [1,2]). In quantum
spin liquids, strong zero-point fluctuations of correlated
spins prevent them to ‘‘freeze’’ into magnetic or statically
dimerized patterns, and conventional phase transitions that
break time-reversal and lattice symmetries are avoided.
Spin liquids have attracted particular attention since
Anderson proposed their possible connection to supercon-
ductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but,
because different bonds use different spin components
[see Fig. 1(a)], the model is highly frustrated. Its ground
state is spin-disordered and supports the emergent gapless
excitations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5,6]. This may suggest the robustness of the
disordered state to spin perturbations. Indeed, Tsvelik has
shown [7] that there is a window of stability for the spin-
liquid state in the Kitaev model perturbed by isotropic
Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key element
of the model is a bond-selective spin anisotropy, one
possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be

translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.
In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4þ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an inter-
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FIG. 1. (a) Three types of bonds in the honeycomb lattice and
Kitaev part of the interaction. (b) The supercell of the four-
sublattice system enabling the transformation of the model (1)
into the Hamiltonian of a simple ferromagnet at ! ¼ 1

2 . This

supercell with periodic boundary conditions applied was used as
a cluster for the exact diagonalization. (c) Schematic phase
diagram: With increasing !, the ground state changes from the
Néel AF order to the stripy AF state (being a fluctuation-free
exact solution at ! ¼ 1

2 ) and to the Kitaev spin liquid. See the
text for the critical values of !.
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Finite-temperature phase diagram of the Heisenberg-Kitaev model
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We discuss the finite-temperature phase diagram of the Heisenberg-Kitaev model on the hexagonal lattice,
which has been suggested to describe the spin-orbital exchange of the effective spin-1/2 momenta in the Mott
insulating Iridate Na2IrO3. At zero-temperature this model exhibits magnetically ordered states well beyond
the isotropic Heisenberg limit as well as an extended gapless spin liquid phase around the highly anisotropic
Kitaev limit. Using a pseudofermion functional renormalization group (RG) approach we extract both the
Curie-Weiss scale and the critical ordering scale (for the magnetically ordered states) from the RG flow of the
magnetic susceptibility. The Curie-Weiss scale switches sign – indicating a transition of the dominant exchange
from antiferromagnetic to ferromagnetic – deep in the magnetically ordered regime. For the latter we find no
significant frustration, i.e. a substantial suppression of the ordering scale with regard to the Curie-Weiss scale.
We discuss our results in light of recent experimental susceptibility measurements for Na2IrO3.

PACS numbers: 71.20.Be, 75.25.Dk, 75.30.Et, 75.10.Jm

In the realm of solid state physics, frustration refers to the
phenomena that arise from the competition between interac-
tions that cannot be simultaneously satisfied: typically a large
degeneracy of ground states and a suppression of thermal or-
dering by fluctuations [1]. For many magnetic solids a pecu-
liar form of frustration, so-called geometric frustration, can
arise when interactions are incompatible with the underlying
lattice symmetry [2]. A prominent example of the latter are
spin-1/2 Heisenberg antiferromagnets on non-bipartite lattice
structures, for which there is no straight-forward generaliza-
tion of the Néel state – the common ground state for bipartite
lattices – but which can instead harbor more exotic ground
states, including commonly elusive spin liquids [3]. Even
for bipartite lattices one can encounter geometric frustration
when considering so-called orbital degrees of freedom, which
occur in a large class of transition metal oxides that exhibit
Jahn-Teller ions [4]. For the latter crystal field splitting of-
ten results in a single electron (or hole) occupying the doubly
degenerate eg level, for which the orbital occupation is then
cast in terms of a pseudospin-1/2. In contrast to ordinary spin
degrees of freedom the exchange interactions between these
orbital degrees of freedom – arising from Jahn-Teller distor-
tions and/or superexchange – are highly anisotropic and even
for simple bipartite lattices cannot be simultaneously satisfied,
which has been shown to result, e.g. in a non-trivial phase di-
agram of competing orbital orders on the cubic lattice [5] or
an orbital Coulomb phase on the diamond lattice [6].

In this manuscript, we consider a class of materials, certain
Iridates, where strong spin-orbit coupling (SOC) results in ef-
fective degrees of freedom, which fall between the two oppos-
ing cases above. While Iridates have attracted much recent
attention as candidate materials for topological insulators [7],
our study is motivated by a family of materials of the form
A2IrO3, such as Na2IrO3, which has recently been shown to
be a Mott insulator [8]. In these Iridates the Ir4+ (5d5) ions
form a quasi two-dimensional hexagonal lattice of effective
j = 1/2 momenta. The latter arise from the combined effect

of crystal field splitting of the d-orbitals, resulting in a sin-
gle hole (5 electrons) occupying the lowered t2g orbitals, and
spin-orbit coupling then giving rise to two Kramers doublets,
four electrons filling the (lower) j = 3/2 quartet and a single
electron in the j = 1/2 doublet. The exchange interactions
between these effective moments have been argued [9, 10] to
reflect both the original spin exchange in terms of an isotropic
Heisenberg coupling as well as strongly anisotropic orbital in-
teractions in terms of a Kitaev-type exchange
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where the �
i

denote the effective spin-1/2 moment of the Ir4+
ions and � = x, y, z indicates the three different links of the
hexagonal lattice. The two couplings are found [10] to en-
ter with opposite sign, i.e. the isotropic exchange is antifer-
romagnetic, while the anisotropic exchange is ferromagnetic.
Varying the relative coupling strength 0  ↵  1, the model
interpolates from the ordinary Heisenberg model with a Néel
ground state for ↵ = 0 to the Kitaev model for ↵ = 1, which
even for ferromagnetic interactions is highly frustrated and ex-
hibits a gapless spin-liquid ground state [11]. One might thus
wonder how the level of frustration varies between the spin
and orbital dominated limits of this model. This question is
also fueled by recent experiments [8] on Na2IrO3 that reported
magnetic susceptibility measurements, which besides provid-
ing unambiguous evidence of the effective spin-1/2 moments
also reported a considerable suppression for the onset of mag-
netic correlations below TN ⇡ 15 K in comparison with a
Curie-Weiss temperature of ⇥CW ⇡ �116 K. In particular,
one might wonder whether this suppression of magnetic or-
dering might be interpreted as arising from a proximity to the
highly exotic spin liquid phase of the Kitaev model, despite
recent resonant x-ray magnetic scattering experiments [12]
reporting indications of a conventionally ordered magnetic
ground state.
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Layered honeycomb compound Na2IrO3

calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:

H0 ¼ #t
X

hiji
½dyi dj þ H:c:% þ

X

hhijii
½dyi t̂0ijdj þ H:c:%; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) pairs, respectively. The
transfer integral t between a NN pair is real and spin
independent as given by

t ¼ 1

3

ðpd"Þ2
!d # !p

ðpp#Þ þ 3ðpp"Þ
!d # !p

; (3)

where (pd"), (pp#), and (pp") are Slater-Koster parame-
ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=

ffiffiffi
3

p
is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by

t0 ¼ 1

6

ðpd"Þ2
!d # !p

" ðpd#Þ2
ð!0d # !pÞ2

þ ðpd#Þ2
ð!0d # !pÞð!d # !pÞ

#
(5)

with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
shows #t, while blue short-dashed, red dash-dotted, and green
long-dashed arrows indicate it0#x, it

0#y, it
0#z, respectively.

FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.
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calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:

H0 ¼ #t
X

hiji
½dyi dj þ H:c:% þ

X

hhijii
½dyi t̂0ijdj þ H:c:%; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) pairs, respectively. The
transfer integral t between a NN pair is real and spin
independent as given by

t ¼ 1
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; (3)

where (pd"), (pp#), and (pp") are Slater-Koster parame-
ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=

ffiffiffi
3

p
is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by

t0 ¼ 1

6

ðpd"Þ2
!d # !p

" ðpd#Þ2
ð!0d # !pÞ2

þ ðpd#Þ2
ð!0d # !pÞð!d # !pÞ

#
(5)

with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
shows #t, while blue short-dashed, red dash-dotted, and green
long-dashed arrows indicate it0#x, it

0#y, it
0#z, respectively.

FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.
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calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:

H0 ¼ #t
X

hiji
½dyi dj þ H:c:% þ

X

hhijii
½dyi t̂0ijdj þ H:c:%; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) pairs, respectively. The
transfer integral t between a NN pair is real and spin
independent as given by

t ¼ 1

3

ðpd"Þ2
!d # !p

ðpp#Þ þ 3ðpp"Þ
!d # !p

; (3)

where (pd"), (pp#), and (pp") are Slater-Koster parame-
ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=

ffiffiffi
3

p
is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by

t0 ¼ 1

6

ðpd"Þ2
!d # !p

" ðpd#Þ2
ð!0d # !pÞ2

þ ðpd#Þ2
ð!0d # !pÞð!d # !pÞ

#
(5)

with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
shows #t, while blue short-dashed, red dash-dotted, and green
long-dashed arrows indicate it0#x, it

0#y, it
0#z, respectively.

FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.
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calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:
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ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
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The local x, y, and z axes at an Ir atom are chosen to point
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with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and
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FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
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FIG. 3: (Color online) Diagram of a) Néel, b) zig-zag and c)
stripy order. d) Reciprocal space diagram showing locations
of magnetic Bragg peaks for various magnetic phases (inner
hexagon shows first Brillouin zone of the honeycomb lattice).
e) Powder inelastic neutron scattering data. The notable well-
defined feature is the sharp lower boundary of the scattering
at low Q (filled (magenta) symbols in h-j)), which we associate
with a sinusoidal spin wave dispersion; this becomes damped
out in the paramagnetic phase in f). Slanted thick dashed ar-
row shows the scan direction in g). Gray shading marks the
inaccessible region close to the elastic line dominated by inco-
herent elastic scattering. g) Energy scan (solid points 4.6 K,
open symbols 55 K) through the maximum spin-wave energy
seen in e) fitted to a Gaussian peak (solid line), dashed line is
estimated background. h-j) Calculated spherically-averaged
spin-wave intensity [16] for the J1,2,3 model with h) zig-zag
or i) stripy order, and j) the KH model with stripy order for
parameters given in the text. Solid red line in j) highlights
the low-energy boundary, which coincides with the dispersion
from Γ to the first softening point.

seen. Calculations for the KH Hamiltonian (1) are shown
in Fig. 3j) for α = 0.4 (lower limit for the stripy phase)
and J1 = 25.85 meV to reproduce the CW temperature
[21] Θ = −S(S + 1)(J1 − JK/3)/kB. The lower bound-

ary of the scattering at low Q (solid line) is predicted to
have a quadratic shape near the first softening point, a ro-
bust feature for any α throughout the stripy phase. This
is in contrast to the data where the dispersion bound-
ary (marked by filled symbols) has a distinctly different,
sinusoidal-like shape with a curvature the opposite way.
In addition, a different distribution of scattering weight
to higher energies is predicted, but not seen in the data.
We conclude that the KH model in the stripy phase has
a qualitatively different spin-wave spectrum compared to
the data. A minimal model that can reproduce the ob-
served low-Q dispersion and which predicts distribution
of magnetic scattering in broad overall agreement with
the data up to some intensity modulations is shown in
Fig. 3h) and requires substantial couplings up to 3rd
neighbors, which stabilize zig-zag magnetic order. Re-
cent theory [13] proposed that in addition to couplings
up to 3rd neighbors, a Kitaev term may also exist. We
have compared the data with such a model as well [16]
and estimate that a Kitaev term, if present, is smaller
than an upper bound corresponding to α ! 0.40(5).
We note that sizeable J3’s are not uncommon in trian-

gular plane metal oxides. The reason is that even though
J1 involves two hoppings and J3 four, the two additional
hoppings are strong pdσ ones, and the hopping proceeds
through intermediate unoccupied eg states [22]. In case of
Na2IrO3 the hopping proceeds through somewhat higher
Na s orbitals, but these are very diffuse, and the corre-
sponding tspσ parameter is sizeable. Near cancellation
of the AFM and FM superexchange interaction for the
nearest-neighbor path further reduces J1 compared to J3.
To summarize, by combining single-crystal diffraction

and LDA calculations we proposed a revised crystal
structure for the spin-orbit coupled honeycomb antifer-
romagnet Na2IrO3 that highlights important departures
from the ideal case where the Kitaev exchange domi-
nates. We observed dispersive spin-wave excitations in
inelastic neutron scattering and showed that substantial
further-neighbor exchange couplings are required to ex-
plain the observed dispersion and we proposed a model
for the magnetic ground state that could support such a
dispersion relation.
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calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:

H0 ¼ #t
X

hiji
½dyi dj þ H:c:% þ

X

hhijii
½dyi t̂0ijdj þ H:c:%; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) pairs, respectively. The
transfer integral t between a NN pair is real and spin
independent as given by

t ¼ 1

3

ðpd"Þ2
!d # !p

ðpp#Þ þ 3ðpp"Þ
!d # !p

; (3)

where (pd"), (pp#), and (pp") are Slater-Koster parame-
ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=

ffiffiffi
3

p
is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by

t0 ¼ 1

6

ðpd"Þ2
!d # !p

" ðpd#Þ2
ð!0d # !pÞ2

þ ðpd#Þ2
ð!0d # !pÞð!d # !pÞ

#
(5)

with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
shows #t, while blue short-dashed, red dash-dotted, and green
long-dashed arrows indicate it0#x, it

0#y, it
0#z, respectively.

FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.

PRL 102, 256403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JUNE 2009

256403-2

Ir
O

calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:

H0 ¼ #t
X

hiji
½dyi dj þ H:c:% þ

X

hhijii
½dyi t̂0ijdj þ H:c:%; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) pairs, respectively. The
transfer integral t between a NN pair is real and spin
independent as given by

t ¼ 1

3

ðpd"Þ2
!d # !p

ðpp#Þ þ 3ðpp"Þ
!d # !p

; (3)

where (pd"), (pp#), and (pp") are Slater-Koster parame-
ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=

ffiffiffi
3

p
is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by

t0 ¼ 1

6

ðpd"Þ2
!d # !p

" ðpd#Þ2
ð!0d # !pÞ2

þ ðpd#Þ2
ð!0d # !pÞð!d # !pÞ

#
(5)

with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
shows #t, while blue short-dashed, red dash-dotted, and green
long-dashed arrows indicate it0#x, it

0#y, it
0#z, respectively.

FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.

PRL 102, 256403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JUNE 2009

256403-2

AB-stacking

4

a) Néel d)b) zig-zag

b

c) stripy

a

2π
bΓ

2π
a

Néel
zig-zag
stripy

FIG. 3: (Color online) Diagram of a) Néel, b) zig-zag and c)
stripy order. d) Reciprocal space diagram showing locations
of magnetic Bragg peaks for various magnetic phases (inner
hexagon shows first Brillouin zone of the honeycomb lattice).
e) Powder inelastic neutron scattering data. The notable well-
defined feature is the sharp lower boundary of the scattering
at low Q (filled (magenta) symbols in h-j)), which we associate
with a sinusoidal spin wave dispersion; this becomes damped
out in the paramagnetic phase in f). Slanted thick dashed ar-
row shows the scan direction in g). Gray shading marks the
inaccessible region close to the elastic line dominated by inco-
herent elastic scattering. g) Energy scan (solid points 4.6 K,
open symbols 55 K) through the maximum spin-wave energy
seen in e) fitted to a Gaussian peak (solid line), dashed line is
estimated background. h-j) Calculated spherically-averaged
spin-wave intensity [16] for the J1,2,3 model with h) zig-zag
or i) stripy order, and j) the KH model with stripy order for
parameters given in the text. Solid red line in j) highlights
the low-energy boundary, which coincides with the dispersion
from Γ to the first softening point.

seen. Calculations for the KH Hamiltonian (1) are shown
in Fig. 3j) for α = 0.4 (lower limit for the stripy phase)
and J1 = 25.85 meV to reproduce the CW temperature
[21] Θ = −S(S + 1)(J1 − JK/3)/kB. The lower bound-

ary of the scattering at low Q (solid line) is predicted to
have a quadratic shape near the first softening point, a ro-
bust feature for any α throughout the stripy phase. This
is in contrast to the data where the dispersion bound-
ary (marked by filled symbols) has a distinctly different,
sinusoidal-like shape with a curvature the opposite way.
In addition, a different distribution of scattering weight
to higher energies is predicted, but not seen in the data.
We conclude that the KH model in the stripy phase has
a qualitatively different spin-wave spectrum compared to
the data. A minimal model that can reproduce the ob-
served low-Q dispersion and which predicts distribution
of magnetic scattering in broad overall agreement with
the data up to some intensity modulations is shown in
Fig. 3h) and requires substantial couplings up to 3rd
neighbors, which stabilize zig-zag magnetic order. Re-
cent theory [13] proposed that in addition to couplings
up to 3rd neighbors, a Kitaev term may also exist. We
have compared the data with such a model as well [16]
and estimate that a Kitaev term, if present, is smaller
than an upper bound corresponding to α ! 0.40(5).
We note that sizeable J3’s are not uncommon in trian-

gular plane metal oxides. The reason is that even though
J1 involves two hoppings and J3 four, the two additional
hoppings are strong pdσ ones, and the hopping proceeds
through intermediate unoccupied eg states [22]. In case of
Na2IrO3 the hopping proceeds through somewhat higher
Na s orbitals, but these are very diffuse, and the corre-
sponding tspσ parameter is sizeable. Near cancellation
of the AFM and FM superexchange interaction for the
nearest-neighbor path further reduces J1 compared to J3.
To summarize, by combining single-crystal diffraction

and LDA calculations we proposed a revised crystal
structure for the spin-orbit coupled honeycomb antifer-
romagnet Na2IrO3 that highlights important departures
from the ideal case where the Kitaev exchange domi-
nates. We observed dispersive spin-wave excitations in
inelastic neutron scattering and showed that substantial
further-neighbor exchange couplings are required to ex-
plain the observed dispersion and we proposed a model
for the magnetic ground state that could support such a
dispersion relation.
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A. Amato for technical support, N. Shannon, J.T.
Chalker and L. Balents for discussions, and EPSRC for
funding. Work at Rutgers was supported by DOE (DE-
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We have synthesized single crystals of Na2(Ir1−xTix)O3 and polycrystals of Li2(Ir1−xTix)O3 and studied the
effect of magnetic depletion on the magnetic properties by measurements of the magnetic susceptibility, specific
heat, and magnetocaloric effect at temperatures down to 0.1 K. In both systems, the nonmagnetic substitution
rapidly changes the magnetically ordered ground state into a spin glass, indicating strong frustration. While for
the Li system the Weiss temperature !W remains unchanged up to x = 0.55, a strong decrease |!W| is found
for the Na system. This suggests that only for the former system magnetic exchange beyond nearest neighbors is
dominating. This is also corroborated by the observation of a smeared quantum phase transition in Li2(Ir1−xTix)O3

near x = 0.5, i.e., much beyond the site percolation threshold of the honeycomb lattice.
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Iridates have attracted considerable interest in the last
few years due to their potential to host novel electronic and
magnetic phases mediated by the combination of strong spin-
orbit (SO) coupling and electronic correlations [1–5]. Layered
honeycomb lattice iridates A2IrO3 (A = Na,Li) are intensively
investigated because they have been proposed as candidate
materials for the realization of the highly frustrated Kitaev
interaction [6] as well as correlated topological insulator
phases [7,8].

Both Na2IrO3 and Li2IrO3 are electrically insulating with
fluctuating Seff = 1/2 moments above an antiferromagnetic
(AF) ordering around 15 K [9,10]. Their electronic structure
is discussed either within Jeff = 1/2 SO Mott insulator [11]
or quasimolecular orbital (QMO) scenarios [12,13], where
the upper half-filled Jeff = 1/2 or QMO doublet, respec-
tively, causes magnetism. At present, the correct effective
Hamiltonians for the description of magnetic exchange in the
two systems are not settled. Na2IrO3 displays an AF Weiss
temperature of −120 K [9] and zigzag ground state [14].
Within the next-neighbor Heisenberg-Kitaev (HK) model this
would require ferromagnetic (FM) Heisenberg and AF Kitaev
couplings [15], which, however, seems incompatible with
ab initio DFT calculations [13]. Significant further neighbor
exchange in a J1-J2-J3 Heisenberg model has been concluded
from the analysis of the measured magnon dispersion in
Na2IrO3 [14]. On the other hand, it has been pointed out
recently that trigonal distortions present in the system lead
to an anisotropic contribution to the next-neighbor exchange,
which together with a FM Kitaev interaction can reproduce
the experimental results [16].

Isostructural honeycomb Li2IrO3 displays a significantly
smaller AF Weiss temperature (−30 K) compared to
Na2IrO3 [10]. Recent neutron scattering has detected a
magnetic Bragg peak within the first Brillouin zone, indicating
incommensurate spiral ordering [17]. Due to the much reduced
atomic size of Li, its substitution for Na in (Na1−xLix)2IrO3
revealed that up to x = 0.25 preferentially only the Na sites in

*Present address: Research Center for Low Temperature and
Materials Science, Kyoto University, Kyoto 606-8501, Japan.

the honeycomb plane are occupied by Li and further doping
results in chemical phase segregation [18]. Magnetic properties
of Na2IrO3 and Li2IrO3 thus differ significantly [18,19]. Due to
the smaller Ir-Ir distances in the honeycomb planes in Li2IrO3,
one may expect enhanced further neighbor exchange in this
system.

Introduction of random vacancies to frustrated magnets
induces spin-glass behavior. For striped phases of the HK
model, it has been shown that the vacancies locally select
specific stripe orientations [20]. It has recently been proposed
that systematic depletion of the Ir spins by a nonmagnetic
ion could provide important new insights on the magnetic
exchange in these materials. Andrade and Vojta have shown by
classical Monte Carlo simulations that the spin-glass freezing
temperatures for depleted next neighbor HK and J1-J2-J3
Heisenberg magnets behave significantly different when the
doping concentrations exceed the site percolation threshold
xp = 0.303 [21]. While in the former case the freezing
temperature rapidly drops to zero, spin-glass ordering has a tail
and can largely extend into the regime x > xp for substantial
further neighbor magnetic exchange.

We have studied Na2(Ir1−xTix)O3 and Li2(Ir1−xTix)O3
where magnetic Ir4+ is randomly substituted by nonmagnetic
Ti4+. In contrast to the Na system, for the Li system, the AF
Weiss temperature remains almost unchanged and spin-glass
freezing is found up to x = 0.55, highlighting the importance
of further neighbor exchange in the latter system.

We have chosen nonmagnetic Ti as substituent because
Ti4+ and Ir4+ have a very similar ionic radius. In compounds
where Ir and Ti occupy different sites this causes a severe
problem due to site exchange [22], while in our case, it
assures a good statistical mixing of Ir and Ti in the diluted
systems. Na2(Ir1−xTix)O3 single crystals were grown using
a similar method as for Na2IrO3, by prereacting Na2CO3,
Ir metal powder and TiO2 powder at 750 ◦C to 900 ◦C.
The subsequent crystal growth was done with 10% extra
IrO2 in between 1030–1050 ◦C. Unfortunately, this method
only worked for compositions x ! 0.3. At larger x, only a
solid melt of Na2TiO3 was obtained and no Na2(Ir1−xTix)O3
crystals were formed. Na2TiO3 has a very low melting point
of 180 ◦C, which causes this problem for x > 0.3. Since

1098-0121/2014/89(24)/241102(5) 241102-1 ©2014 American Physical Society
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Figure 1: Ordering/freezing temperature. (a) Tg(x)/Tg(x =
0) as function of doping level x for the HK and J1-J2-J3 mod-
els for J?/J = 0.01. The vertical dashed line locates the 2d
percolation threshold xp; the horizontal dashed line marks
temperatures below which we are unable to reach equilibrium
in our MC simulations for the HK model. (b) TN(J?) at x = 0
for the HK model and (c) Tg/Tg(x = 0) at x = 0.2 for the
HK and J1-J2-J3 models as function of J?. Panel (b) also
shows the two transition temperatures Tu and Tl of the 2d
HK model; the value of Tu was extracted from Ref. 21.

occurring for 0.51⇡ < � < 0.90⇡; in the following we
choose � = 0.62⇡. For the J1-J2-J3 model, sizeable J2

and J3 are required in order to have a zigzag magnetic
ground state [25–27]. Following Ref. 9, we choose J2 =

0.8J1 and J3 = 0.9J1.
As will become clear below, the magnetic properties

of the depleted HK and J1-J2-J3 models depend sensi-
tively on the presence of a magnetic coupling between
the layers. For A2IrO3, no quantitative information on
such coupling is available at present; it is often assumed
to be small due to the A-B-type stacking of the honey-
comb layers. Here we will account for the 3d character
by considering a layered model with A-A stacking and
a small vertical (unfrustrated) Heisenberg coupling J?;
in application to A2IrO3 this is to be understood as an
effective coupling between second-neighbor layers.

Monte-Carlo simulations. We study the models (1)
and (2) using classical Monte Carlo (MC) simulations
for unit-length spins on lattices of size L ⇥ L ⇥ Lz, typ-
ically with Lz = L/2 and periodic boundary conditions.
The honeycomb layers are spanned by the primitive lat-
tice vectors ~a1(2) =

�
3/2,±p

3/2

�
, with each unit cell

containing two sites. Depletion is simulated by ran-
domly removing a fraction x of spins, with x varying
between 5% and 40%, with the total number of spins
Ns = (1 � x) ⇥ 2L

2
Lz. We perform equilibrium MC

simulations using single-site updates with a combination
of the heat-bath and microcanonical (or over-relaxation)

methods. We consider typically 5 ⇥ 10

5 MC steps per
spin for the measurements, after discarding an equal
amount of steps for equilibration. To efficiently sam-
ple all spin configurations we also employ the parallel-
tempering algorithm [28, 29]. Disorder averages are taken
over Nrl samples, with Nrl ranging from 1000 for L = 6 to
Nrl = 50 for L = 16. In all our results we set the Boltz-
mann constant kB = 1 and quote all energies in units of
J ⌘ J1, the nearest-neighbor Heisenberg exchange.

We extract the ordering (or freezing) temperature Tg

from the crossing points of ⇠(T )/L for different L, ac-
cording to the scaling law ⇠/L = f(L

1/⌫
(T �Tg)), where

⇠ is a correlation length, f(x) a scaling function, and ⌫

the correlation length exponent. This procedure is espe-
cially suitable to detect spin-glass freezing, as shown in
previous studies of the 3d Edwards-Anderson model [30–
32]. The main source of numerical error in Tg is from
the L ! 1 extrapolation of the crossing point location
required for small L.

The magnetic correlation length ⇠S is calculated from
a fit of the static magnetic structure factor, S(~q), close
to the ordering wavevector ~

Q (the three independent ~

Q

vectors corresponding to the zigzag order are (

~

b1+
~

b2)/2,
~

b1/2, and ~

b2/2, where ~b1(2) = 2⇡(1/3,±1/

p
3) are the re-

ciprocal lattice vectors). Analogously, the spin-glass cor-
relation length ⇠SG is obtained from the spin-glass sus-
ceptibility �SG(~q) = Ns

P
↵,�

⇥ D��
q

↵,�
(~q)

��2
E ⇤

av
, where

q

↵,�
(~q) = N

�1
s

P
i S

↵(1)
i S

�(2)
i exp (i~q · ~ri) is the spin-glass

order parameter. Here ↵ and � are spin components, (1,2)

denote identical copies of the system (“replicas”) contain-
ing the disorder configuration, h· · · i denotes MC average,
and [· · · ]av average over disorder.

Clean HK model. The 2d disorder-free HK model has
been studied by exact diagonalization in Refs. 14, 19,
by auxiliary-fermion functional renormalization group in
Ref. 17, and by classical MC simulations in Refs. 20, 21.
A comparison of the phase diagrams shows that the
classical-spin HK model reproduces [21] all phases of the
spin-1/2 model except for the quantum spin liquid, with
T = 0 phase boundary locations in reasonable agree-
ment between quantum and classical models. The results
in Refs. 20, 21 also indicate the presence of two ther-
mal transitions upon cooling from the high-temperature
paramagnetic phase to any of the low-temperature phases
with semiclassical order (as the zigzag phase). The sys-
tem first enters a critical phase at Tu, with power-law
spin correlations, and a state with true long-range order
is reached only below Tl < Tu. This behavior parallels
that of a six-state clock model in 2d [33], as suggested
by the sixfold degeneracy of the ordered states in the HK
model.

For selected values of �, we have verified that our MC
simulations, applied to the 2d HK model (J? = 0), re-
produce the results of Ref. 21. In particular, the specific
heat, Fig. 2(a), shows a broad peak far above both Tu and
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We have synthesized single crystals of Na2(Ir1−xTix)O3 and polycrystals of Li2(Ir1−xTix)O3 and studied the
effect of magnetic depletion on the magnetic properties by measurements of the magnetic susceptibility, specific
heat, and magnetocaloric effect at temperatures down to 0.1 K. In both systems, the nonmagnetic substitution
rapidly changes the magnetically ordered ground state into a spin glass, indicating strong frustration. While for
the Li system the Weiss temperature !W remains unchanged up to x = 0.55, a strong decrease |!W| is found
for the Na system. This suggests that only for the former system magnetic exchange beyond nearest neighbors is
dominating. This is also corroborated by the observation of a smeared quantum phase transition in Li2(Ir1−xTix)O3

near x = 0.5, i.e., much beyond the site percolation threshold of the honeycomb lattice.
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Iridates have attracted considerable interest in the last
few years due to their potential to host novel electronic and
magnetic phases mediated by the combination of strong spin-
orbit (SO) coupling and electronic correlations [1–5]. Layered
honeycomb lattice iridates A2IrO3 (A = Na,Li) are intensively
investigated because they have been proposed as candidate
materials for the realization of the highly frustrated Kitaev
interaction [6] as well as correlated topological insulator
phases [7,8].

Both Na2IrO3 and Li2IrO3 are electrically insulating with
fluctuating Seff = 1/2 moments above an antiferromagnetic
(AF) ordering around 15 K [9,10]. Their electronic structure
is discussed either within Jeff = 1/2 SO Mott insulator [11]
or quasimolecular orbital (QMO) scenarios [12,13], where
the upper half-filled Jeff = 1/2 or QMO doublet, respec-
tively, causes magnetism. At present, the correct effective
Hamiltonians for the description of magnetic exchange in the
two systems are not settled. Na2IrO3 displays an AF Weiss
temperature of −120 K [9] and zigzag ground state [14].
Within the next-neighbor Heisenberg-Kitaev (HK) model this
would require ferromagnetic (FM) Heisenberg and AF Kitaev
couplings [15], which, however, seems incompatible with
ab initio DFT calculations [13]. Significant further neighbor
exchange in a J1-J2-J3 Heisenberg model has been concluded
from the analysis of the measured magnon dispersion in
Na2IrO3 [14]. On the other hand, it has been pointed out
recently that trigonal distortions present in the system lead
to an anisotropic contribution to the next-neighbor exchange,
which together with a FM Kitaev interaction can reproduce
the experimental results [16].

Isostructural honeycomb Li2IrO3 displays a significantly
smaller AF Weiss temperature (−30 K) compared to
Na2IrO3 [10]. Recent neutron scattering has detected a
magnetic Bragg peak within the first Brillouin zone, indicating
incommensurate spiral ordering [17]. Due to the much reduced
atomic size of Li, its substitution for Na in (Na1−xLix)2IrO3
revealed that up to x = 0.25 preferentially only the Na sites in
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the honeycomb plane are occupied by Li and further doping
results in chemical phase segregation [18]. Magnetic properties
of Na2IrO3 and Li2IrO3 thus differ significantly [18,19]. Due to
the smaller Ir-Ir distances in the honeycomb planes in Li2IrO3,
one may expect enhanced further neighbor exchange in this
system.

Introduction of random vacancies to frustrated magnets
induces spin-glass behavior. For striped phases of the HK
model, it has been shown that the vacancies locally select
specific stripe orientations [20]. It has recently been proposed
that systematic depletion of the Ir spins by a nonmagnetic
ion could provide important new insights on the magnetic
exchange in these materials. Andrade and Vojta have shown by
classical Monte Carlo simulations that the spin-glass freezing
temperatures for depleted next neighbor HK and J1-J2-J3
Heisenberg magnets behave significantly different when the
doping concentrations exceed the site percolation threshold
xp = 0.303 [21]. While in the former case the freezing
temperature rapidly drops to zero, spin-glass ordering has a tail
and can largely extend into the regime x > xp for substantial
further neighbor magnetic exchange.

We have studied Na2(Ir1−xTix)O3 and Li2(Ir1−xTix)O3
where magnetic Ir4+ is randomly substituted by nonmagnetic
Ti4+. In contrast to the Na system, for the Li system, the AF
Weiss temperature remains almost unchanged and spin-glass
freezing is found up to x = 0.55, highlighting the importance
of further neighbor exchange in the latter system.

We have chosen nonmagnetic Ti as substituent because
Ti4+ and Ir4+ have a very similar ionic radius. In compounds
where Ir and Ti occupy different sites this causes a severe
problem due to site exchange [22], while in our case, it
assures a good statistical mixing of Ir and Ti in the diluted
systems. Na2(Ir1−xTix)O3 single crystals were grown using
a similar method as for Na2IrO3, by prereacting Na2CO3,
Ir metal powder and TiO2 powder at 750 ◦C to 900 ◦C.
The subsequent crystal growth was done with 10% extra
IrO2 in between 1030–1050 ◦C. Unfortunately, this method
only worked for compositions x ! 0.3. At larger x, only a
solid melt of Na2TiO3 was obtained and no Na2(Ir1−xTix)O3
crystals were formed. Na2TiO3 has a very low melting point
of 180 ◦C, which causes this problem for x > 0.3. Since
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Figure 1: Ordering/freezing temperature. (a) Tg(x)/Tg(x =
0) as function of doping level x for the HK and J1-J2-J3 mod-
els for J?/J = 0.01. The vertical dashed line locates the 2d
percolation threshold xp; the horizontal dashed line marks
temperatures below which we are unable to reach equilibrium
in our MC simulations for the HK model. (b) TN(J?) at x = 0
for the HK model and (c) Tg/Tg(x = 0) at x = 0.2 for the
HK and J1-J2-J3 models as function of J?. Panel (b) also
shows the two transition temperatures Tu and Tl of the 2d
HK model; the value of Tu was extracted from Ref. 21.

occurring for 0.51⇡ < � < 0.90⇡; in the following we
choose � = 0.62⇡. For the J1-J2-J3 model, sizeable J2

and J3 are required in order to have a zigzag magnetic
ground state [25–27]. Following Ref. 9, we choose J2 =

0.8J1 and J3 = 0.9J1.
As will become clear below, the magnetic properties

of the depleted HK and J1-J2-J3 models depend sensi-
tively on the presence of a magnetic coupling between
the layers. For A2IrO3, no quantitative information on
such coupling is available at present; it is often assumed
to be small due to the A-B-type stacking of the honey-
comb layers. Here we will account for the 3d character
by considering a layered model with A-A stacking and
a small vertical (unfrustrated) Heisenberg coupling J?;
in application to A2IrO3 this is to be understood as an
effective coupling between second-neighbor layers.

Monte-Carlo simulations. We study the models (1)
and (2) using classical Monte Carlo (MC) simulations
for unit-length spins on lattices of size L ⇥ L ⇥ Lz, typ-
ically with Lz = L/2 and periodic boundary conditions.
The honeycomb layers are spanned by the primitive lat-
tice vectors ~a1(2) =

�
3/2,±p

3/2

�
, with each unit cell

containing two sites. Depletion is simulated by ran-
domly removing a fraction x of spins, with x varying
between 5% and 40%, with the total number of spins
Ns = (1 � x) ⇥ 2L

2
Lz. We perform equilibrium MC

simulations using single-site updates with a combination
of the heat-bath and microcanonical (or over-relaxation)

methods. We consider typically 5 ⇥ 10

5 MC steps per
spin for the measurements, after discarding an equal
amount of steps for equilibration. To efficiently sam-
ple all spin configurations we also employ the parallel-
tempering algorithm [28, 29]. Disorder averages are taken
over Nrl samples, with Nrl ranging from 1000 for L = 6 to
Nrl = 50 for L = 16. In all our results we set the Boltz-
mann constant kB = 1 and quote all energies in units of
J ⌘ J1, the nearest-neighbor Heisenberg exchange.

We extract the ordering (or freezing) temperature Tg

from the crossing points of ⇠(T )/L for different L, ac-
cording to the scaling law ⇠/L = f(L

1/⌫
(T �Tg)), where

⇠ is a correlation length, f(x) a scaling function, and ⌫

the correlation length exponent. This procedure is espe-
cially suitable to detect spin-glass freezing, as shown in
previous studies of the 3d Edwards-Anderson model [30–
32]. The main source of numerical error in Tg is from
the L ! 1 extrapolation of the crossing point location
required for small L.

The magnetic correlation length ⇠S is calculated from
a fit of the static magnetic structure factor, S(~q), close
to the ordering wavevector ~

Q (the three independent ~

Q

vectors corresponding to the zigzag order are (

~

b1+
~

b2)/2,
~

b1/2, and ~

b2/2, where ~b1(2) = 2⇡(1/3,±1/

p
3) are the re-

ciprocal lattice vectors). Analogously, the spin-glass cor-
relation length ⇠SG is obtained from the spin-glass sus-
ceptibility �SG(~q) = Ns

P
↵,�

⇥ D��
q

↵,�
(~q)

��2
E ⇤

av
, where

q

↵,�
(~q) = N

�1
s

P
i S

↵(1)
i S

�(2)
i exp (i~q · ~ri) is the spin-glass

order parameter. Here ↵ and � are spin components, (1,2)

denote identical copies of the system (“replicas”) contain-
ing the disorder configuration, h· · · i denotes MC average,
and [· · · ]av average over disorder.

Clean HK model. The 2d disorder-free HK model has
been studied by exact diagonalization in Refs. 14, 19,
by auxiliary-fermion functional renormalization group in
Ref. 17, and by classical MC simulations in Refs. 20, 21.
A comparison of the phase diagrams shows that the
classical-spin HK model reproduces [21] all phases of the
spin-1/2 model except for the quantum spin liquid, with
T = 0 phase boundary locations in reasonable agree-
ment between quantum and classical models. The results
in Refs. 20, 21 also indicate the presence of two ther-
mal transitions upon cooling from the high-temperature
paramagnetic phase to any of the low-temperature phases
with semiclassical order (as the zigzag phase). The sys-
tem first enters a critical phase at Tu, with power-law
spin correlations, and a state with true long-range order
is reached only below Tl < Tu. This behavior parallels
that of a six-state clock model in 2d [33], as suggested
by the sixfold degeneracy of the ordered states in the HK
model.

For selected values of �, we have verified that our MC
simulations, applied to the 2d HK model (J? = 0), re-
produce the results of Ref. 21. In particular, the specific
heat, Fig. 2(a), shows a broad peak far above both Tu and
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calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:

H0 ¼ #t
X

hiji
½dyi dj þ H:c:% þ

X

hhijii
½dyi t̂0ijdj þ H:c:%; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) pairs, respectively. The
transfer integral t between a NN pair is real and spin
independent as given by

t ¼ 1

3

ðpd"Þ2
!d # !p

ðpp#Þ þ 3ðpp"Þ
!d # !p

; (3)

where (pd"), (pp#), and (pp") are Slater-Koster parame-
ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=

ffiffiffi
3

p
is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by

t0 ¼ 1

6

ðpd"Þ2
!d # !p

" ðpd#Þ2
ð!0d # !pÞ2

þ ðpd#Þ2
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#
(5)

with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
shows #t, while blue short-dashed, red dash-dotted, and green
long-dashed arrows indicate it0#x, it

0#y, it
0#z, respectively.

FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.
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FIG. 5. (Color online) (a) Absolute value k of the wave vector at
the ordering peak and the Curie-Weiss temperature in the SP1 phase
(blue) and in the SP2 phase (red) as a function of φ1 (φ2 = 0.8).
The jump in the peak position for k is clearly observed. The gray
shaded region marks the joint appearance of spiral peaks inside the
first Brillouin zone and negative Curie-Weiss temperatures. (b) Cut
through the susceptibility at kx = 0 (blue) and kx = 2 (green) as a
function of ky . The Bragg-peak maximum is at k = (0,1.66)/aIr−Ir.
(c) The spin pattern related to Li2IrO3 forms a nonplanar spiral.

quantum magnetic order in the SP2 phase. Different types
of incommensurate spiral orders on the honeycomb lattice
are classified according to their symmetry properties. The
location of ordering peaks in k space indicates that the
spiral in the SP2 phase is of so-called H1 type [39,40].
The intrinsic relation between real-space and spin-space
transformations in the Kitaev model further requires that
the x, y, and z components of the real-space spin-spin
correlation function are rotated by 120◦ among each other. By
enforcing this condition one finds a nonplanar spiral as shown
in Fig. 5(c).

It is worth mentioning that the qualitative features of the
SP2 phase persist when we reduce g (i.e., the ratio between
nearest- and second-nearest-neighbor interactions), until at
small enough g the Kitaev spin liquid sets in. Hence, depending
on the precise value of g hypothetically realized in Li2IrO3
(which we cannot determine within the present analysis), the
compound might be located in close vicinity to a Kitaev
spin-liquid phase. Note that the pure K1-K2 model already
hosts both the Kitaev spin liquid and the SP2 phase, although
the quantitative features of the SP2 phase found therein do not
agree with experiment.

Conclusion. We have shown that the Heisenberg-Kitaev
model extended to next-nearest-neighbor Heisenberg and
Kitaev couplings emerges as a promising minimal model
to explain the puzzling situation for the magnetic profile
of Li2IrO3: in the experimentally relevant parameter regime
proposed by us, (i) the magnetic order is of incommen-
surate spiral type with ordering peaks located well inside
the first Brillouin zone, (ii) the Curie-Weiss temperature
is negative, and (iii) significant second-neighbor spin ex-
change is involved (g = 0.8). We claim that the simul-
taneous fulfillment of (i) and (ii) is connected to sub-
leading susceptibility peaks outside the first Brillouin zone
which establish a promising line of investigation for future
experiments.
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calculations [18,19]. Ir4þ has five electrons, one of which
is in a narrow band mainly composed of the jeff ¼ 1=2
states described above, leading to a Mott insulator with the
AFM order. These experiments confirmed that spin-orbit-
coupled jeff ¼ 1=2 states are realized, even though Sr2IrO4

itself is topologically trivial.
Now we focus on Na2IrO3, whose layered crystal struc-

ture contains the honeycomb lattice as shown in Fig. 1(a).
[For the three-dimensional structure, see Fig. 2(d).] Each Ir
atom is surrounded by an octahedron of six O atoms, which
leads to the energy level scheme similar to Sr2IrO4, i.e.,
one electron in jeff ¼ 1=2 states. Therefore we can con-
struct the effective single-band model on the honeycomb
lattice. Since the O p-level !p are around 3 eV lower than
the Ir d-level !d [17], we can integrate out p orbitals to
obtain the following effective Hamiltonian:

H0 ¼ #t
X

hiji
½dyi dj þ H:c:% þ

X

hhijii
½dyi t̂0ijdj þ H:c:%; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) pairs, respectively. The
transfer integral t between a NN pair is real and spin
independent as given by

t ¼ 1

3

ðpd"Þ2
!d # !p

ðpp#Þ þ 3ðpp"Þ
!d # !p

; (3)

where (pd"), (pp#), and (pp") are Slater-Koster parame-
ters between pd and pp, respectively [20]. Note that the
contributions of the order of ðpd"Þ2=ð!d # !pÞ cancel out
in the honeycomb lattice, in sharp contrast to Sr2IrO4 with
the square lattice. The transfer integral between a NNN
pair depends on spin, leading to a topological insulator.
The local x, y, and z axes at an Ir atom are chosen to point
in the direction of neighboring O atoms as shown in Fig. 1.
Therefore Z ¼ ðxþ yþ zÞ=

ffiffiffi
3

p
is perpendicular to the

honeycomb plane. With this convention, the transfer inte-
gral is a 2( 2 matrix in the spin space, and is written as

t̂ 0ij ¼ it0#a þ t00; (4)

where a ¼ x, y, z is the direction whose projection onto the

honeycomb plane coincides with that of the hopping di-
rection. The magnitude t0 is given by

t0 ¼ 1

6

ðpd"Þ2
!d # !p

" ðpd#Þ2
ð!0d # !pÞ2

þ ðpd#Þ2
ð!0d # !pÞð!d # !pÞ

#
(5)

with !0d ¼ !d þ 10Dq. Note that the key to these complex
transfer integrals is the asymmetry between two paths
connecting a NNN pair. If there were an additional Ir
atom in the center of the hexagon, leading to the triangular
lattice, the transfer integral t0 would vanish. The real trans-
fer integral t00 can be produced by the direct dd hopping
and breaks the particle-hole symmetry. However, we put
t00 ¼ 0 for the moment since such a term does not change
the topological properties of the Bloch wave functions.
To summarize these results, the transfer integrals are real

and spin independent for a NN pair, while complex and
spin dependent for a NNN pair. We can see that this model
is related to the Haldane model for the QH effect [3], and

FIG. 1 (color online). (a) The honeycomb lattice of Ir atoms in
Na2IrO3 viewed from the c axis. A large black circle shows an Ir
atom surrounded by six O atoms (red small circles). (b) The
transfer integrals on the honeycomb lattice. A black solid line
shows #t, while blue short-dashed, red dash-dotted, and green
long-dashed arrows indicate it0#x, it

0#y, it
0#z, respectively.

FIG. 2 (color online). (a) and (b) The relativistic DOS includ-
ing the SOI in two different ranges of energy. Black thick solid,
red thin solid, green dashed, and blue dotted lines indicate Ir
jeff ¼ 1=2, Ir jeff ¼ 3=2, Ir eg, and O p bands, respectively. The
Fermi energy is set to zero. (c) The first-principles band structure
(thin lines) and the extended tight-binding model with typical
parameters t ¼ 310 K, t0 ¼ 100 K, t00 ¼ #130 K, and t? ¼
60 K (thick lines). (d) The interlayer coupling t? is indicated
by black dashed lines, while the other transfer integrals are
shown in Fig. 1(b). Because of the monoclinic crystal structure,
layers are not stacked in the simple way as in AB-stacked
graphene.
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FIG. 6. (Color online) Dependence of the ordering vector Qy on
Jλ̃ in HSI. The inset illustrates the evolution of the ordering peaks
in the Brillouin zone (thick hexagon: second Brillouin zone, thin
hexagon: first Brillouin zone; see also Fig. 5). In the limit Jλ̃ →
∞, the system converges again towards a commensurate ordering
vector.

For fluctuations at arbitrary momentum, a certain direction
will generally be preferred.

As Jλ̃ increases, the deformation of the ordering peaks at
the K and K ′ points becomes more pronounced. At some
coupling Jλ̃ ≈ 0.53, the peaks split and the new maxima move
along the ky direction (Fig. 6). These peak positions indicate a
phase transition to a spiral phase with incommensurate order.
It is important to note, however, that magnetic order persists in
the whole parameter regime around the transition and we find
no magnetically disordered phase. This can be seen from the
behavior of the RG flow which always exhibits a characteristic
instability breakdown. To demonstrate the evolution of the
ordering vector in the spiral phase, Fig. 6 shows the peak
position as function of Jλ̃. Note that the kx component of the
peak position is constant in Jλ̃. With increasing Jλ̃, the peaks
move continuously towards the points Q∞ = (± 2π

3 , ± 2
3

2π√
3
)

which lie at two-thirds of the distance between the K (′) points
and the kx axis (Fig. 6). Again, with increasing Jλ̃ there is no
sign of any nonmagnetic phase.

The system at infinite spin-orbit coupling is of particular
interest, as this case represents a model with Kitaev-like
interactions on the triangular lattice. As Jλ̃ goes to infinity,
the system is effectively described by decoupled triangular
sublattices. Hence, already the first Brillouin zone, i.e., the
Brillouin zone of a triangular sublattice, contains the full
information about χ in k space. The susceptibility then
becomes periodic with respect to this smaller zone. Such a
change of periodicity can be seen in Fig. 5 at large Jλ̃ where
new peaks at kx = 0 emerge. In the limit Jλ̃ → ∞ these new
peaks reach the same height as the ones at Q∞ and finally
become identical to them, indicating the new periodicity in k
space. Figure 7(a) shows the susceptibility in the first Brillouin
zone of the triangular sublattice in this limit. From the peak
positions, one can deduce properties of the corresponding
spin pattern in real space. On each triangular sublattice the
wave vector is half the one of the 120◦ Néel order residing
at the corners of the first Brillouin zone. Hence, the order is
commensurate and the local magnetic moments along a lattice
direction are modulated with a periodicity of 6 sites as opposed
to 3 sites in the case of 120◦ Néel order.

(a) (b)

FIG. 7. (Color online) The SI spin model at Jλ̃ → ∞:
(a) Magnetic susceptibility displayed in the first Brillouin zone of
the triangular sublattice. The two ordering peaks correspond to
the peaks in Fig. 5 which emerge at Jλ̃ ! 5 and kx = 0. In the
limit Jλ̃ → ∞, these maxima reach the same height as the ones at
Q∞ = (± 2π

3 , ± 2
3

2π√
3
). (b) Mapping of the SI spin model at Jλ̃ → ∞

to the antiferromagnetic Heisenberg model on the triangular lattice:
The lattice is divided into four sublattices denoted by •, xy, xz, and
yz. As shown in Eq. (11) the transformation from Si to S̃i depends
on the sublattice where i resides. The exchange couplings follow the
convention shown in Fig. 1.

Our numerical conclusions for the SI spin model in the
limit Jλ̃ → ∞ can also be reconciled with an analytical
argument. Performing a transformation in spin space, Si → S̃i ,
the system at this point can be mapped to an SU(2) invariant
antiferromagnetic Heisenberg model on the triangular lattice,
HSI =

∑
ij S̃i S̃j . For this mapping, we divide the triangular

lattice into four sublattices denoted by •, xy, xz, and yz,
each with a doubled lattice constant [Fig. 7(b)]. The relation
between Si and S̃i depends on the sublattice:

i ∈ • : S̃i =
(
Sx

i ,S
y
i ,Sz

i

)
,

i ∈ xy : S̃i =
(
−Sx

i , − S
y
i ,Sz

i

)
,

i ∈ xz : S̃i =
(
−Sx

i ,S
y
i , − Sz

i

)
, (11)

i ∈ yz : S̃i =
(
Sx

i , − S
y
i , − Sz

i

)
;

i.e., while on sublattice • the spins remain unchanged, on the
sublattice xy the x and y components of the spin operator
acquire a minus sign, and so on (a similar mapping for
the Heisenberg-Kitaev model at α = 0.5 is described in
Ref. 48). Since the antiferromagnetic Heisenberg model on
the triangular lattice exhibits magnetic order via the 120◦ Néel
state,54 it follows that the SI spin model at Jλ̃ → ∞ is likewise
magnetically ordered. The corresponding spin pattern in real
space can be found by applying the inverse of the above spin
transformation to the 120◦ Néel state: The structure of the
spin rotations [Fig. 7(b)] has a periodicity of two lattice sites
in each lattice direction, which is different from a periodicity
of 3 lattice sites for the 120◦ Néel order. Consequently, as
found within our PFFRG calculations, the magnetic order of
the original spin operators Si is modulated with a period of 6
sites. A detailed analysis of the spin orientations reveals a unit
cell of 12 sites on the triangular lattice. Taking into account
both sublattices of the honeycomb lattice, we end up with a
unit cell containing 24 sites.
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FIG. 6. (Color online) Dependence of the ordering vector Qy on
Jλ̃ in HSI. The inset illustrates the evolution of the ordering peaks
in the Brillouin zone (thick hexagon: second Brillouin zone, thin
hexagon: first Brillouin zone; see also Fig. 5). In the limit Jλ̃ →
∞, the system converges again towards a commensurate ordering
vector.

For fluctuations at arbitrary momentum, a certain direction
will generally be preferred.

As Jλ̃ increases, the deformation of the ordering peaks at
the K and K ′ points becomes more pronounced. At some
coupling Jλ̃ ≈ 0.53, the peaks split and the new maxima move
along the ky direction (Fig. 6). These peak positions indicate a
phase transition to a spiral phase with incommensurate order.
It is important to note, however, that magnetic order persists in
the whole parameter regime around the transition and we find
no magnetically disordered phase. This can be seen from the
behavior of the RG flow which always exhibits a characteristic
instability breakdown. To demonstrate the evolution of the
ordering vector in the spiral phase, Fig. 6 shows the peak
position as function of Jλ̃. Note that the kx component of the
peak position is constant in Jλ̃. With increasing Jλ̃, the peaks
move continuously towards the points Q∞ = (± 2π

3 , ± 2
3

2π√
3
)

which lie at two-thirds of the distance between the K (′) points
and the kx axis (Fig. 6). Again, with increasing Jλ̃ there is no
sign of any nonmagnetic phase.

The system at infinite spin-orbit coupling is of particular
interest, as this case represents a model with Kitaev-like
interactions on the triangular lattice. As Jλ̃ goes to infinity,
the system is effectively described by decoupled triangular
sublattices. Hence, already the first Brillouin zone, i.e., the
Brillouin zone of a triangular sublattice, contains the full
information about χ in k space. The susceptibility then
becomes periodic with respect to this smaller zone. Such a
change of periodicity can be seen in Fig. 5 at large Jλ̃ where
new peaks at kx = 0 emerge. In the limit Jλ̃ → ∞ these new
peaks reach the same height as the ones at Q∞ and finally
become identical to them, indicating the new periodicity in k
space. Figure 7(a) shows the susceptibility in the first Brillouin
zone of the triangular sublattice in this limit. From the peak
positions, one can deduce properties of the corresponding
spin pattern in real space. On each triangular sublattice the
wave vector is half the one of the 120◦ Néel order residing
at the corners of the first Brillouin zone. Hence, the order is
commensurate and the local magnetic moments along a lattice
direction are modulated with a periodicity of 6 sites as opposed
to 3 sites in the case of 120◦ Néel order.

(a) (b)

FIG. 7. (Color online) The SI spin model at Jλ̃ → ∞:
(a) Magnetic susceptibility displayed in the first Brillouin zone of
the triangular sublattice. The two ordering peaks correspond to
the peaks in Fig. 5 which emerge at Jλ̃ ! 5 and kx = 0. In the
limit Jλ̃ → ∞, these maxima reach the same height as the ones at
Q∞ = (± 2π

3 , ± 2
3

2π√
3
). (b) Mapping of the SI spin model at Jλ̃ → ∞

to the antiferromagnetic Heisenberg model on the triangular lattice:
The lattice is divided into four sublattices denoted by •, xy, xz, and
yz. As shown in Eq. (11) the transformation from Si to S̃i depends
on the sublattice where i resides. The exchange couplings follow the
convention shown in Fig. 1.

Our numerical conclusions for the SI spin model in the
limit Jλ̃ → ∞ can also be reconciled with an analytical
argument. Performing a transformation in spin space, Si → S̃i ,
the system at this point can be mapped to an SU(2) invariant
antiferromagnetic Heisenberg model on the triangular lattice,
HSI =

∑
ij S̃i S̃j . For this mapping, we divide the triangular

lattice into four sublattices denoted by •, xy, xz, and yz,
each with a doubled lattice constant [Fig. 7(b)]. The relation
between Si and S̃i depends on the sublattice:

i ∈ • : S̃i =
(
Sx

i ,S
y
i ,Sz

i

)
,

i ∈ xy : S̃i =
(
−Sx

i , − S
y
i ,Sz

i

)
,

i ∈ xz : S̃i =
(
−Sx

i ,S
y
i , − Sz

i

)
, (11)

i ∈ yz : S̃i =
(
Sx

i , − S
y
i , − Sz

i

)
;

i.e., while on sublattice • the spins remain unchanged, on the
sublattice xy the x and y components of the spin operator
acquire a minus sign, and so on (a similar mapping for
the Heisenberg-Kitaev model at α = 0.5 is described in
Ref. 48). Since the antiferromagnetic Heisenberg model on
the triangular lattice exhibits magnetic order via the 120◦ Néel
state,54 it follows that the SI spin model at Jλ̃ → ∞ is likewise
magnetically ordered. The corresponding spin pattern in real
space can be found by applying the inverse of the above spin
transformation to the 120◦ Néel state: The structure of the
spin rotations [Fig. 7(b)] has a periodicity of two lattice sites
in each lattice direction, which is different from a periodicity
of 3 lattice sites for the 120◦ Néel order. Consequently, as
found within our PFFRG calculations, the magnetic order of
the original spin operators Si is modulated with a period of 6
sites. A detailed analysis of the spin orientations reveals a unit
cell of 12 sites on the triangular lattice. Taking into account
both sublattices of the honeycomb lattice, we end up with a
unit cell containing 24 sites.
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FIG. 6. (Color online) Dependence of the ordering vector Qy on
Jλ̃ in HSI. The inset illustrates the evolution of the ordering peaks
in the Brillouin zone (thick hexagon: second Brillouin zone, thin
hexagon: first Brillouin zone; see also Fig. 5). In the limit Jλ̃ →
∞, the system converges again towards a commensurate ordering
vector.

For fluctuations at arbitrary momentum, a certain direction
will generally be preferred.

As Jλ̃ increases, the deformation of the ordering peaks at
the K and K ′ points becomes more pronounced. At some
coupling Jλ̃ ≈ 0.53, the peaks split and the new maxima move
along the ky direction (Fig. 6). These peak positions indicate a
phase transition to a spiral phase with incommensurate order.
It is important to note, however, that magnetic order persists in
the whole parameter regime around the transition and we find
no magnetically disordered phase. This can be seen from the
behavior of the RG flow which always exhibits a characteristic
instability breakdown. To demonstrate the evolution of the
ordering vector in the spiral phase, Fig. 6 shows the peak
position as function of Jλ̃. Note that the kx component of the
peak position is constant in Jλ̃. With increasing Jλ̃, the peaks
move continuously towards the points Q∞ = (± 2π

3 , ± 2
3

2π√
3
)

which lie at two-thirds of the distance between the K (′) points
and the kx axis (Fig. 6). Again, with increasing Jλ̃ there is no
sign of any nonmagnetic phase.

The system at infinite spin-orbit coupling is of particular
interest, as this case represents a model with Kitaev-like
interactions on the triangular lattice. As Jλ̃ goes to infinity,
the system is effectively described by decoupled triangular
sublattices. Hence, already the first Brillouin zone, i.e., the
Brillouin zone of a triangular sublattice, contains the full
information about χ in k space. The susceptibility then
becomes periodic with respect to this smaller zone. Such a
change of periodicity can be seen in Fig. 5 at large Jλ̃ where
new peaks at kx = 0 emerge. In the limit Jλ̃ → ∞ these new
peaks reach the same height as the ones at Q∞ and finally
become identical to them, indicating the new periodicity in k
space. Figure 7(a) shows the susceptibility in the first Brillouin
zone of the triangular sublattice in this limit. From the peak
positions, one can deduce properties of the corresponding
spin pattern in real space. On each triangular sublattice the
wave vector is half the one of the 120◦ Néel order residing
at the corners of the first Brillouin zone. Hence, the order is
commensurate and the local magnetic moments along a lattice
direction are modulated with a periodicity of 6 sites as opposed
to 3 sites in the case of 120◦ Néel order.
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FIG. 7. (Color online) The SI spin model at Jλ̃ → ∞:
(a) Magnetic susceptibility displayed in the first Brillouin zone of
the triangular sublattice. The two ordering peaks correspond to
the peaks in Fig. 5 which emerge at Jλ̃ ! 5 and kx = 0. In the
limit Jλ̃ → ∞, these maxima reach the same height as the ones at
Q∞ = (± 2π

3 , ± 2
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2π√
3
). (b) Mapping of the SI spin model at Jλ̃ → ∞

to the antiferromagnetic Heisenberg model on the triangular lattice:
The lattice is divided into four sublattices denoted by •, xy, xz, and
yz. As shown in Eq. (11) the transformation from Si to S̃i depends
on the sublattice where i resides. The exchange couplings follow the
convention shown in Fig. 1.

Our numerical conclusions for the SI spin model in the
limit Jλ̃ → ∞ can also be reconciled with an analytical
argument. Performing a transformation in spin space, Si → S̃i ,
the system at this point can be mapped to an SU(2) invariant
antiferromagnetic Heisenberg model on the triangular lattice,
HSI =

∑
ij S̃i S̃j . For this mapping, we divide the triangular

lattice into four sublattices denoted by •, xy, xz, and yz,
each with a doubled lattice constant [Fig. 7(b)]. The relation
between Si and S̃i depends on the sublattice:

i ∈ • : S̃i =
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i , − S
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)
;

i.e., while on sublattice • the spins remain unchanged, on the
sublattice xy the x and y components of the spin operator
acquire a minus sign, and so on (a similar mapping for
the Heisenberg-Kitaev model at α = 0.5 is described in
Ref. 48). Since the antiferromagnetic Heisenberg model on
the triangular lattice exhibits magnetic order via the 120◦ Néel
state,54 it follows that the SI spin model at Jλ̃ → ∞ is likewise
magnetically ordered. The corresponding spin pattern in real
space can be found by applying the inverse of the above spin
transformation to the 120◦ Néel state: The structure of the
spin rotations [Fig. 7(b)] has a periodicity of two lattice sites
in each lattice direction, which is different from a periodicity
of 3 lattice sites for the 120◦ Néel order. Consequently, as
found within our PFFRG calculations, the magnetic order of
the original spin operators Si is modulated with a period of 6
sites. A detailed analysis of the spin orientations reveals a unit
cell of 12 sites on the triangular lattice. Taking into account
both sublattices of the honeycomb lattice, we end up with a
unit cell containing 24 sites.
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FIG. 6. (Color online) Dependence of the ordering vector Qy on
Jλ̃ in HSI. The inset illustrates the evolution of the ordering peaks
in the Brillouin zone (thick hexagon: second Brillouin zone, thin
hexagon: first Brillouin zone; see also Fig. 5). In the limit Jλ̃ →
∞, the system converges again towards a commensurate ordering
vector.
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at the corners of the first Brillouin zone. Hence, the order is
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direction are modulated with a periodicity of 6 sites as opposed
to 3 sites in the case of 120◦ Néel order.
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FIG. 7. (Color online) The SI spin model at Jλ̃ → ∞:
(a) Magnetic susceptibility displayed in the first Brillouin zone of
the triangular sublattice. The two ordering peaks correspond to
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Q∞ = (± 2π
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). (b) Mapping of the SI spin model at Jλ̃ → ∞

to the antiferromagnetic Heisenberg model on the triangular lattice:
The lattice is divided into four sublattices denoted by •, xy, xz, and
yz. As shown in Eq. (11) the transformation from Si to S̃i depends
on the sublattice where i resides. The exchange couplings follow the
convention shown in Fig. 1.
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i.e., while on sublattice • the spins remain unchanged, on the
sublattice xy the x and y components of the spin operator
acquire a minus sign, and so on (a similar mapping for
the Heisenberg-Kitaev model at α = 0.5 is described in
Ref. 48). Since the antiferromagnetic Heisenberg model on
the triangular lattice exhibits magnetic order via the 120◦ Néel
state,54 it follows that the SI spin model at Jλ̃ → ∞ is likewise
magnetically ordered. The corresponding spin pattern in real
space can be found by applying the inverse of the above spin
transformation to the 120◦ Néel state: The structure of the
spin rotations [Fig. 7(b)] has a periodicity of two lattice sites
in each lattice direction, which is different from a periodicity
of 3 lattice sites for the 120◦ Néel order. Consequently, as
found within our PFFRG calculations, the magnetic order of
the original spin operators Si is modulated with a period of 6
sites. A detailed analysis of the spin orientations reveals a unit
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Let’s go beyond Heisenberg exchange4
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FIG. 5: (Color online). Phase diagram as obtained within
VCA. Shown are the single-particle gap �sp (red squares)
and the magnetization m120� (blue circles). There are three
phases: semi-metal, non-magnetic insulator (NMI) which we
interpret as a quantum spin liquid, and the antiferromagnetic
insulator phase (AFM). The semi-metal to NMI transition
occurs at Uc1 = 7t and the NMI to AFM transition at Uc2 =
13t. Calculations were obtained using a 12-site plus 12-site
mirror cluster construction as sketched in the inset.
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FIG. 6: (Color online). Rescaled grand potential ⌦ � ⌦0 as
a function of the Weiss field h corresponding to 120-degree
Neel order for various values of U . As usual h is divided by
J = 4t2/U . For U > 13t the magnetic solution lowers the
systems’ energy.

As argued before, in the U ! 1 limit the ordinary
Heisenberg term is dominant leading to the 120 degree
Neel order. But in the intermediate phase where U is not
drastically larger than t, terms of the order t4/U3 cannot
be neglected. In particular, they might elucidate whether
there is a tendency towards the formation of valence bond
patterns or rather the suppression of such paramagnetic

phases. In fourth order of t the spin Hamiltonian reads
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Here we use the standard notations hiji, hhijii, and hhhijiii
for first, second, and third nearest neighbors. And

P
p

indicates the summation over all parallelograms which
consists of two triangles (e.g. 54 ), where the four corners
are (counter)clockwise labeled by 1, 2, 3, and 4.

VIII. RELATION WITH STRONGLY
CORRELATED TOPOLOGICAL INSULATORS

Our original motivation to consider this triangular lat-
tice model originates from the sodium iridate Hubbard
(SIH) model 5,22–24 which is a honeycomb Hubbard model
with multi-directional spin orbit coupling (SOC) fully
breaking the SU(2) spin symmetry. This model is be-
lieved to describe monolayers of A2IrO3 (A=Li or Na)
which are under current experimental investigation 25.
At T = 0, finite SOC, and U = 0 it corresponds to
a Z2 topological insulator model similar to the Kane-
Mele model 26,27. Topological insulators in the presence
of a Hubbard interaction have attracted a lot of atten-
tion recently 28,29. It was suggested that the SIH model
might host a topologically ordered, incompressible phase
(dubbed QSH⇤ phase) at large SOC and large U based
on a slave-spin mean-field approach 23. So far there are
no other approaches which confirm the existence of this
phase. Only the weak-coupling limit (which is just a (cor-
related) topological insulator) as well as the strong cou-
pling limit is understood 5,24. Results about the interme-
diate interaction range obtained within complementary
methods are lacking - expressing the complexity of the
problem. In the limit of infinitely large SOC, the two
triangular sublattices of the honeycomb lattice decouple.
The resulting model on such a decoupled triangular lat-
tice corresponds to the Hamiltonian (1). Thus our study
sheds light on the phase diagram of the SIH model and
we further surround the region in the SIH phase diagram
for large SOC and large U . To avoid confusions: we are
not claiming that the NMI phase found within VCA is
adiabatically connected to the QSH⇤ phase of the SIH
model. But our findings are compatible with the exis-
tence of additional phases such as the QSH⇤ phase.

IX. CONCLUSION

NEEDS TO BE REWRITTEN !! We have stud-
ied a Hubbard model on the triangular lattice which
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An illustration of the resonance is also drawn in the figure, where the red bonds are
spin singlets. As can be seen, the energy reduction for each 2⇥2-plaquette is always larger
for the ⇡-flux lattice as compared to the normal triangular lattice. This means that such
resonances are preferred on the ⇡-flux lattice which might indicate that this lattice has
a higher tendency for the formation of a spin liquid with these resonances. Hence, these
results indicate that on a ⇡-flux lattice a spin liquid could be more stable as compared
to the normal triangular lattice. This e↵ect could even compensate for the above result,
indicating that 120� Néel order is more stable on the ⇡-flux lattice, which in turn could
explain the larger spin liquid phase in this model as found by Manuel.

In order to go one step further, I did the same with resonance loops of length 6. This
is shown in the following figures:
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‣ apply Variational Cluster Approach (VCA)
‣ use 12-site cluster

opening of  single-particle gap vs. onset of magnetization:

Δ-lattice π-flux Hubbard model
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FIG. 5: (Color online). Phase diagram as obtained within
VCA. Shown are the single-particle gap �sp (red squares)
and the magnetization m120� (blue circles). There are three
phases: semi-metal, non-magnetic insulator (NMI) which we
interpret as a quantum spin liquid, and the antiferromagnetic
insulator phase (AFM). The semi-metal to NMI transition
occurs at Uc1 = 7t and the NMI to AFM transition at Uc2 =
13t. Calculations were obtained using a 12-site plus 12-site
mirror cluster construction as sketched in the inset.
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FIG. 6: (Color online). Rescaled grand potential ⌦ � ⌦0 as
a function of the Weiss field h corresponding to 120-degree
Neel order for various values of U . As usual h is divided by
J = 4t2/U . For U > 13t the magnetic solution lowers the
systems’ energy.

As argued before, in the U ! 1 limit the ordinary
Heisenberg term is dominant leading to the 120 degree
Neel order. But in the intermediate phase where U is not
drastically larger than t, terms of the order t4/U3 cannot
be neglected. In particular, they might elucidate whether
there is a tendency towards the formation of valence bond
patterns or rather the suppression of such paramagnetic

phases. In fourth order of t the spin Hamiltonian reads

H =

✓
4t2

U
+

12t4

U3

◆X

hiji

S
i

S
j

+
12t4

U3

X

hhijii

S
i

S
j

+
4t4

U3

X

hhhijiii

S
i

S
j

� 80t3

U4

X

p

h
(S1S2) (S3S4)

+ (S2S3) (S1S4) � (S1S3) (S2S4)
i

.

(6)

Here we use the standard notations hiji, hhijii, and hhhijiii
for first, second, and third nearest neighbors. And

P
p

indicates the summation over all parallelograms which
consists of two triangles (e.g. 54 ), where the four corners
are (counter)clockwise labeled by 1, 2, 3, and 4.

VIII. RELATION WITH STRONGLY
CORRELATED TOPOLOGICAL INSULATORS

Our original motivation to consider this triangular lat-
tice model originates from the sodium iridate Hubbard
(SIH) model 5,22–24 which is a honeycomb Hubbard model
with multi-directional spin orbit coupling (SOC) fully
breaking the SU(2) spin symmetry. This model is be-
lieved to describe monolayers of A2IrO3 (A=Li or Na)
which are under current experimental investigation 25.
At T = 0, finite SOC, and U = 0 it corresponds to
a Z2 topological insulator model similar to the Kane-
Mele model 26,27. Topological insulators in the presence
of a Hubbard interaction have attracted a lot of atten-
tion recently 28,29. It was suggested that the SIH model
might host a topologically ordered, incompressible phase
(dubbed QSH⇤ phase) at large SOC and large U based
on a slave-spin mean-field approach 23. So far there are
no other approaches which confirm the existence of this
phase. Only the weak-coupling limit (which is just a (cor-
related) topological insulator) as well as the strong cou-
pling limit is understood 5,24. Results about the interme-
diate interaction range obtained within complementary
methods are lacking - expressing the complexity of the
problem. In the limit of infinitely large SOC, the two
triangular sublattices of the honeycomb lattice decouple.
The resulting model on such a decoupled triangular lat-
tice corresponds to the Hamiltonian (1). Thus our study
sheds light on the phase diagram of the SIH model and
we further surround the region in the SIH phase diagram
for large SOC and large U . To avoid confusions: we are
not claiming that the NMI phase found within VCA is
adiabatically connected to the QSH⇤ phase of the SIH
model. But our findings are compatible with the exis-
tence of additional phases such as the QSH⇤ phase.

IX. CONCLUSION

NEEDS TO BE REWRITTEN !! We have stud-
ied a Hubbard model on the triangular lattice which



‣ apply Variational Cluster Approach (VCA)
‣ use 12-site cluster

opening of  single-particle gap vs. onset of magnetization:

Δ-lattice π-flux Hubbard model

4

 0

 2

 4

 6

 8

 0  5  10  15
 0

 0.2

 0.4

 0.6

 0.8

Δ
sp m

U

<m120>
Δsp (PM)
Δsp (AF)

AFMsemi-metal

NMI

U

hm
1
2
0
i

�
sp

FIG. 5: (Color online). Phase diagram as obtained within
VCA. Shown are the single-particle gap �sp (red squares)
and the magnetization m120� (blue circles). There are three
phases: semi-metal, non-magnetic insulator (NMI) which we
interpret as a quantum spin liquid, and the antiferromagnetic
insulator phase (AFM). The semi-metal to NMI transition
occurs at Uc1 = 7t and the NMI to AFM transition at Uc2 =
13t. Calculations were obtained using a 12-site plus 12-site
mirror cluster construction as sketched in the inset.

W
�

W
h=

0

h/J

U = 13 U = 14

U = 15

0 0.1 0.2 0.3

FIG. 6: (Color online). Rescaled grand potential ⌦ � ⌦0 as
a function of the Weiss field h corresponding to 120-degree
Neel order for various values of U . As usual h is divided by
J = 4t2/U . For U > 13t the magnetic solution lowers the
systems’ energy.

As argued before, in the U ! 1 limit the ordinary
Heisenberg term is dominant leading to the 120 degree
Neel order. But in the intermediate phase where U is not
drastically larger than t, terms of the order t4/U3 cannot
be neglected. In particular, they might elucidate whether
there is a tendency towards the formation of valence bond
patterns or rather the suppression of such paramagnetic

phases. In fourth order of t the spin Hamiltonian reads

H =

✓
4t2

U
+

12t4

U3

◆X

hiji

S
i

S
j

+
12t4

U3

X

hhijii

S
i

S
j

+
4t4

U3

X

hhhijiii

S
i

S
j

� 80t3

U4

X

p

h
(S1S2) (S3S4)

+ (S2S3) (S1S4) � (S1S3) (S2S4)
i

.

(6)

Here we use the standard notations hiji, hhijii, and hhhijiii
for first, second, and third nearest neighbors. And

P
p

indicates the summation over all parallelograms which
consists of two triangles (e.g. 54 ), where the four corners
are (counter)clockwise labeled by 1, 2, 3, and 4.

VIII. RELATION WITH STRONGLY
CORRELATED TOPOLOGICAL INSULATORS

Our original motivation to consider this triangular lat-
tice model originates from the sodium iridate Hubbard
(SIH) model 5,22–24 which is a honeycomb Hubbard model
with multi-directional spin orbit coupling (SOC) fully
breaking the SU(2) spin symmetry. This model is be-
lieved to describe monolayers of A2IrO3 (A=Li or Na)
which are under current experimental investigation 25.
At T = 0, finite SOC, and U = 0 it corresponds to
a Z2 topological insulator model similar to the Kane-
Mele model 26,27. Topological insulators in the presence
of a Hubbard interaction have attracted a lot of atten-
tion recently 28,29. It was suggested that the SIH model
might host a topologically ordered, incompressible phase
(dubbed QSH⇤ phase) at large SOC and large U based
on a slave-spin mean-field approach 23. So far there are
no other approaches which confirm the existence of this
phase. Only the weak-coupling limit (which is just a (cor-
related) topological insulator) as well as the strong cou-
pling limit is understood 5,24. Results about the interme-
diate interaction range obtained within complementary
methods are lacking - expressing the complexity of the
problem. In the limit of infinitely large SOC, the two
triangular sublattices of the honeycomb lattice decouple.
The resulting model on such a decoupled triangular lat-
tice corresponds to the Hamiltonian (1). Thus our study
sheds light on the phase diagram of the SIH model and
we further surround the region in the SIH phase diagram
for large SOC and large U . To avoid confusions: we are
not claiming that the NMI phase found within VCA is
adiabatically connected to the QSH⇤ phase of the SIH
model. But our findings are compatible with the exis-
tence of additional phases such as the QSH⇤ phase.

IX. CONCLUSION

NEEDS TO BE REWRITTEN !! We have stud-
ied a Hubbard model on the triangular lattice which
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FIG. 2. (Color online). Phase diagram as obtained within
VCA. The values for Uc1, Uc2, �charge, and m120� correspond
to a lattice covering with 12-site and 12-site mirror clusters
as sketched in the inset. There are three phases: semi-metal
(SM), non-magnetic insulator (NMI) which might correspond
to a quantum spin liquid, and antiferromagnetic insulator
(AFM).

refer to Refs. 33 and 35. Three comments about the VCA
are in order. (i) Variation of the hopping t is crucial in
order to guarantee the stability of the semi-metal with
respect to small U . (ii) Using the same method and ac-
curacy, we do not find a nonmagnetic insulator (NMI)
phase within the honeycomb lattice Hubbard model for
intermediate U [35] suggesting that the method is not bi-
ased towards an NMI phase. (iii) The magnetic instabil-
ity is incorporated by means of Weiss fields. For the 120�

Neel order, only clusters with multiples of three lattice
sites can be used. In conjunction with the two-atomic
unit cell, only six and 12 site clusters are amenable for
the study of the ⇡-THM.

Phase diagram. For the quantitative analysis, we em-
ploy the VCA for the largest numerically available clus-
ter, i.e., a construction with a 12-site and mirror-12-site
cluster (see inset Fig. 2) [36]. We first pin the Dirac
metal-insulator transition by determining the opening of
the charge gap �charge at U/t = 9.8 (blue domain in
Fig. 2). Note that this happens only at rather large U ,
in accordance with the small spectral weight of the Dirac
metal nearby the Fermi level. This also suggests that the
metal-insulator transition at comparably small U/t = 4.3
previously found in the honeycomb Hubbard model [11]
appears to be driven by the energy gain of the system
through magnetic ordering, and less so just by remov-
ing low-energy spectral weight. [Bandwidth for both the
honeycomb and ⇡-THM is 2 ⇥ 3t.] In the infinite cou-
pling limit where only the nearest neighbor Heisenberg
term J = 4t2/U dominates the virtual spatial fluctuation
processes, the ⇡-THM identically maps to the regular tri-
angular quantum Heisenberg model, for which we expect
magnetic order despite the presence of quantum fluctua-
tions and geometric frustration. We thus apply the Weiss

field associated with 120� Néel order and determine the
response of the ⇡-THM. We find magnetic order ranging
only down to U/t = 13.4 (red domain in Fig. 2). This
finding is remarkable, as the regular THM, investigated
for the same setting, allows for magnetic ordering to the
lower value of U/t = 8.5. This feature can be understood
from a strong coupling expansion [37]. For the ⇡-THM,
up to order t4/U3, we find
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where we use the standard notations hiji, hhijii, and
hhhijiii for first, second, and third nearest neighbors, andP

p indicates the summation over a parallelogram which
consists of two triangles, 54 , where the left bottom cor-
ner has the index “1” and the other corners are labeled in
clockwise order. Comparing ⇡-THM against the strong
coupling expansion for the regular THM [38], one par-
ticularly notable di↵erence is the reversed sign for the
plaquette term coe�cient. We hence compute the lead-
ing dimer loop expectation values to investigate the ef-
fects of these second order variations in the strong cou-
pling expansion. Johannes: Bitte konkrete Formeln

einfügen. As visible in Fig. 3a, the energy gain from
forming 2x2 dimer loops is higher for the ⇡-THM than for
the regular THM. This picture diversifies as we consider
higher-loop contributions (Fig. 3b-d), while the general
trend from the smallest loop size persists. The enhanced
dimer loop response gives a natural explanation for the
quick drop of magnetic order in the ⇡-THM upon decreas-
ing U/t. Whether a valence bond crystal, i.e. the onset
of translational symmetry breaking, or a spin liquid state
might be preferred cannot be inferred from this consider-
ation. (At least note that the dimer loop response does
not to drop from 2x2 to 6x6, which might suggest a possi-
bly sizable response to long-range dimer loops along the
RVB liquid paradigm. maybe cite anderson 1973,

rokhsar kivelson, moessner sondhi) Similarly, our
analysis does not allow to determine whether the non-
magnetic insulating domain (Fig. 2) is composed out of
one or several paramagnetic phases.

Conclusion. We have proposed the ⇡ flux triangu-
lar Hubbard model (⇡-THM) to consitute a paradig-
matic scenario for quantum paramagnets at intermediate
coupling. Via VCA, we find a non-magnetic insulating
regime for 9.8 < U/t < 13.4 framed by a Dirac semi-
metal and 120� Néel order which only establishes itself
close to the strong coupling limit because of significant
quantum fluctuations. The dimer loop response of the
⇡-THM further stresses its propensity towards quantum
paramagnetic phases. Several directions might be inter-

compare to ordinary Δ-lattice Hubbard 
model:  Uc,2 = 8.5

‣ Must be a quantum paramagnet !
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order to guarantee the stability of the semi-metal with
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curacy, we do not find a nonmagnetic insulator (NMI)
phase within the honeycomb lattice Hubbard model for
intermediate U [35] suggesting that the method is not bi-
ased towards an NMI phase. (iii) The magnetic instabil-
ity is incorporated by means of Weiss fields. For the 120�

Neel order, only clusters with multiples of three lattice
sites can be used. In conjunction with the two-atomic
unit cell, only six and 12 site clusters are amenable for
the study of the ⇡-THM.

Phase diagram. For the quantitative analysis, we em-
ploy the VCA for the largest numerically available clus-
ter, i.e., a construction with a 12-site and mirror-12-site
cluster (see inset Fig. 2) [36]. We first pin the Dirac
metal-insulator transition by determining the opening of
the charge gap �charge at U/t = 9.8 (blue domain in
Fig. 2). Note that this happens only at rather large U ,
in accordance with the small spectral weight of the Dirac
metal nearby the Fermi level. This also suggests that the
metal-insulator transition at comparably small U/t = 4.3
previously found in the honeycomb Hubbard model [11]
appears to be driven by the energy gain of the system
through magnetic ordering, and less so just by remov-
ing low-energy spectral weight. [Bandwidth for both the
honeycomb and ⇡-THM is 2 ⇥ 3t.] In the infinite cou-
pling limit where only the nearest neighbor Heisenberg
term J = 4t2/U dominates the virtual spatial fluctuation
processes, the ⇡-THM identically maps to the regular tri-
angular quantum Heisenberg model, for which we expect
magnetic order despite the presence of quantum fluctua-
tions and geometric frustration. We thus apply the Weiss

field associated with 120� Néel order and determine the
response of the ⇡-THM. We find magnetic order ranging
only down to U/t = 13.4 (red domain in Fig. 2). This
finding is remarkable, as the regular THM, investigated
for the same setting, allows for magnetic ordering to the
lower value of U/t = 8.5. This feature can be understood
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the regular THM. This picture diversifies as we consider
higher-loop contributions (Fig. 3b-d), while the general
trend from the smallest loop size persists. The enhanced
dimer loop response gives a natural explanation for the
quick drop of magnetic order in the ⇡-THM upon decreas-
ing U/t. Whether a valence bond crystal, i.e. the onset
of translational symmetry breaking, or a spin liquid state
might be preferred cannot be inferred from this consider-
ation. (At least note that the dimer loop response does
not to drop from 2x2 to 6x6, which might suggest a possi-
bly sizable response to long-range dimer loops along the
RVB liquid paradigm. maybe cite anderson 1973,
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analysis does not allow to determine whether the non-
magnetic insulating domain (Fig. 2) is composed out of
one or several paramagnetic phases.

Conclusion. We have proposed the ⇡ flux triangu-
lar Hubbard model (⇡-THM) to consitute a paradig-
matic scenario for quantum paramagnets at intermediate
coupling. Via VCA, we find a non-magnetic insulating
regime for 9.8 < U/t < 13.4 framed by a Dirac semi-
metal and 120� Néel order which only establishes itself
close to the strong coupling limit because of significant
quantum fluctuations. The dimer loop response of the
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The honeycomb iridates A2IrO3 (A = Na, Li) constitute promising candidate materials to realize the
Heisenberg-Kitaev model (HKM) in nature, hosting unconventional magnetic as well as spin-liquid phases.
Recent experiments suggest, however, that Li2IrO3 exhibits a magnetically ordered state of incommensurate spiral
type which has not been identified in the HKM. We show that these findings can be understood in the context
of an extended Heisenberg-Kitaev scenario satisfying all tentative experimental evidence: (i) the maximum
of the magnetic susceptibility is located inside the first Brillouin zone, (ii) the Curie-Weiss temperature is
negative relating to dominant antiferromagnetic fluctuations, and (iii) significant second-neighbor spin exchange
is involved.
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Introduction. Transition-metal oxides such as iridates have
attracted considerable attention recently. The interest is espe-
cially driven by the intriguing interplay of strong spin-orbit
coupling and electronic correlations, potentially leading to
unconventional quantum magnetism or paramagnetism such
as spin liquids. The iridium oxides A2IrO3 (A = Na, Li) have
caused particular excitement since it has been suggested that
they realize the Heisenberg-Kitaev model (HKM) [1,2] on the
honeycomb lattice [Fig. 1(a)]. The Kitaev limit of this model
provides a platform for a spin liquid with fractional anyonic
excitations [3]. A vivid debate has been triggered on the
suitable microscopic model describing honeycomb iridates as
well as their experimental signatures [1,2,4–22], and whether
there is some material located in or in proximity to the Kitaev
spin liquid.

So far, most experiments have focused on the sodium
compound [23] which turned out to exhibit zigzag magnetic
order instead of being a spin liquid [24–26]. This finding was
rather unexpected since the HKM as originally proposed [1,2]
does not host a zigzag ordered phase. Several extensions of the
HKM such as significant longer range Heisenberg interactions
have been discussed in order to possibly explain the occurrence
of this type of order [6,7,27,28].

Recent experiments have investigated the lithium com-
pound and found magnetic long-range order below TN = 15 K
[6]. Smaller trigonal distortions of the IrO6 octahedra due to
the enhanced electronegativity of Li might lead to stronger
Kitaev-like interactions. It has further been suggested that the
magnetic order is different as compared to the Na compound
[11,17]. Latest neutron scattering experiments revealed that
the magnetic order is of incommensurate spiral type [29].
Using neutron powder diffraction, it was observed that the
absolute value of the magnetic Bragg peak resides inside the
first Brillouin zone [red dashed line in Fig. 1(b)] [29]. Most
recently, the depletion of Li2IrO3 with nonmagnetic Ti atoms
[30] was shown to result in a characteristic behavior of the
spin-glass temperature [16]. This suggests that spin exchange
beyond nearest neighbors is dominating.

This result is even more puzzling than the findings for
Na2IrO3 : First, the HKM which is believed to describe the iri-
dates does not contain a spiral ordered phase. As shown below,

the canonical extension via longer range Heisenberg couplings
will not be sufficient to account for the experimental evidence.
Second, the small wave vector of the tentative magnetic order
in Li2IrO3 necessitates a spin model exhibiting the astonishing
coincidence of pronounced ferromagnetic interactions along
with a negative Curie-Weiss temperature (−33 K) [6] hinting
at dominant antiferromagnetic fluctuations. Third, significant
second-neighbor spin exchange must be involved.

In this Rapid Communication, we show that the
Heisenberg-Kitaev model extended by next-nearest-neighbor
Heisenberg and Kitaev interactions is capable of describing the
experimental evidence of magnetism in Li2IrO3: This model
realizes the spiral order observed, and allows us to devise
a mechanism to reconcile the joint occurrence of magnetic
order at small wave vectors and an antiferromagnetic Curie-
Weiss temperature along with significant second-neighbor spin
exchange.

J1 < 0 Heisenberg coupling. A straightforward way to
realize spiral order inside the first Brillouin zone is given by the
isotropic J1-J2 Heisenberg model on the honeycomb lattice

H = J1

∑

〈ij〉
SiSj + J2

∑

〈〈ij〉〉
SiSj (1)

with J1 < 0 and J2 > 0. We have investigated this model
using the functional renormalization-group technique based
on pseudofermions (PFFRG) which includes quantum fluctu-
ations beyond the random-phase approximation or spin-wave
theory and which has been successfully applied to various
honeycomb systems [5,31–33]; details of the method are
provided in the Supplemental Material [34]. As shown in
Fig. 2 (top left) for J2 = 0, the susceptibility shows a sharp
FM peak in the center of the Brillouin zone. Switching on
J2, this peak first broadens and, above J2 ≈ 0.12, forms a
ring at incommensurate spiral wave vectors with increasing
diameter for larger J2 (see Fig. 2). In particular around
J2 = 0.2, such profiles resemble the experimental findings
of spiral magnetic order inside the first Brillouin zone. We
argue, however, that this scenario of interactions is unlikely:
plotting the peak positions k = |k| together with the Curie-
Weiss temperatures ! (from a fit χ (k = 0,T ) ∼ 1/(T − !)
of our susceptibility data [34]) shows that there is indeed
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cially driven by the intriguing interplay of strong spin-orbit
coupling and electronic correlations, potentially leading to
unconventional quantum magnetism or paramagnetism such
as spin liquids. The iridium oxides A2IrO3 (A = Na, Li) have
caused particular excitement since it has been suggested that
they realize the Heisenberg-Kitaev model (HKM) [1,2] on the
honeycomb lattice [Fig. 1(a)]. The Kitaev limit of this model
provides a platform for a spin liquid with fractional anyonic
excitations [3]. A vivid debate has been triggered on the
suitable microscopic model describing honeycomb iridates as
well as their experimental signatures [1,2,4–22], and whether
there is some material located in or in proximity to the Kitaev
spin liquid.

So far, most experiments have focused on the sodium
compound [23] which turned out to exhibit zigzag magnetic
order instead of being a spin liquid [24–26]. This finding was
rather unexpected since the HKM as originally proposed [1,2]
does not host a zigzag ordered phase. Several extensions of the
HKM such as significant longer range Heisenberg interactions
have been discussed in order to possibly explain the occurrence
of this type of order [6,7,27,28].

Recent experiments have investigated the lithium com-
pound and found magnetic long-range order below TN = 15 K
[6]. Smaller trigonal distortions of the IrO6 octahedra due to
the enhanced electronegativity of Li might lead to stronger
Kitaev-like interactions. It has further been suggested that the
magnetic order is different as compared to the Na compound
[11,17]. Latest neutron scattering experiments revealed that
the magnetic order is of incommensurate spiral type [29].
Using neutron powder diffraction, it was observed that the
absolute value of the magnetic Bragg peak resides inside the
first Brillouin zone [red dashed line in Fig. 1(b)] [29]. Most
recently, the depletion of Li2IrO3 with nonmagnetic Ti atoms
[30] was shown to result in a characteristic behavior of the
spin-glass temperature [16]. This suggests that spin exchange
beyond nearest neighbors is dominating.

This result is even more puzzling than the findings for
Na2IrO3 : First, the HKM which is believed to describe the iri-
dates does not contain a spiral ordered phase. As shown below,

the canonical extension via longer range Heisenberg couplings
will not be sufficient to account for the experimental evidence.
Second, the small wave vector of the tentative magnetic order
in Li2IrO3 necessitates a spin model exhibiting the astonishing
coincidence of pronounced ferromagnetic interactions along
with a negative Curie-Weiss temperature (−33 K) [6] hinting
at dominant antiferromagnetic fluctuations. Third, significant
second-neighbor spin exchange must be involved.

In this Rapid Communication, we show that the
Heisenberg-Kitaev model extended by next-nearest-neighbor
Heisenberg and Kitaev interactions is capable of describing the
experimental evidence of magnetism in Li2IrO3: This model
realizes the spiral order observed, and allows us to devise
a mechanism to reconcile the joint occurrence of magnetic
order at small wave vectors and an antiferromagnetic Curie-
Weiss temperature along with significant second-neighbor spin
exchange.

J1 < 0 Heisenberg coupling. A straightforward way to
realize spiral order inside the first Brillouin zone is given by the
isotropic J1-J2 Heisenberg model on the honeycomb lattice
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with J1 < 0 and J2 > 0. We have investigated this model
using the functional renormalization-group technique based
on pseudofermions (PFFRG) which includes quantum fluctu-
ations beyond the random-phase approximation or spin-wave
theory and which has been successfully applied to various
honeycomb systems [5,31–33]; details of the method are
provided in the Supplemental Material [34]. As shown in
Fig. 2 (top left) for J2 = 0, the susceptibility shows a sharp
FM peak in the center of the Brillouin zone. Switching on
J2, this peak first broadens and, above J2 ≈ 0.12, forms a
ring at incommensurate spiral wave vectors with increasing
diameter for larger J2 (see Fig. 2). In particular around
J2 = 0.2, such profiles resemble the experimental findings
of spiral magnetic order inside the first Brillouin zone. We
argue, however, that this scenario of interactions is unlikely:
plotting the peak positions k = |k| together with the Curie-
Weiss temperatures ! (from a fit χ (k = 0,T ) ∼ 1/(T − !)
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