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Outline 

¨  Part 1: Fractionalized Majorana zero modes from 
hybrid superconductor / quantum Hall devices.  
¤ Majorana Fermions in1D top. superconductors 
¤ Parafermionic zero modes in Fractionalized 1D 

superconductors.  
¤ Twist defects 

¨  Part 2: Fibonacci anyons from a 2D fractionalized 
superconductor.  



Proposed non-Abelian systems 

2D  p+ip 
superconductors 
Read, Green (2000) 

Fractional QH 
Willet, Eisenstein, et al. (1987) 
Moore & Read (1991) 
 

Superconductor - 3D Top. Insulator 
(Semiconductor) heterostructures 

1D Topological superconductors 
Kitaev (2001); Fu and Kane (2009); 
Lutchyn et al., Oreg et al. (2010); 
Mourik et al. (2012) 
 

“Ising” anyons 

Fu & Kane (2008); Sau et al. (2010); 
 Lee (2009); Alicea (2010)... 



Topological 1D superconductor 

¨  “Majorana Fermion” zero modes at the edges of the system. 
¨  Two degenerate ground states, separated by an energy gap from 

the rest of the spectrum: 
    Odd & Even number of electrons. 
¨  Ground state degeneracy is “topological”:  
   no local measurement can distinguish between the two 

    ground states!   

Kitaev (2002), Sau et al. (2010), Oreg et al. (2010), ... 
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Topological 1D superconductor 

Recent experimental realizations: 

Das et al. (2013) 

We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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Mourik et al. (2012) 



Non – Abelian statistics 

  2D vortices: Ivanov, Read & Green,… 
   1D wire network: Alicea et.al (2010) 

( ) 1 24 1 0
0

e
i

π γ γ ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

ground state is separated from the excited part of
the spectrum by an energy gap. The elementary
particles of the system may form collective com-
posite particles, known as “non-Abelian anyons.”
When that occurs, the ground state becomes de-
generate. In the limit of a large number of anyons,
N, the ground-state degeneracy is lN, and the
anyon is said to have a “quantum dimension” of
l. This degeneracy is not a result of any obvious
symmetry of the system. As such, it is robust and
cannot be lifted with the application of any local
perturbation (11).

Transformations between the degenerate
ground states may be induced by exchanging
the anyons’ positions. The canonical example is
that of a two-dimensional (2D) system, where
anyons may be regarded as point particles.
Imagine a set of anyons that are initially positioned
on a plane at (R1…RN). They are made to move
along a set of trajectories [R1(t)…RN(t)] that ends
with their positions permuted. The motion is slow
enough not to excite the system out of the sub-
space of ground states.When viewed in a 3D plot,
the set of trajectories, known also asworld lines,Ri
(t) look like entangled strands of spaghetti. A
“braid” is defined as a set of spaghetti config-
urations that can be deformed to one another
without spaghetti strands being cut. Remarkably,
the unitary transformation implemented by the
motion of the anyons depends only on the braid
and is independent of the details of the trajec-
tories. These unitary transformations must satisfy
a set of conditions that result from their topo-
logical nature, such as the Yang-Baxter equation
(Fig. 1A).

Notably, for the braid in which two anyons of
types a and b are encircled by a third that is far
away (Fig. 1B), the corresponding transformation
will not be able to resolve the two anyons’ types;
from a distance they would look as if they “fused”
to one anyon, of type c. The fusion of a pair of
non-Abelian anyonsmay result in several different
outcomes that are degenerate in energy when the
anyons are far away from one another (leading to
the ground-state degeneracy). The degeneracy is
split when the fused anyons get close. The list of
cs to which any a-b pair may fuse constitutes the
“fusion rules.” For each anyon of type a, there is
an “anti-anyon” ā such that the twomay annihilate
one another, or be created as a pair.

Topological Quantum Computation
The properties of non-Abelian states that are im-
portant for our discussion are the quantum dimen-
sions of the anyons, the unitary transformations
that they generate by braiding, and their fusion
rules. Different non-Abelian systems differ in
these properties. To turn a non-Abelian system
into a quantum computer, we first create pairs
of anyons and anti-anyons from the “vacuum,” the
state of zero anyons. In the simplest computational
model, a qubit is composed of a group of several
anyons, and its two states, |0〉 and |1〉, are two

possible fusion outcomes of these anyons. (A
qudit is formed if there are more than two possible
fusion outcomes.) The creation from the vacuum
initializes qubits in a well-defined state. The uni-

tary gates are implemented by the braid transfor-
mations (Fig. 1C). At the end of the computation,
the state is read off by measuring the fusion out-
come of the anyons (2–6).

Fig. 1. (A) The Yang-Baxter equation states that two exchange paths that can be deformed into each
other without cutting the world lines of the particles (blue curves) define the same braid. (B) Two
anyons labeled a and b are encircled by a third anyon d. The resulting transformation depends only on
the fusion outcome of a and b. (C) A canonical construction for a qubit, in a system of Ising anyons,
consists of four anyons that together fuse to the vacuum. The two possible states can then be labeled by
the fusion charge, say, of the left pair. A single qubit p/4 gate can be used by exchanging anyons 1 and
2 (depicted), whereas a Hadamard gate can be used by exchanging anyons 2 and 3. Such a construction
can be realized using Majorana fermions. (D) Decoherence of information encoded in the ground-state
space. Thermal and quantum fluctuations nucleate a quasiparticle-antiquasiparticle pair (red, white).
The pair encircles two anyons encoding quantum information, and annihilates. The result of the process
depends on the fusion charge of the two anyons, leading to decoherence of the encoded quantum
information.
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Fig. 2. Braiding in a system hosting Majorana fermions (zero modes or their fractionalized
counterparts). For a manipulation of the subspace of ground states to lead to a topological result,
the number of ground states should remain fixed. (A) Two zero modes initially at locations 1 and 2
are to be interchanged. A pair of coupled zero modes, 3 and 4, is created from the vacuum and
may reside, for example, at the two ends of a short wire. As long as 3 and 4 are coupled (blue line),
they are not zero modes and do not change the degeneracy of the ground state. Next, location 1 is
coupled to 3 and 4 (red dashed line). The coupled system of 1, 3, and 4 must still harbor a zero
mode. Thus, this step does not vary the degeneracy of the ground state, but it does redistribute the
wave function of that zero mode among the three coupled sites. Location 4 is then decoupled from
1 and 3, and the localized zero mode is now at location 4. The outcome is then that 1 was copied to
location 4. (B) In a similar fashion, 2 is copied to location 1. (C) Finally, 1 is copied from location 4
to location 2. At the end of this series, 3 and 4 are again coupled to one another, but 1 and 2 have
been interchanged.
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Braid group: Ising anyons (Majoranas): 



•  In one dimension? 
•     No Go Theorem (Fidkowski ; Turner, Pollman, Berg, 2010) 

•     Gapped, local Hamiltonians of fermions (or 
     bosons) in 1D, at best give Majorana fermions. 

Can we get something richer then Ising anyons in an 
experimentally accessible system? 

•  Ising anyons braid matrices are not universal for 
quantum computation purposes. 



Beyond Majorana Fermions 

¨  Start with a topological phase which supports 
abelian anoyns 

¨  For example, a Laughlin quantum Hall state: 
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Fractionalized 1D superconductor 
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Superconductor 

Backscattering 
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Fractionalized 1D superconductor 
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Effective Edge State Model 
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Fractionalized Majorana zero modes 

¨  Fractionalized Majorana zero modes: 

1/mν =

1/mν =

Superconductor 

1χ

2χ

, 0jH χ⎡ ⎤ =⎣ ⎦
( )i m sign j k

j k k je πχ χ χ χ−=

“Parafermions” 

NL, Berg, Refael, Stern (2012) 
Clarke, Alicea, Shtengel (2013) 
Meng (2013) 



Ground state degeneracy 

1/mν =

1/mν =

SC 

1χ

2χ

/ , 0,1,..2Q q m q m= =

2m Degenerate ground states 
per superconducting domain: 

NL, Berg, Refael, Stern (2012) 
Clarke, Alicea, Shtengel (2013) 
Meng (2013) 
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Braiding 
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Braiding Properties 

Q 

-Q 

¨  Two types of particles: 
¤ Abelian charges  

¤ Non abelian particle: 
0 1 ...X X m× = + + +

0,1,...,Q m=

22expU i q
m
π⎛ ⎞= ⎜ ⎟

⎝ ⎠

2 22exp exp exp
2 2 Xi q i n i n
m mγ
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Point particles vs. line objects 

q

-q 

q

Fidkowski, Lindner, Kitaev (unpublished) 



Twist defects in topological phases 

¨  End of “branch cuts” in a top. phase that 
interchange anyon types 

¨  Controllable non-Abelian systems 
¨  New type of non-Abelian statistics 
¨  Defects in Abelian phases are not QC universal. 

¤ Defects in non-Abelian phases? 

be explained using the concept of zero modes.
Such systems usually combine spin-orbit cou-
pling, superconductivity, and Zeeman coupling
to the electron spin (23–27). In superconductors,
operators that take the system from one energy
state to another are superpositions of electron
creation and annihilation operators. In certain
conditions, localized zero modes occur, in which
the amplitude for the creation and annihilation
operators is equal in magnitude, and the resulting
operator is Hermitian. These operators are com-
monly referred to as Majorana fermions. The non-
Abelian state of matter occurs when the zero
modes are spatially separated from one another.
Like all zero modes, Majorana fermions occur in
pairs. A pair of Majorana fermions form a com-
plex conventional fermion that spans a Hilbert
space of two dimensions. The quantum dimension
of a single Majorana fermion is therefore

ffiffiffi
2

p
.

Because a superconductor is gapped, Majo-
rana fermions in a superconducting system can
only occur where the superconducting gap closes
locally. In 2D systems, Majorana fermions are to
be found in vortex cores (16, 18), whereas in 1D
systems they are to be found at the interfaces be-
tween different types of superconductivity, or at
the system’s ends (17). In vortex cores of s-wave
superconductors, the presence of two spin direc-
tions per each electronic state does not allow for
an isolated Majorana fermion zero mode. The
places to look for isolated Majorana fermions are
superconductors with only one spin direction per
each electronic state. Examples are superconduc-
tors with spin-polarized p-wave pairing (16, 17),
surfaces of 3D and edges of 2D topological in-
sulators (23, 24), and 2D/1D systems featuring

both spin-orbit and Zeeman couplings (25–27) in
proximity to superconductors.

Recent experiments (28–32) support the
existence of Majorana fermions at the ends of
semiconducting wires in which strong spin-orbit
coupling, together with Zeeman coupling of the
spin to a magnetic field, creates a range of
densities at which spin degeneracy is removed.
The wires are made superconducting through
their proximity to a superconductor, and zero
modes are expected to form at their ends, which
are separated from metallic contacts by poten-
tial barriers. When a current is driven through the
wires in the absence of the end modes, the com-
bination of the barriers and the superconducting
gap suppresses the current at low voltages. The
Majorana end modes allow current to flow, re-
sulting in a sharp peak in the wires’ differential
conductance at zero voltage. This peak was ob-
served in several experiments (Fig. 3) and its char-
acteristics are consistent with Majorana end modes
in quantum wires.

Although these are encouraging observations,
it is still too early to identify them unambiguously
as originating fromMajorana fermions. The wires
used in the experiments were short enough that
coupling between the two ends may be expected
to split the degeneracy between the end modes.
Future experiments may observe the decay of this
splittingwith increasingwire length. Differentmea-
surements using the Josephson effect, Coulomb
blockade, and scanning tunneling microscopes
may provide additional information.

The Majorana fermions on the ends of quan-
tum wires offer useful insights into the physics
of non-Abelian systems. In the absence of the

Majorana fermions, the ground state of a clean
superconducting wire has an even number of
electrons paired to Cooper pairs. Adding another
electron is costly in energy, because this elec-
tron has no pairing partner. When the two
Majorana fermions are localized at the ends of
the wire, the odd electron can join at no cost of
energy. The two degenerate ground states are then
of different electron parities. When there are N
wires, there are 2N zero modes and 2N states,
with each wire having either an even or odd num-
ber of electrons. This manner of counting explains
the quantum dimension of

ffiffiffi
2

p
.

Magic State Distillation and
Surface Codes
Majorana fermions realize fusion and braiding
rules analogous to those of “Ising anyons.”
Interchanging Majorana fermions at the ends of
the same wire is equivalent to rotating the wire;
this preserves the parity of the electron number
while implementing a relative phase shift of p/2
between states of different parities. The braiding
of two Majorana fermions of two different
wires (Fig. 2) leads to a unitary transformation
that takes the two wires from a state of well-
defined parities to a state that is a superposition
of even and odd parities, with equal probabilities.
For example, the state |even1,even2〉 is transformed
to the state 1/

ffiffiffi
2

p
[|even1,even2〉 ± i|odd1,odd2〉],

where the sign of the second term depends on
the details of the interchange. Because only two
types of interchanges are possible—intrawire and
interwire—there is no topologically protected way
to turn two wires that start, say, at even parities
|even1,even2〉 into an arbitrary superposition of the

ν = 1/m

A B
B

B

ν = 1/m

ν = –1/m ν = 1/m

SC

SC

Fig. 4. Fractionalized Majorana zero modes at the interface between the
superconductor and tunneling regions. (A) An electron-hole bilayer where the
two layers are in a FQHE where the Hall conductivities are quantized at n =±1/m
(in units of e2/h), wherem is an odd integer. The direction of the edge modes is
indicated by the blue arrows. An s-wave superconductor (SC; orange) coupled to
the edge of the two-layer system can gap the edgemodes. In nonsuperconducting

regions, spin-flipping electron tunneling between the top and bottom layer (black
arrows) opens a gap on the edge. These can be enhanced by coupling the edge to
a ferromagnet. Two layers of graphene may be a possible realization for such a
system. (B) Single-layer realization, with a trench cut in a FQHE state with n = 1/m
exposing counterpropagating edge states. In spin-polarized quantum Hall states,
spin-orbit interaction would couple these modes to a superconductor.

8 MARCH 2013 VOL 339 SCIENCE www.sciencemag.org1182
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Barkeshli & Qi, arXiv:1302.2673	





Outline 

¨  Part 1: Fractionalized Majorana zero modes from 
hybrid superconductor / quantum Hall devices.  
¤ Majorana Fermions in1D top. superconductors 
¤ Parafermionic zero modes in Fractionalized 1D 

superconductors.  
¤ Twist defects 

¨  Part 2: Fibonacci anyons from a 2D fractionalized 
superconductor.  



Parafermion chain 

¨  Quasi-particle tunneling: 

 

t u t u t
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and u. The Hamiltonian for a chain of 2L sites with
open boundary conditions reads23

H = t
L�1
X

j=1

⇣

e⇡i/N�†
2j�2j+1 + e�⇡i/N�†

2j+1�2j

⌘

+ u
L

X

j=1

⇣

e⇡i/N�†
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2j�2j�1

⌘

. (7)

This Hamiltonian conserves the charge modulo N , i.e.,
it commutes with the operator

Q =

L
Y

j=1

⇣

�e�⇡i/N�†
2j�1�2j

⌘

(8)

which measures the total ZN charge.
It is useful to map Eq. (7) to the N -state quantum

clock model using a Jordan-Wigner transformation as
shown in Ref. 23,

�2j�1 =

0

@
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with the matrices
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⌧ = diag

⇣

1, e2⇡i/N , e4⇡i/N , . . . , e�2(N�1)⇡i/N
⌘

.(10)

Note that the operators ⌧j , �j are defined on a lattice
with L sites. The ⌧j , �j operators satisfy

�N
j = ⌧Nj = 1 (11)

�N�1
j = �†

j (12)

⌧N�1
j = ⌧ †j . (13)

The commutation relation between �, ⌧ is given by

�i⌧j = e2⇡i�i,j/N⌧j�i. (14)

It can be easily verified that the operators defined in
Eq. (9) fulfill the parafermionic algebra. Inserting the
transformed operators in Eq. (7) yields directly

H = �t

L�1
X

j=1

⇣

�†
j�j+1 + �†

j+1�j

⌘

�u

L
X

j=1
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, (15)
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Figure 2: Two different dimerization patterns corresponding
to the two phases of the parafermionic chain. The trivial case
(u = 1, t = 0) is shown in (a) where pairs of para fermions
�j are localized on each site, yielding a unique and gapped
ground state. Panel (b) shows a non-trivial state (u = 0, t =
1) with uncoupled para fermions at the two ends of the chain.
This state is gapped in the bulk but has gapless excitations
resulting from the unpaired para fermions and the edges.

The phase diagram of the N -state quantum clock
model has already been investigated.28 It is in the same
universality class as the ZN Villain model which was ex-
amined by Elitzur et al.

29. For N < 5, it exhibits two
phases. For t > u, we obtain an ordered phase with
an N -fold degenerate ground state. If t < u, we are in
the paramagnetic phase and the ground state is unique.
The phases are separated by a critical point at t = u. For
N � 5, however, this critical point is extended and a crit-
ical phase emerges in between the two phases in a finite
parameter region. The phase transitions into that critical
phase are of Berezinskii-Kosterlitz-Thouless (BKT) type
with an essential singularity in the correlation length.
The phase itself is a BKT critical phase.

To understand the phase diagram of Hamiltonian
Eq. (7), we follow Ref. 23 by considering two limiting
cases. The case t = 0, u = 1 (Fig. 2((a) has a unique
and gapped ground state which is a factorized state
where the parafermions �j form localized pairs on each
site. The case t = 1, u = 0 (Fig. 2(b) is more interest-
ing. Here, the parafermions form pairs between neigh-
boring sites, leaving behind two unpaired parafermions.
In the case of open boundary conditions, the unpaired
parafermions reside at the ends of the chain and yield
an N -fold ground state degeneracy while the bulk re-
mains gapped. This can be directly compared to the case
of the fermionic model discussed in the previous section
where unpaired fermionic modes appear at the boundary.
In this limit, the individual terms of H commute with
each other and can be diagonalized simultaneously. Any
ground state | 0i satisfies �e⇡i/N�†

2j�2j+1 | 0i = | 0i.
This implies that projection of the charge operator Q in
Eq. (8) onto the ground state manifold can be written
as Qe↵ / �†

1�2L. In this sense, one can say that in the
low-energy manifold, the charge operator “fractionalizes”
into two a product of two operators localized at either
end of the chain. Since �1 and �2L both commute with
the Hamiltonian, but do not commute with each other,
the ground state is multiply degenerate. One can di-
agonalize H and Q simultaneously, in which case there
are N orthogonal ground states with distinct Q eigenval-
ues. Acting with either �†

1 or �2L transforms the ground
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It is useful to map Eq. (7) to the N -state quantum

clock model using a Jordan-Wigner transformation as
shown in Ref. 23,

�2j�1 =

0

@

Y

k<j

⌧k

1

A�j , �2j = �e⇡i/N

0

@

Y

kj

⌧k

1

A�j , (9)

with the matrices

� =

0

B

B

B

B

@

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...
0 0 0 . . . 1

1 0 0 . . . 0

1

C

C

C

C

A

,

⌧ = diag

⇣

1, e2⇡i/N , e4⇡i/N , . . . , e�2(N�1)⇡i/N
⌘

.(10)

Note that the operators ⌧j , �j are defined on a lattice
with L sites. The ⌧j , �j operators satisfy

�N
j = ⌧Nj = 1 (11)

�N�1
j = �†

j (12)

⌧N�1
j = ⌧ †j . (13)

The commutation relation between �, ⌧ is given by

�i⌧j = e2⇡i�i,j/N⌧j�i. (14)

It can be easily verified that the operators defined in
Eq. (9) fulfill the parafermionic algebra. Inserting the
transformed operators in Eq. (7) yields directly

H = �t

L�1
X

j=1

⇣

�†
j�j+1 + �†

j+1�j

⌘

�u

L
X

j=1

⇣

⌧j + ⌧ †j

⌘

, (15)

In the case of periodic boundary conditions, one has to
pay attention to a phase change in the coupling of �L
and �1 which becomes

�e⇡i/N�†
2L�1 = �†

L

0

@

Y

kL

⌧ †k

1

A�1. (16)

Figure 2: Two different dimerization patterns corresponding
to the two phases of the parafermionic chain. The trivial case
(u = 1, t = 0) is shown in (a) where pairs of para fermions
�j are localized on each site, yielding a unique and gapped
ground state. Panel (b) shows a non-trivial state (u = 0, t =
1) with uncoupled para fermions at the two ends of the chain.
This state is gapped in the bulk but has gapless excitations
resulting from the unpaired para fermions and the edges.

The phase diagram of the N -state quantum clock
model has already been investigated.28 It is in the same
universality class as the ZN Villain model which was ex-
amined by Elitzur et al.

29. For N < 5, it exhibits two
phases. For t > u, we obtain an ordered phase with
an N -fold degenerate ground state. If t < u, we are in
the paramagnetic phase and the ground state is unique.
The phases are separated by a critical point at t = u. For
N � 5, however, this critical point is extended and a crit-
ical phase emerges in between the two phases in a finite
parameter region. The phase transitions into that critical
phase are of Berezinskii-Kosterlitz-Thouless (BKT) type
with an essential singularity in the correlation length.
The phase itself is a BKT critical phase.

To understand the phase diagram of Hamiltonian
Eq. (7), we follow Ref. 23 by considering two limiting
cases. The case t = 0, u = 1 (Fig. 2((a) has a unique
and gapped ground state which is a factorized state
where the parafermions �j form localized pairs on each
site. The case t = 1, u = 0 (Fig. 2(b) is more interest-
ing. Here, the parafermions form pairs between neigh-
boring sites, leaving behind two unpaired parafermions.
In the case of open boundary conditions, the unpaired
parafermions reside at the ends of the chain and yield
an N -fold ground state degeneracy while the bulk re-
mains gapped. This can be directly compared to the case
of the fermionic model discussed in the previous section
where unpaired fermionic modes appear at the boundary.
In this limit, the individual terms of H commute with
each other and can be diagonalized simultaneously. Any
ground state | 0i satisfies �e⇡i/N�†

2j�2j+1 | 0i = | 0i.
This implies that projection of the charge operator Q in
Eq. (8) onto the ground state manifold can be written
as Qe↵ / �†

1�2L. In this sense, one can say that in the
low-energy manifold, the charge operator “fractionalizes”
into two a product of two operators localized at either
end of the chain. Since �1 and �2L both commute with
the Hamiltonian, but do not commute with each other,
the ground state is multiply degenerate. One can di-
agonalize H and Q simultaneously, in which case there
are N orthogonal ground states with distinct Q eigenval-
ues. Acting with either �†

1 or �2L transforms the ground

“Trivial” phase 

“non-Trivial” phase 



Parafermion chain 

¨  Z3 Parafermion chain: Quantum critical point: 
    Z3 “Parafermion” conformal field theory 
     

t u t u t

t u=
3

and u. The Hamiltonian for a chain of 2L sites with
open boundary conditions reads23

H = t
L�1
X

j=1

⇣

e⇡i/N�†
2j�2j+1 + e�⇡i/N�†

2j+1�2j

⌘

+ u
L

X

j=1

⇣

e⇡i/N�†
2j�1�2j + e�⇡i/N�†

2j�2j�1

⌘

. (7)

This Hamiltonian conserves the charge modulo N , i.e.,
it commutes with the operator

Q =

L
Y

j=1

⇣

�e�⇡i/N�†
2j�1�2j

⌘

(8)

which measures the total ZN charge.
It is useful to map Eq. (7) to the N -state quantum

clock model using a Jordan-Wigner transformation as
shown in Ref. 23,

�2j�1 =

0

@

Y

k<j

⌧k

1

A�j , �2j = �e⇡i/N

0

@

Y

kj

⌧k

1

A�j , (9)

with the matrices

� =

0

B

B

B

B

@

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...
0 0 0 . . . 1

1 0 0 . . . 0

1

C

C

C

C

A

,

⌧ = diag

⇣

1, e2⇡i/N , e4⇡i/N , . . . , e�2(N�1)⇡i/N
⌘

.(10)

Note that the operators ⌧j , �j are defined on a lattice
with L sites. The ⌧j , �j operators satisfy

�N
j = ⌧Nj = 1 (11)

�N�1
j = �†

j (12)

⌧N�1
j = ⌧ †j . (13)

The commutation relation between �, ⌧ is given by

�i⌧j = e2⇡i�i,j/N⌧j�i. (14)

It can be easily verified that the operators defined in
Eq. (9) fulfill the parafermionic algebra. Inserting the
transformed operators in Eq. (7) yields directly

H = �t

L�1
X

j=1

⇣

�†
j�j+1 + �†

j+1�j

⌘

�u

L
X

j=1

⇣

⌧j + ⌧ †j

⌘

, (15)

In the case of periodic boundary conditions, one has to
pay attention to a phase change in the coupling of �L
and �1 which becomes

�e⇡i/N�†
2L�1 = �†

L

0

@

Y

kL

⌧ †k

1

A�1. (16)

Figure 2: Two different dimerization patterns corresponding
to the two phases of the parafermionic chain. The trivial case
(u = 1, t = 0) is shown in (a) where pairs of para fermions
�j are localized on each site, yielding a unique and gapped
ground state. Panel (b) shows a non-trivial state (u = 0, t =
1) with uncoupled para fermions at the two ends of the chain.
This state is gapped in the bulk but has gapless excitations
resulting from the unpaired para fermions and the edges.

The phase diagram of the N -state quantum clock
model has already been investigated.28 It is in the same
universality class as the ZN Villain model which was ex-
amined by Elitzur et al.

29. For N < 5, it exhibits two
phases. For t > u, we obtain an ordered phase with
an N -fold degenerate ground state. If t < u, we are in
the paramagnetic phase and the ground state is unique.
The phases are separated by a critical point at t = u. For
N � 5, however, this critical point is extended and a crit-
ical phase emerges in between the two phases in a finite
parameter region. The phase transitions into that critical
phase are of Berezinskii-Kosterlitz-Thouless (BKT) type
with an essential singularity in the correlation length.
The phase itself is a BKT critical phase.

To understand the phase diagram of Hamiltonian
Eq. (7), we follow Ref. 23 by considering two limiting
cases. The case t = 0, u = 1 (Fig. 2((a) has a unique
and gapped ground state which is a factorized state
where the parafermions �j form localized pairs on each
site. The case t = 1, u = 0 (Fig. 2(b) is more interest-
ing. Here, the parafermions form pairs between neigh-
boring sites, leaving behind two unpaired parafermions.
In the case of open boundary conditions, the unpaired
parafermions reside at the ends of the chain and yield
an N -fold ground state degeneracy while the bulk re-
mains gapped. This can be directly compared to the case
of the fermionic model discussed in the previous section
where unpaired fermionic modes appear at the boundary.
In this limit, the individual terms of H commute with
each other and can be diagonalized simultaneously. Any
ground state | 0i satisfies �e⇡i/N�†

2j�2j+1 | 0i = | 0i.
This implies that projection of the charge operator Q in
Eq. (8) onto the ground state manifold can be written
as Qe↵ / �†

1�2L. In this sense, one can say that in the
low-energy manifold, the charge operator “fractionalizes”
into two a product of two operators localized at either
end of the chain. Since �1 and �2L both commute with
the Hamiltonian, but do not commute with each other,
the ground state is multiply degenerate. One can di-
agonalize H and Q simultaneously, in which case there
are N orthogonal ground states with distinct Q eigenval-
ues. Acting with either �†

1 or �2L transforms the ground
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it commutes with the operator

Q =
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which measures the total ZN charge.
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Figure 2: Two different dimerization patterns corresponding
to the two phases of the parafermionic chain. The trivial case
(u = 1, t = 0) is shown in (a) where pairs of para fermions
�j are localized on each site, yielding a unique and gapped
ground state. Panel (b) shows a non-trivial state (u = 0, t =
1) with uncoupled para fermions at the two ends of the chain.
This state is gapped in the bulk but has gapless excitations
resulting from the unpaired para fermions and the edges.

The phase diagram of the N -state quantum clock
model has already been investigated.28 It is in the same
universality class as the ZN Villain model which was ex-
amined by Elitzur et al.

29. For N < 5, it exhibits two
phases. For t > u, we obtain an ordered phase with
an N -fold degenerate ground state. If t < u, we are in
the paramagnetic phase and the ground state is unique.
The phases are separated by a critical point at t = u. For
N � 5, however, this critical point is extended and a crit-
ical phase emerges in between the two phases in a finite
parameter region. The phase transitions into that critical
phase are of Berezinskii-Kosterlitz-Thouless (BKT) type
with an essential singularity in the correlation length.
The phase itself is a BKT critical phase.

To understand the phase diagram of Hamiltonian
Eq. (7), we follow Ref. 23 by considering two limiting
cases. The case t = 0, u = 1 (Fig. 2((a) has a unique
and gapped ground state which is a factorized state
where the parafermions �j form localized pairs on each
site. The case t = 1, u = 0 (Fig. 2(b) is more interest-
ing. Here, the parafermions form pairs between neigh-
boring sites, leaving behind two unpaired parafermions.
In the case of open boundary conditions, the unpaired
parafermions reside at the ends of the chain and yield
an N -fold ground state degeneracy while the bulk re-
mains gapped. This can be directly compared to the case
of the fermionic model discussed in the previous section
where unpaired fermionic modes appear at the boundary.
In this limit, the individual terms of H commute with
each other and can be diagonalized simultaneously. Any
ground state | 0i satisfies �e⇡i/N�†

2j�2j+1 | 0i = | 0i.
This implies that projection of the charge operator Q in
Eq. (8) onto the ground state manifold can be written
as Qe↵ / �†

1�2L. In this sense, one can say that in the
low-energy manifold, the charge operator “fractionalizes”
into two a product of two operators localized at either
end of the chain. Since �1 and �2L both commute with
the Hamiltonian, but do not commute with each other,
the ground state is multiply degenerate. One can di-
agonalize H and Q simultaneously, in which case there
are N orthogonal ground states with distinct Q eigenval-
ues. Acting with either �†

1 or �2L transforms the ground
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Inspired by Teo & Kane, we consider a system of coupled 
parafermions chains, to construct a superconducting 
analog of the Z3 Read-Rezayi state. 



Coupled Parafermion chains 

¨  Tune every chain to the critical point: 

quasiparticle  
tunneling 



Fibonacci phase 

¨  From bulk-edge correspondence: 
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Defect-enriched non-Abelian statistics 
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Summary 
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Summary 

¨  New paradigm for realizing non-abelian systems: 
defects in two-dimensional topological phases. 

¨  Can be implemented by coupling to 
superconductors. 

¨  Implementation of universal defects? 
¨  2D Fractionalized superconductor with “Fibonacci” 

anyons from lattices of interacting defects. 
¨  How can we trap/manipulate Fib. Anyons? 
¨  Is the fine tuning of the lattice model essential? 
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¨  Exchange statistics 
¨  Non-Abelian anyons 
¨  Topological quantum computing 
¨  Overview of physical realizations 
¨  Majorana fermions in a 1D superconductor 
¨  Fractionalized superconductors in 1D and 2D 



Exchange statistics 
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Wavefunction transformation under exchange of two 
identical particles: 
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Particle types 

¨ Bosons / Fermions 
    
   All particles in 3D 

¨ “Any-ons” 
    “Emergent” particles 
     in 2D 

'ψ ψ ψ→ = ±

Abelian anyons 
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•  Exchanges commute 
•  Most acessible 
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Non-Abelian Anyons 

¨ Key Properties: 
¤ Degeneracy increases 

with number of anyons 

Robust to perturbations! 

¤ Non-Abelian statistics: 

dim N
GSH λ: E 

m n nm mUψ ψ ψ→ =

“quantum  
dimension” 
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Topological quantum computation 

A. Kitaev, Ann. Phys. 303, 2 (2003) 
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Can we do better? 

Still not universal for QC….. 



S1 

Q1 Q2 

Q3 

S2 S3 

Ground state degeneracy 

2N domains, fixed            = Qtot, Stot    
(2m)N-1 ground states  

Spins, Charges 
 

,n n↑ ↓

,n n↑ ↓

( )2( 1)
2

N
m

−
=

j iji i S i Si mi Q i Qee e e eπ π ππ π±=

{ } { }+ i = j + 1 - i = j - 1

/ , 0,1,..2

/ , 0,1,.. 1

1

2j

j

Q

S q m q m

q m q m= =

= −

−

=



Proposed non-Abelian systems 

¨  Fractional quantum Hall effect at  
Willet, Eisentein et al. (1987) 
Moore and Read (1992) 

Miller et al., Nature Physics 3, 561 (2007)  
 

R. L. Willett et al., PRL 111, 186401 (2013) 
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Proposed non-Abelian systems 

¨  p+ip superconductors 
Read and Green (2001) 
 

Jang et al., Science 331, 186 (2001) 

p+ip 
superconductor 

vortex 

SrRu2O4 



Proposed non-Abelian systems 

¨  “Engineered” p+ip superconductors 
Fu & Kane (2008), Sau et al. (2010), Lee (2009),  
Alicea (2010) 
 

3D Topological 
      insulator 

3D conventional 
superconductor 

C. Kurter et al., arXiv: 1402.3623 



Anyons, anyone? 

¨  Topological 1D superconductors 
 

1D spinless SC	



3D Conventional 
superconductor 

SC 

Quantum Spin 
Hall effect 

Kitaev (2002) 

Fu & Kane (2009) 

Oreg et al.,  
Lutchyn et al. (2010), 

Mourik et al. (2012), 
Das et al. (2012). 
 



Outline 

¨  Exchange statistics 
¨  Non-Abelian anyons 
¨  Topological quantum computing 
¨  Overview of physical realizations 
¨  Majorana fermions in a 1D superconductor 
¨  Fractionalized superconductors in 1D and 2D 



Topological 1D superconductor 

¨  1D Semiconductor wire coupled to a bulk 
superconductor: 

Superconductor 

Semiconductor  
wire 
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Topological 1D superconductor 

Superconductor 

gap SCE = Δ0gapE =

Semiconductor  
wire 
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Bulk-edge correspondence 

t 

Quantum Hall effect: Edge states 

Quantum Hall Liquid  
Edge modes 
(Described by a 
conformal field theory) 



Pros and Cons 

¨  Advantages of 
“Engineered” systems 

•  Energy gap induced by 
external SC and not by 
interactions. 

•  Control:   

¨  Challenges of Ising 
anyons 

•  Exchange statistics is not 
rich enough to yield 
universal quantum 
computation: 
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GSH :

Anyons can be “easily” 
localized and manipulated 



Proposed non-Abelian systems 

2D  p+ip 
superconductors 

Fractional QH Superconductor - 3D Top. insulator 
heterostructures 

1D Topological superconductors 

“Ising” anyons 


