Engineering new non-Abelian systems

Netanel Lindner

CCCQS, Evora, October 2014

Collaborators

- Erez Berg, Gil Refael, Ady Stern PRX **2**, 041002 (2012)
- Lukasz Fidkowski, Alexei Kitaev (to be published)
- Roger Mong, Jason Alicea, David Clarke, Erez Berg, Ady Stern, Kirril Stengel, Paul Fendely, Chetan Nayak, Matthew Fisher, Yuval Oreg

PRX **4**, 011036 (2014) arXiv: 1406.0846

Outline

- Part 1: Fractionalized Majorana zero modes from hybrid superconductor / quantum Hall devices.
 - Majorana Fermions in1D top. superconductors
 - Parafermionic zero modes in Fractionalized 1D superconductors.
 - Twist defects
- Part 2: Fibonacci anyons from a 2D fractionalized superconductor.

Fractional QH Willet, Eisenstein, et al. (1987) Moore & Read (1991)

2D p+ip superconductors Read, Green (2000) Superconductor - 3D Top. Insulator (Semiconductor) heterostructures Fu & Kane (2008); Sau et al. (2010); Lee (2009); Alicea (2010)...

"Ising" anyons

1D Topological superconductors Kitaev (2001); Fu and Kane (2009); Lutchyn et al., Oreg et al. (2010); Mourik et al. (2012)

Topological 1D superconductor

- "Majorana Fermion" zero modes at the edges of the system.
- Two degenerate ground states, separated by an energy gap from the rest of the spectrum:

Odd & Even number of electrons.

Ground state degeneracy is "topological":

no local measurement can distinguish between the two

ground states!

Majorana Fermion zero modes

$$\begin{bmatrix} \gamma_{L}, H \end{bmatrix} = 0 \quad \begin{bmatrix} \gamma_{R}, H \end{bmatrix} = 0 \quad \begin{bmatrix} (-1)^{F}, H \end{bmatrix} = 0$$
$$\gamma_{i}^{\dagger} = \gamma_{i} \quad \left\{ \gamma_{i}, \gamma_{j} \right\} = \delta_{ij} \quad \left\{ \gamma_{i}, (-1)^{F} \right\} = 0$$

Topological 1D superconductor

Recent experimental realizations:

Das et al. (2013)

Mourik et al. (2012)

Non – Abelian statistics

$$|\psi_i\rangle \to \sum_j U_{ij} |\psi_j\rangle$$

Ising anyons (Majoranas):

$$e^{(\pi/4)\gamma_1\gamma_2} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

2D vortices: Ivanov, Read & Green,... 1D wire network: Alicea et.al (2010) Ising anyons braid matrices are not universal for quantum computation purposes.

Can we get something richer then Ising anyons in an experimentally accessible system?

- In one dimension?
- **No Go Theorem** (Fidkowski ; Turner, Pollman, Berg, 2010)
- Gapped, local Hamiltonians of fermions (or bosons) in 1D, at best give Majorana fermions.

Beyond Majorana Fermions

- Start with a topological phase which supports abelian anoyns
- For example, a Laughlin quantum Hall state:

$$v = 1/m$$

Fractionalized 1D superconductor

Fractionalized 1D superconductor

Fractionalized 1D superconductor

Effective Edge State Model

$$H = \frac{u}{2\pi\nu} \int dx \left[K(x) (\partial_x \phi)^2 + \frac{1}{K(x)} (\partial_x \theta)^2 \right]$$

- $\int dx \left[g_S(x) \cos(2m\phi) + g_F(x) \cos(2m\theta) \right]$
- $\chi_R^{q.p} : e^{i(\phi+\theta)}$
 $\chi_L^{q.p} : e^{i(\phi-\theta)}$
 $\psi_R \psi_L$
 $\psi_R \psi_L$
 $\psi_R \psi_L$
 $\psi_R \psi_L$
 $\psi_R \psi_L$
 $\psi_R \psi_L$

$$\left[\phi\left(x\right), \theta\left(x'\right)\right] = \frac{i\pi}{m}\Theta\left(x'-x\right)$$

Fractionalized Majorana zero modes

Fractionalized Majorana zero modes:

$$\left[H,\chi_j\right]=0\qquad \chi_j\chi_k=e^{i\pi/m\,sign(j-k)}\chi_k\chi_j$$

"Parafermions"

Ground state degeneracy

Fractional Josephson effect

 $H = t \chi_1 \chi_{2,\sigma}^{\dagger} + h.c. = t \cos(\pi \hat{S} + \delta \phi / 2m)$

$$H(t) = \sum_{ij} \lambda_{ij}(t) \chi_{i,\sigma} \chi_{j,\sigma}^{\dagger} + h.c. \qquad \begin{array}{c} Q_{1} \\ Q_{2} \\ Q_{3} \\ Q_{4} \\ Q_{3} \\ Q_{4} \\ Q_{3} \\ Q_{3} \\ Q_{4} \\ Q_{3} \\ Q_{4} \\ Q_{3} \\ Q_{4} \\ Q_{5} \\ Q_{3} \\ Q_{4} \\ Q_{5} \\ Q_$$

Braiding Properties

$$\exp\left(i\frac{\pi}{2m}q^2\right) = \exp\left(i\frac{\pi}{2}n_{\gamma}\right)\exp\left(i\frac{2\pi}{m}n_{\chi}^2\right)$$

- Two types of particles:Abelian charges
 - Q = 0, 1, ..., m
 - Non abelian particle: $X \times X = 0 + 1 + ... + m$

$$U = \exp\left(i\frac{2\pi}{m}q^2\right)$$

Point particles vs. line objects

Twist defects in topological phases

End of "branch cuts" in a top. phase that interchange anyon types

- Controllable non-Abelian systems
- New type of non-Abelian statistics

Defects in Abelian phases are not QC universal.
Defects in non-Abelian phases?

Outline

- Part 1: Fractionalized Majorana zero modes from hybrid superconductor / quantum Hall devices.
 - Majorana Fermions in1D top. superconductors
 - Parafermionic zero modes in Fractionalized 1D superconductors.
 - Twist defects
- Part 2: Fibonacci anyons from a 2D fractionalized superconductor.

Parafermion chain

 \Box Quasi-particle tunneling: t, u

Parafermion chain

Spin unpolarized v = 2/3 quantum Hall state

□ Z_3 Parafermion chain: Quantum critical point: t = u Z_3 "Parafermion" conformal field theory

From 1D to 2D

From Luttinger liquid to non-Abelian quantum Hall states

Jeffrey C.Y. Teo* and C.L. Kane Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104

Inspired by Teo & Kane, we consider a system of coupled parafermions chains, to construct a superconducting analog of the Z3 Read-Rezayi state.

Coupled Parafermion chains

Tune every chain to the critical point:

Fibonacci phase

Defect-enriched non-Abelian statistics

Defects can support universal TQC, even when the underlying topological phase is not universal:

Zero mode algebra: beyond parafermions

Summary

Summary

- New paradigm for realizing non-abelian systems: defects in two-dimensional topological phases.
- Can be implemented by coupling to superconductors.
- Implementation of universal defects?
- 2D Fractionalized superconductor with "Fibonacci" anyons from lattices of interacting defects.
- □ How can we trap/manipulate Fib. Anyons?
- □ Is the fine tuning of the lattice model essential?

Summary

Thank you.

Thank you.

Acknowledgements

Erez Berg

Jason Alicea

David Clarke

Yuval Oreg

Gil Refael

Paul Fendely

t

 $\hat{U}_{34}\hat{U}_{12} = \hat{U}_{12}\hat{U}_{34}$

 $t_1 < t_2$

 $\hat{U}_{23}\hat{U}_{12} \neq \hat{U}_{12}\hat{U}_{23}$

The Braid Group

The Braid Group

Grad School at the Technion

Outline

- Exchange statistics
- Non-Abelian anyons
- Topological quantum computing
- Overview of physical realizations
- Majorana fermions in a 1D superconductor
- Fractionalized superconductors in 1D and 2D

Exchange statistics

Wavefunction transformation under exchange of two identical particles:

$$\psi(\mathbf{r}_1,\mathbf{r}_2,...\mathbf{r}_N) \longrightarrow \psi'(\mathbf{r}_2,\mathbf{r}_1,...\mathbf{r}_N)$$

Particle types

Bose-Einstein Condensate Metal

Particle types

Particle types

Bosons / Fermions

$$\psi \rightarrow \psi' = \pm \psi$$

All particles in 3D

□ "Any-ons"

Non-Abelian anyons

Abelian anyons

$$\psi \rightarrow \psi' = e^{i\theta}\psi$$

- Exchanges commute
- Most acessible quantum Hall states

Outline

- Exchange statistics
- Non-Abelian anyons
- Topological quantum computing
- Overview of physical realizations
- Majorana fermions in a 1D superconductor
- Fractionalized superconductors in 1D and 2D

Non-Abelian statistics:

$$\psi_m \rightarrow \psi_n = U_{nm} \psi_m$$

Non-Abelian statistics:

$$\psi_m \to \psi_n = U_{nm} \psi_m$$

Non-Abelian statistics:

$$\psi_m \to \psi_n = U_{nm} \psi_m$$

Non-Abelian statistics:

$$\psi_m \to \psi_n = U_{nm} \psi_m$$

Non-Abelian statistics:

$$\psi_m \to \psi_n = U_{nm} \psi_m$$

Topological quantum computation

Still not universal for QC.....

Can we do better?

Ground state degeneracy

2N domains, fixed $n_{\uparrow}, n_{\downarrow} = Q_{tot}$, Stot (2m)^{N-1} ground states $= \left(\sqrt{2m}\right)^{2(N-1)}$

Fractional quantum Hall effect at v = 5/2

Willet, Eisentein et al. (1987)

Moore and Read (1992)

Miller et al., Nature Physics 3, 561 (2007)

R. L. Willett et al., PRL 111, 186401 (2013)

p+ip superconductors

Read and Green (2001)

Jang et al., Science 331, 186 (2001)

"Engineered" p+ip superconductors

Fu & Kane (2008), Sau et al. (2010), Lee (2009), Alicea (2010)

C. Kurter et al., arXiv: 1402.3623

Anyons, anyone?

Topological 1D superconductors

Outline

- Exchange statistics
- Non-Abelian anyons
- Topological quantum computing
- Overview of physical realizations
- Majorana fermions in a 1D superconductor
- Fractionalized superconductors in 1D and 2D

Topological 1D superconductor

ID Semiconductor wire coupled to a bulk superconductor:

Topological 1D superconductor

NEW NON-ABELIAN STATES FROM HYBRID QUANTUM HALL-SUPERCONDUCTOR SYSTEMS

EPQHS-5, July 2014 Netanel Lindner

Outline

- Exchange statistics
- Non-Abelian anyons
- Topological quantum computing
- Overview of physical realizations
- Majorana fermions in a 1D superconductor
- Fractionalized superconductors in 1D and 2D

Bulk-edge correspondence

Quantum Hall effect: Edge states

Edge modes

(Described by a conformal field theory)

Quantum Hall Liquid

Pros and Cons

Advantages of "Engineered" systems

 Energy gap induced by external SC and not by interactions.

Challenges of Ising anyons

 Exchange statistics is not rich enough to yield universal quantum computation:

$$\dim H_{GS}: \sqrt{2}^{N}$$

$$U = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

• Control:

Anyons can be "easily" localized and manipulated

1D Topological superconductors