

Strongly correlated topological states of spinless fermions in 2D lattices

Stefanos Kourtis

"Correlations, criticality, and coherence in quantum systems" – Évora, Portugal, 6/10/14

Work done in collaboration with:

- → J. Venderbos (now @ MIT)
- → M. Daghofer
- → J. van den Brink → <u>Enew:</u> C. Loftin (UNC)
- → T. Neupert (Princeton)
- → C. Chamon (Boston U)
- → C. Mudry (PSI Villigen)

Emmy Noether-

Deutsche

Programm

Forschungsgemeinschaft

DFG

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

FQHE in the Haldane model

(Neupert et al., Sheng et al., Regnault & Bernevig, ..., 2011)

- spinless fermions
- \blacktriangleright filling fraction $\,\nu=p/q\,$
- no net flux through unit cell
- screened Coulomb repulsion
- ► Hall conductivity:

$$\sigma_{xy} = \frac{p}{q} \frac{e^2}{h}$$

Landau levels vs Chern bands

Landau levels

Chern bands

Landau levels vs Chern bands

Landau levels + V

Chern bands + V

Landau levels vs Chern bands

Landau levels + V

Chern bands + large V

Correlations → topological order

Real bands are:

- multiple
- dispersive
- broadened / mixed by interactions

Can the addition of interactions in real bands:

- induce FQH-like physics?
- lead to correlated topological phases w/o QH counterparts? (topological order w/o underlying topological bands?)

Chern insulator (CI) on the triangular lattice

Kondo-lattice model

Also:

Ohgushi, Murakami & Nagaosa, 2000

Martin & Batista, 2008:

▶ at
$$\nu = 3/4$$

 \rightarrow chiral spin pattern

3-orbital Hubbard model Venderbos *et al.*, 2011; 2012:

- strong on-site Coulomb effects
 - → mapping to KLM
 - \rightarrow chiral spin pattern

flat isolated single-orbital band

$$\bullet \ \sigma_{xy} = e^2/h$$

Effective model on the triangular lattice

- + partially filled Chern band
- + nearest-neighbor Coulomb interaction $\,V\,$

Phase diagram

Exact diagonalization, 3x6-site cluster, PBC

Fractional Chern insulator

Topological invariant: $\mathbf{\sigma}_{_{\!\!\mathbf{H}}} \rightarrow$ integral of **Berry curvature**

Fractional Chern insulator

Topological invariant: $\mathbf{\sigma}_{_{\mathbf{H}}} \rightarrow$ integral of **Berry curvature**

Phase diagram

Exact diagonalization, 3x6-site cluster, PBC

Upper-band character of FCI states Exact diagonalization, 6x6-site cluster, PBC

Phase diagram at V = infinityExact diagonalization, 6x6-site cluster, PBC

Berry curvature at V = infinityExact diagonalization, 6x6-site cluster, PBC

Phase diagram

Exact diagonalization, 3x6-site cluster, PBC

IFW

Charge-density wave

Static charge-structure factor

Topological & Landau order

Topological & Landau order

Topological & Landau order

Similar to pinball liquid → Hotta & Furukawa, PRB 74, 193107 (2006)

Topological pinball liquid

→ Charge order-induced topological order

Conclusions

FCI states for arbitrarily strong repulsion...

... going beyond traditional FQH physics (FCI = FQHE)

- J. Venderbos, S. Kourtis, J. ven den Brink, and M. Daghofer, Phys. Rev. Lett. 108, 126405
- S. Kourtis, J. Venderbos, and M. Daghofer, Phys. Rev. B 86, 235118
- S. Kourtis, T. Neupert, C. Chamon & C. Mudry, Phys. Rev. Lett. 112, 126806

combined topological & Landau order

(potential for topological states from interactions in trivial bands)

S. Kourtis & M. Daghofer, arXiv:1305.6948 + work in progress...

TM ion

Partially occupied d-shell

TM oxide

Symmetry lowering

Crystal-field distortion

Levels split further

Triangular lattice

3 orbitals per site

Triangular lattice

3 orbitals per site

Triangular lattice

3 orbitals per site

Triangular lattice

3 orbitals per site

Triangular lattice 3 orbitals per site Kondo-lattice model $d = \frac{e_g}{t_{2g}} + a_{1g}$ $e_{g'}$

Triangular lattice Kondo-lattice model

→ chiral spin pattern Martin & Batista, 2008 3 orbitals per site

