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A SIMPLE MODEL
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QUANTUM MECHANICS



Hilbert Space
Consider any lattice with          sites.

Illustration: 2-d triangular lattice
Nsite



Hilbert Space

N = 3

Assign a color to each site (Hilbert space:           )NNsite

Illustration:



Hilbert Space
To define “Hamiltonian” describe how 

it acts on Hilbert space.
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Hamiltonian
Put picture in equations:
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Put picture in equations:
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|Siij =
1p
N

X

↵

|↵↵iij

I’ll call |Si a “singlet” state

HJ = �J
X

hiji

|SiijhS|ij



Outline of the Talk

Q: What is the ground state of       as a function of 
   and for different lattices?  
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Bipartite Lattices
Consider, N = 2

Hheis = J
X
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is identical up to a constant to,
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Néel State



SU(N) model: Singlet Projector

|Siij =
X

↵

|↵↵iij

SU(N) singlet

U U⇤

|Si ! |Si

HJ = �J
X

hiji

|SiijhS|ij

HJ = �J
X

hiji,a

T̂ ⇤a
i · T̂ a

j Affleck (1989)

N > 2For,



Small N: Magnetic

Classical Néel State: Breaks SU(2) symmetry

N=2



Large N: Valence Bond Solids

OVBS ⇥ Si · Sj�S⇥ = 0

VBS: breaks lattice symmetry

SOLID OF
SINGLETS

At large-N maps to a quantum dimer model

Read, Sachdev Nuc. Phys. B (1986)
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OVBS ⇥ Si · Sj�S⇥ = 0

VBS: breaks lattice symmetry

SOLID OF
SINGLETS

Large N: Valence Bond Solids

Read, Sachdev Nuc. Phys. B (1986)



In-between: Anderson RVB?
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Spin Liquid!
Quantum superposition of many singlet coverings
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Deconfined Critical Point

VBSNéel

Senthil, Vishwanath, Balents, Sachdev, Fisher. Science (2004)

LCPN�1 =
NX

↵=1

|(@µ � iaµ)z↵|2

Emergence of scalar-QED right at critical point!

in an SU(N) anti-ferromagnet:



How to study fixed-N transition?
A.W. Sandvik, PRL (2007)

HJQ = J
�

�ij⇥

Si · Sj �Q
�

�ijkl⇥

(Si · Sj �
1
4
)(Sk · Sl �

1
4
)

R. K. Kaul, arxiv:1403.5678(2014)

... we can now systematically derive an infinitely-large
 class of SU(N) Hamiltonians that are Marshall positive & 

hence sign-problem free.

Lou, Kawashima, Sandvik, PRB (2009);

Kaul, Sandvik PRL (2012)



“Designer” Hamiltonians
R. K. Kaul, R.G. Melko, A.W. Sandvik. 

Ann. Rev. Cond. Mat. Phys. (2013)
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Universal scaling dimensions

CN,V (r, �) �
1

(r2 + c2�2)(1+�V,N )/2
.

⇥N = 1� 32/(⇤2N), 1 + ⇥V = 2�1N,

�1 � 0.1246

1/N expansion of CPN�1 field theory

 Murthy, Sachdev (1990);
Borokhov, Kapustin, Wu (2002) 

Metlitski, Hermele, Senthil, Fisher (2008).

Halperin, Lubensky, Ma PRL (1974);  
Kaul, Sachdev (2008);

~n = z⇤s
~�ss0

2
zs0

LCPN�1 =
NX

↵=1

|(@µ � iaµ)z↵|2



Néel-VBS in SU(N) magnets
R.K. Kaul & A. W. Sandvik, PRL (2012)
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Comparison with DQC
R.K. Kaul & A. W. Sandvik, PRL (2012)
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Deconfined Critical Point

VBSNéel

gggg

• Direct continuous transition
• Both order parameters simultaneously critical
• Universality class for           :            field theoryCPN�1

Strong evidence for a new kind of phase transition:

SU(N)

Microscopic sign-problem free models



RG flow q-N

Fate of CPN�1
fixed points with q-monopoles
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We present an extensive quantum Monte Carlo study of the Néel-valence bond solid (VBS) phase
transition on rectangular and honeycomb lattice SU(N) antiferromagnets in sign problem free mod-
els. We find that in contrast to the honeycomb lattice and previously studied square lattice systems,
on the rectangular lattice for small N a first order Néel-VBS transition is realized. On increasing
N � 4, we observe that the transition becomes continuous and with the same universal exponents
as found on the honeycomb and square lattices (studied here for N = 5, 7, 10), providing strong
support for a deconfined quantum critical point. Combining our new results with previous numeri-
cal and analytical studies we present a general phase diagram of the stability of CPN�1 fixed points
with q-monopoles.

The study of quantum critical points (QCP) has seen
a lot of excitement in both recent theoretical [1] and
experimental work [2, 3]. The most novel QCPs are
those that do not have naive classical analogues in one
higher dimension. One of the most prominent examples
of such a QCP is the direct continuous “deconfined” crit-
ical point (DCP) between Néel and valence-bond solid
(VBS) phases in bipartite SU(N) antiferromagnets [4].
Both states of matter are characterized by conventional
broken symmetries, the Néel state by SU(N) symmetry
breaking and the VBS by lattice symmetry breaking. A
naive application of Landau theory would predict that
since the two phases break distinct symmetries, a direct
Néel-VBS transition cannot be continuous. However by
a subtle conspiracy of quantum interference and decon-
finement, it has been shown that a continuous transition
beyond the Landau paradigm can occur [5]. While the
deconfined theory is by itself speculative (a “scenario”),
the discovery of sign-problem free models has allowed for
unbiased tests by quantum Monte Carlo of the theoreti-
cal proposal on large two-dimensional lattice models, in
a way unprecedented for an exotic quantum critical phe-
nomenon [6].

The speculative assumptions that underlie the DCP
concept concern the existence and stability of certain
critical fixed points. The DCP idea builds on the CPN�1

description of bipartite two-dimensional SU(N) quantum
antiferromagnets [8]. The CPN�1 field theory consists of
N complex scalars z

↵

interacting with a U(1) gauge field
a

µ

. Destructive interference from Berry phases result in
the suppression of monopoles in a

µ

unless they have a
charge, q [9]. A central result is that q in the simplest
cases (of interest here) is equal to the degeneracy of the
VBS phase [8], so the square lattice has q = 4, the hon-
eycomb q = 3 and the rectangular lattice has q = 2. The
discussion so far is on firm grounds. The two speculative
ingredients that allow for a deconfined quantum critical
point between Néel and VBS states in SU(N) antifer-
romagnets on lattices with q-fold degenerate VBS state
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FIG. 1: (color online). (a) Deconfined RG flow diagram for
SU(N) antiferromagnets with q-fold degenerate VBS phases,
in the field theoretic space of monopole fugacity for q-
monopoles (�

q

) and the tuning parameter g of the critical
point. (see text and [7] for details). In this work we give a
complete phase diagram in q-N space for which this RG flow
diagram can be realized (see Table I). (b,c) The rectangular
lattice with q = 2-fold degenerate and honeycomb lattice with
q = 3-fold degenerate VBS states, studied here with relevant
couplings labeled. The A and B sublattices (black and white
sites) have SU(N) spins transforming in the fundamental and
conjugate to fundamental representations, respectively. The
fat green lines are connected with a P

ij

and the thin blue lines
are connected with a ⇧

ij

(look above Eq. (1) for details).

are: (1) the existence of a critical fixed point in the “non-
compact” monopole-free CPN�1 theory [10] (this will be
referred to as nc-CPN�1), and, (2) the “dangerous irrel-
evance” of q-monopole insertions at the nc-CPN�1 fixed
point. If these two conditions are met, the resulting “de-
confined” renormalization group flow diagram [7] is as
shown in Fig. 1 (a).

The most extensive studies of deconfined criticality in
microscopic models have focussed on the case N = 2
and q = 4 [12–16] (i.e. the square lattice with SU(2)
spins). Other studies have tackled the cases q = 4, 2 

LCPN�1 =
NX

↵=1

|(@µ � iaµ)z↵|2 + q-fold monopoles

Two central assumptions for deconfined criticality:
(1) existence of fixed point            . 

(2) irrelevance of q-monopoles
CPN�1



N-q phase diagram 

LCPN�1 =
NX

↵=1

|(@µ � iaµ)z↵|2 + q-fold monopoles

N = 1 nc-CPN�1

. . .
N = 5 nc-CP4

N = 4 nc-CP3

N = 3 nc-CP2

N = 2 nc-CP1

N = 1 XY
q = 1 q = 2 q = 3 q = 4 . . . q = 1

M. Block, R.G. Melko & R.K. Kaul, PRL (2013)



N-q phase diagram 
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N = 2 I nc-CP1

N = 1 R R R I I XY
q = 1 q = 2 q = 3 q = 4 . . . q = 1



N-q phase diagram 

LCPN�1 =
NX
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|(@µ � iaµ)z↵|2 + q-fold monopoles

N = 1 I I I I I I nc-CPN�1

. . .
N = 5 I nc-CP4

N = 4 I nc-CP3

N = 3 I nc-CP2

N = 2 I nc-CP1

N = 1 R R R I I XY
q = 1 q = 2 q = 3 q = 4 . . . q = 1

Dasgupta/Halperin

Kamal/Murthy; 
Motrunich/
Vishwanath; Kuklov/
Prokofiev/Svistunov/
Troyer

Halperin/Lubensky/Ma

No Monopoles



N-q phase diagram 
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N-q phase diagram 

LCPN�1 =
NX
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|(@µ � iaµ)z↵|2 + q-fold monopoles

N = 1 I I I I I I nc-CPN�1

. . .
N = 5 I nc-CP4

N = 4 I nc-CP3

N = 3 I nc-CP2

N = 2 I nc-CP1

N = 1 R R R I I XY
q = 1 q = 2 q = 3 q = 4 . . . q = 1

Dasgupta/HalperinXY model with n-fold field;
Fukugita/Okawa (1989);
Carmona/Pelissato/Vicari(2000)



N-q phase diagram 

LCPN�1 =
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|(@µ � iaµ)z↵|2 + q-fold monopoles
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N = 4 I nc-CP3

N = 3 I nc-CP2

N = 2 I nc-CP1

N = 1 R R R I I XY
q = 1 q = 2 q = 3 q = 4 . . . q = 1

Murthy/Sachdev



N-q phase diagram 

LCPN�1 =
NX

↵=1

|(@µ � iaµ)z↵|2 + q-fold monopoles

N = 1 I I I I I I nc-CPN�1

. . .
N = 5 I I nc-CP4

N = 4 I I nc-CP3

N = 3 I I nc-CP2

N = 2 I I nc-CP1

N = 1 R R R I I XY
q = 1 q = 2 q = 3 q = 4 . . . q = 1

Square Lattice 
Néel-VBS



N-q phase diagram 
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q=1,2,3 is different from 4!



N-q phase diagram 

LCPN�1 =
NX

↵=1

|(@µ � iaµ)z↵|2 + q-fold monopoles

N = 1 I I I I I I nc-CPN�1

. . .
N = 5 I I nc-CP4

N = 4 I I nc-CP3

N = 3 I I nc-CP2

N = 2 I I nc-CP1

N = 1 R R R I I XY
q = 1 q = 2 q = 3 q = 4 . . . q = 1

???

q=1,2,3 is different from 4!
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We present an extensive quantum Monte Carlo study of the Néel-valence bond solid (VBS) phase
transition on rectangular and honeycomb lattice SU(N) antiferromagnets in sign problem free mod-
els. We find that in contrast to the honeycomb lattice and previously studied square lattice systems,
on the rectangular lattice for small N a first order Néel-VBS transition is realized. On increasing
N � 4, we observe that the transition becomes continuous and with the same universal exponents
as found on the honeycomb and square lattices (studied here for N = 5, 7, 10), providing strong
support for a deconfined quantum critical point. Combining our new results with previous numeri-
cal and analytical studies we present a general phase diagram of the stability of CPN�1 fixed points
with q-monopoles.

The study of quantum critical points (QCP) has seen
a lot of excitement in both recent theoretical [1] and
experimental work [2, 3]. The most novel QCPs are
those that do not have naive classical analogues in one
higher dimension. One of the most prominent examples
of such a QCP is the direct continuous “deconfined” crit-
ical point (DCP) between Néel and valence-bond solid
(VBS) phases in bipartite SU(N) antiferromagnets [4].
Both states of matter are characterized by conventional
broken symmetries, the Néel state by SU(N) symmetry
breaking and the VBS by lattice symmetry breaking. A
naive application of Landau theory would predict that
since the two phases break distinct symmetries, a direct
Néel-VBS transition cannot be continuous. However by
a subtle conspiracy of quantum interference and decon-
finement, it has been shown that a continuous transition
beyond the Landau paradigm can occur [5]. While the
deconfined theory is by itself speculative (a “scenario”),
the discovery of sign-problem free models has allowed for
unbiased tests by quantum Monte Carlo of the theoreti-
cal proposal on large two-dimensional lattice models, in
a way unprecedented for an exotic quantum critical phe-
nomenon [6].

The speculative assumptions that underlie the DCP
concept concern the existence and stability of certain
critical fixed points. The DCP idea builds on the CPN�1

description of bipartite two-dimensional SU(N) quantum
antiferromagnets [8]. The CPN�1 field theory consists of
N complex scalars z

↵

interacting with a U(1) gauge field
a

µ

. Destructive interference from Berry phases result in
the suppression of monopoles in a

µ

unless they have a
charge, q [9]. A central result is that q in the simplest
cases (of interest here) is equal to the degeneracy of the
VBS phase [8], so the square lattice has q = 4, the hon-
eycomb q = 3 and the rectangular lattice has q = 2. The
discussion so far is on firm grounds. The two speculative
ingredients that allow for a deconfined quantum critical
point between Néel and VBS states in SU(N) antifer-
romagnets on lattices with q-fold degenerate VBS state
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FIG. 1: (color online). (a) Deconfined RG flow diagram for
SU(N) antiferromagnets with q-fold degenerate VBS phases,
in the field theoretic space of monopole fugacity for q-
monopoles (�

q

) and the tuning parameter g of the critical
point. (see text and [7] for details). In this work we give a
complete phase diagram in q-N space for which this RG flow
diagram can be realized (see Table I). (b,c) The rectangular
lattice with q = 2-fold degenerate and honeycomb lattice with
q = 3-fold degenerate VBS states, studied here with relevant
couplings labeled. The A and B sublattices (black and white
sites) have SU(N) spins transforming in the fundamental and
conjugate to fundamental representations, respectively. The
fat green lines are connected with a P

ij

and the thin blue lines
are connected with a ⇧

ij

(look above Eq. (1) for details).

are: (1) the existence of a critical fixed point in the “non-
compact” monopole-free CPN�1 theory [10] (this will be
referred to as nc-CPN�1), and, (2) the “dangerous irrel-
evance” of q-monopole insertions at the nc-CPN�1 fixed
point. If these two conditions are met, the resulting “de-
confined” renormalization group flow diagram [7] is as
shown in Fig. 1 (a).

The most extensive studies of deconfined criticality in
microscopic models have focussed on the case N = 2
and q = 4 [12–16] (i.e. the square lattice with SU(2)
spins). Other studies have tackled the cases q = 4, 2 
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since the two phases break distinct symmetries, a direct
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beyond the Landau paradigm can occur [5]. While the
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point between Néel and VBS states in SU(N) antifer-
romagnets on lattices with q-fold degenerate VBS state

�
q

g

VBS

Néel
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FIG. 1: (color online). (a) Deconfined RG flow diagram for
SU(N) antiferromagnets with q-fold degenerate VBS phases,
in the field theoretic space of monopole fugacity for q-
monopoles (�

q

) and the tuning parameter g of the critical
point. (see text and [7] for details). In this work we give a
complete phase diagram in q-N space for which this RG flow
diagram can be realized (see Table I). (b,c) The rectangular
lattice with q = 2-fold degenerate and honeycomb lattice with
q = 3-fold degenerate VBS states, studied here with relevant
couplings labeled. The A and B sublattices (black and white
sites) have SU(N) spins transforming in the fundamental and
conjugate to fundamental representations, respectively. The
fat green lines are connected with a P

ij
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are connected with a ⇧
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(look above Eq. (1) for details).

are: (1) the existence of a critical fixed point in the “non-
compact” monopole-free CPN�1 theory [10] (this will be
referred to as nc-CPN�1), and, (2) the “dangerous irrel-
evance” of q-monopole insertions at the nc-CPN�1 fixed
point. If these two conditions are met, the resulting “de-
confined” renormalization group flow diagram [7] is as
shown in Fig. 1 (a).

The most extensive studies of deconfined criticality in
microscopic models have focussed on the case N = 2
and q = 4 [12–16] (i.e. the square lattice with SU(2)
spins). Other studies have tackled the cases q = 4, 2 

q=1

q=2 q=3

Monopole charge-q is same as min. VBS degeneracy!

Haldane (1989); Read/Sachdev (1990)
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We present an extensive quantum Monte Carlo study of the Néel-valence bond solid (VBS) phase
transition on rectangular and honeycomb lattice SU(N) antiferromagnets in sign problem free mod-
els. We find that in contrast to the honeycomb lattice and previously studied square lattice systems,
on the rectangular lattice for small N a first order Néel-VBS transition is realized. On increasing
N � 4, we observe that the transition becomes continuous and with the same universal exponents
as found on the honeycomb and square lattices (studied here for N = 5, 7, 10), providing strong
support for a deconfined quantum critical point. Combining our new results with previous numeri-
cal and analytical studies we present a general phase diagram of the stability of CPN�1 fixed points
with q-monopoles.

The study of quantum critical points (QCP) has seen
a lot of excitement in both recent theoretical [1] and
experimental work [2, 3]. The most novel QCPs are
those that do not have naive classical analogues in one
higher dimension. One of the most prominent examples
of such a QCP is the direct continuous “deconfined” crit-
ical point (DCP) between Néel and valence-bond solid
(VBS) phases in bipartite SU(N) antiferromagnets [4].
Both states of matter are characterized by conventional
broken symmetries, the Néel state by SU(N) symmetry
breaking and the VBS by lattice symmetry breaking. A
naive application of Landau theory would predict that
since the two phases break distinct symmetries, a direct
Néel-VBS transition cannot be continuous. However by
a subtle conspiracy of quantum interference and decon-
finement, it has been shown that a continuous transition
beyond the Landau paradigm can occur [5]. While the
deconfined theory is by itself speculative (a “scenario”),
the discovery of sign-problem free models has allowed for
unbiased tests by quantum Monte Carlo of the theoreti-
cal proposal on large two-dimensional lattice models, in
a way unprecedented for an exotic quantum critical phe-
nomenon [6].

The speculative assumptions that underlie the DCP
concept concern the existence and stability of certain
critical fixed points. The DCP idea builds on the CPN�1

description of bipartite two-dimensional SU(N) quantum
antiferromagnets [8]. The CPN�1 field theory consists of
N complex scalars z

↵

interacting with a U(1) gauge field
a

µ

. Destructive interference from Berry phases result in
the suppression of monopoles in a

µ

unless they have a
charge, q [9]. A central result is that q in the simplest
cases (of interest here) is equal to the degeneracy of the
VBS phase [8], so the square lattice has q = 4, the hon-
eycomb q = 3 and the rectangular lattice has q = 2. The
discussion so far is on firm grounds. The two speculative
ingredients that allow for a deconfined quantum critical
point between Néel and VBS states in SU(N) antifer-
romagnets on lattices with q-fold degenerate VBS state

�
q

g

VBS

Néel

nc-CPN�1

(a)

(b)

(c)

photon

1

1

FIG. 1: (color online). (a) Deconfined RG flow diagram for
SU(N) antiferromagnets with q-fold degenerate VBS phases,
in the field theoretic space of monopole fugacity for q-
monopoles (�

q

) and the tuning parameter g of the critical
point. (see text and [7] for details). In this work we give a
complete phase diagram in q-N space for which this RG flow
diagram can be realized (see Table I). (b,c) The rectangular
lattice with q = 2-fold degenerate and honeycomb lattice with
q = 3-fold degenerate VBS states, studied here with relevant
couplings labeled. The A and B sublattices (black and white
sites) have SU(N) spins transforming in the fundamental and
conjugate to fundamental representations, respectively. The
fat green lines are connected with a P

ij

and the thin blue lines
are connected with a ⇧

ij

(look above Eq. (1) for details).

are: (1) the existence of a critical fixed point in the “non-
compact” monopole-free CPN�1 theory [10] (this will be
referred to as nc-CPN�1), and, (2) the “dangerous irrel-
evance” of q-monopole insertions at the nc-CPN�1 fixed
point. If these two conditions are met, the resulting “de-
confined” renormalization group flow diagram [7] is as
shown in Fig. 1 (a).

The most extensive studies of deconfined criticality in
microscopic models have focussed on the case N = 2
and q = 4 [12–16] (i.e. the square lattice with SU(2)
spins). Other studies have tackled the cases q = 4, 2 
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N = 1, 1/N I I I I . . . I nc-CPN�1

. . .

N = 10 R I I I I nc-CP9

N = 9 R I I I I nc-CP8

N = 8 R I I I I nc-CP7

N = 7 R I I I I nc-CP6

N = 6 R I I I I nc-CP5

N = 5 R I I I I nc-CP4

N = 4 R I I I I nc-CP3

N = 3 R R I I I nc-CP2

N = 2 R R I I I nc-CP1

N = 1 R R R I I XY

N = 0 R R R R R photon

q = 1 q = 2 q = 3 q = 4 . . . q = 1

TABLE I: Table showing the relevance (R) or irrelevance (I)
of q-monopoles at the nc-CPN�1 fixed point, which our cur-
rent study has allowed to complete. Numerical simulations
of the Néel-VBS transition in the models discussed here only
allow studies for N � 2. The entries with R correspond to
an unstable fixed point, and I to a stable fixed point that
can then support the RG flow of Fig. 1(a). At some currently
unknown critical value of N > 10, the q = 1 case switches
from R to I.

rameters are the same for rectangular, honeycomb and
square lattice, which is strong evidence for the fact that
the phase transition in these three di↵erent cases is con-
trolled by the same fixed point. This must mean that the
the lattice anisotropy is irrelevant for N = 5, 7, 10, which
in the field theory language corresponds to the irrelevance
of 2,3 and 4-fold monopoles at these fixed points [7]. In
addition we find that as N increases the critical indices
approach the value computed in the 1/N expansion in
the nc-CPN�1 field theory, as shown in Fig. 5. This is
evidence that the common critical point is indeed the nc-
CPN�1 theory as predicted by “deconfined criticality.”

We now put our results in a broader context (see Ta-
ble I and for a more detailed discussion, the SM). Since
the critical theory of the SU(N) Néel to q-fold degen-
erate VBS transition is described by the CPN�1 theory
with q-monopoles, we can think of our numerical simu-
lations of antiferromagnets as a way to learn about the
CPN�1 theory with q-monopoles. The nc-CPN�1 fixed
point is known to exist analytically at large-N [34] and
for N = 1 [35] (for N = 0 there are no matter field
and one has a stable photon phase). We shall take the
point of view that by continuity it exists for all N , this
is the right-most column of Table I (we note here that
the case N = 2 has been debated in the literature [22–
25]). We can now ask whether q-monopoles are relevant
(R) or irrelevant (I) at the nc-CPN�1 fixed point. Past
analytic and field theoretic work have addressed the ques-
tion for N = 0 [36], N = 1 [35] and N = 1 [31]. The

column q = 1 has recently been addressed in simula-
tions of loop models [37] and bilayer SU(N) antiferro-
magnets [38]. The column q = 4 has been addressed by
studying the critical point of the square-lattice Néel-VBS
transition [19]. Here we have provided the final piece of
the puzzle by studying the q = 2 and q = 3 case (see [21]
for a study of q = 3, N = 2), where we have explicitly
seen the change from a first order to a continuous tran-
sition as N is increased for q = 2. The rest of the table
can be filled out by making the reasonable assumption
that once an entry is I it will stay I for increasing q or
N . It is expected that the q = 1 column will switch from
R to I at some large finite value of N ; this value has not
been accessed in numerical simulations currently.

We gratefully acknowledge helpful discussions with M.
Fisher and A. Sandvik. The research reported here
was supported in part by NSF DMR-1056536 (MSB,
RKK) and the Natural Sciences and Engineering Re-
search Council of Canada (RGM)
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FIG. 4: (color online). Continuous transition for q = 3
and N = 7 (honeycomb lattice with SU(7) spins). (a) The
Binder ratio. (b) Both the magnetic (blue squares) and VBS
(green circles) susceptibility data. The data has been col-
lapsed such that YN(z) = L1+⌘

N�N(z) + (a + bz)L�! and
YV(z) = L1+⌘

V�V(z) with ⌘N = 0.67, a = 20.0, b = 0.8,
! = 1.0, and ⌘V = 1.41. Also, z = [(g � g

c

)/g
c

]L1/⌫ with
g = J2/J

x

1 , g
c

= 0.5196 and ⌫ = 0.72. For the magnetic
susceptibility, the following system sizes were used in the col-
lapse: L = 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96. For the VBS
susceptibility, the following system sizes were used in the col-
lapse: L = 18, 24, 30, 36, 42, 48, 54. There are 2L2 lattice sites.

such a lattice the VBS state must be two fold degener-
ate, achieving q = 2. Specifically, we begin by taking
Jy

1 = 0.8Jx

1 [In the notation of Eq. (1), J ij

1 = Jx

i

if ij
is a x oriented bond; same for y]. For these coupling
the model is Néel order for N  4 and VBS ordered
for N > 4 (see SM for details). To study the Néel-VBS
transition for N  4 we add a Q interaction (here we use
Qy,y = 0.8Qx,x) and tune the ratio Jx

1 /Qx,x Remarkably,
we find first-order transitions for N = 2, 3 (see Fig. 2) and
a continuous transition for N = 4 (see SM). For N > 4
we can study the Néel-VBS transition by introducing a
J2 coupling. We use a uniform J2 across the rectangu-
lar plaquette diagonals. For all N > 4 we find strong
evidence for a continuous transition. A sample of our
data for N = 7 is shown in Fig. 3 (additional data for
N = 5, 10 are shown in SM). There is a very interesting
interpretation of our numerical observation that for q = 2
the transition is first order for N = 2, 3 and continuous
for N � 4: in general we expect that for a fixed q the scal-
ing dimension of the monopole operator should increase
as N increases [31]. What we have observed here then is
that for q = 2 the scaling dimension is large enough to
become irrelevant only when N � 4 [in agreement with
the RG flow in Fig. 1(a)], but for N = 2, 3 the operator is
a relevant perturbation [in contradiction to the RG flow
shown in Fig. 1(a)] and thus drives the transition first
order. We shall further elaborate on this interpretation

0 0.1 0.2 0.3 0.4 0.5
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0.8
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2
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FIG. 5: (color online). Comparison of anamolous dimensions
of Néel and VBS operators in the case of continuous transi-
tions for q = 2, 3 and 4. (a) Anomalous dimension of the Néel
order parameter as a function of 1/N . (b) Anomalous dimen-
sion of the VBS order parameter as a function of 1/N . The
gray squares are the results of a previous square lattice study
(q = 4) [17, 19]. The blue circles are new results from the
honeycomb lattice (q = 3) and the green diamonds are new
results from the rectangular lattice (q = 2). The red line is
the 1/N expansion. The agreement of the new data with both
the q = 4 data as well as the 1/N computation is striking.

later in the context of Table I.
Honeycomb lattice: Next, we study the case of a q = 3-

fold degenerate valence bond solid phase. We can achieve
this by studying our model, Eq. 1, on the honeycomb
lattice [see Fig. 1(a)]. The case of SU(2) has been stud-
ied [21] and the transition was shown to be continuous
and is expected to remain continuous for larger N [31].
Our goal is to verify this expectation by studying the
QCP for large-N and extract ⌘N and ⌘V at the critical
point for N = 5, 7, 10. Our starting point now is a J1 only
model on the nearest neighbors of a honeycomb lattice,
which is VBS ordered for N = 5, 7, 10 (see SM for a full
study of the J1 model as a function of N). To tune into
the Néel state we introduce a J2 between second nearest
neighbors on the honeycomb. We observe very good ev-
idence for a continuous transition; a sample of our data
for N = 7 is shown in Fig. 4.

Discussion: In addition to the results already pre-
sented for SU(7), we have extracted ⌘N , and ⌘V , for
q = 2, 3 and N = 5, 10. Fig. 5 shows all of our results
in comparison to previous data from the square lattice
study [19] and the analytic predictions [31–33]. Our pro-
cedure for extracting the critical exponents, as well as
the values of the critical couplings, is detailed in the SM.
We find that within the error bars of our calculation,
the anomalous dimension of the Néel and VBS order pa-
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Anderson RVB?

At small-N: Magnetic
At large-N: VBS

Theory of deconfined criticality does not apply
 on non-bipartite lattices.

Is there an Anderson RVB in-between?



Magnetic Order Parameters
2

N = 14

N = 10

SM(k)

�
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M

M

X

X

�VBS(k)

FIG. 2. Equal time structure factors for M order, SM(k), and
susceptibility for VBS order (�VBS(k)) shown for N = 10 and
N = 14, for the Ĥ

J

model, Eq. (1). The Bragg peaks for M
(VBS) weaken (sharpen) with increasing N , consistent with
the mapping to a quantum dimer model at large-N and the
known magnetic order for small N (see text). The cartoon of
the Brillouin zones shows the location of the ordering vectors
of both order parameters. Quantitative finite size scaling of
these orders is show in Figs. 3 and 4. Data shown is for L = 48
and � = L.

that the ground state on bipartite [non-bipartite] lattices
is an SU(N) [O(N)] singlet. In addition, on the trian-
gular lattice, which is the focus of our study here, there
is no simple translationally invariant covering of singlets,
leading us to suspect that a generalization of the SU(2)
square lattice Lieb-Schultz Mattis theorem applies to H

J

on this lattice, i.e. in the thermodynamic limit there
must be a degeneracy in the ground state, so that a sim-
ple gapped paramagnet is not possible – either a symme-
try is broken or the ground state is exotic. A rigorous
proof of this intuitive assertion is expected to be at least
as technical as the proof for the bipartite N = 2 case [15]
and is well beyond the scope of this work.

Ĥ
J

at small and large-N : As we shall now see, for
small N it is known from previous results on related
models that Ĥ

J

on the triangular lattice is magneti-
cally ordered, i.e. it breaks the O(N) symmetry – we
shall refer to this as M order. Indeed at N = 2, H

J

is equivalent to a S = 1/2 XXZ model. Identifying
the two colors with " and # spins, Eq. (1) becomes
Ĥ =

P
hiji �J(Sy

i

Sy

j

+Sz

i

Sz

j

)+JSx

i

Sx

j

. Previous studies
have shown that this model on the triangular lattice has a
M ground state that breaks the O(2) symmetry [16–18].
For N = 3, identifying the three colors with the time-
reversal invariant basis states of a S = 1 spin: |xi, |yi
and |zi (defined such that Sx|xi = Sy|yi = Sz|zi = 0),

Eq. (1) becomes Ĥ = �J

3

P
ij

⇣
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· ~S
j
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. The ground
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FIG. 3. Finite size scaling of magnetic order parameter and
spin sti↵ness for the model Ĥ

J

, in Eq. (1) with 10  N 
14. Shown on the left is the square of the magnetic order
parameter, O2

M

(the height of the Bragg peak in Fig. 2), and
on the right is the spin sti↵ness, ⇢

s

, plotted as a function
of 1/L. The data confirms that the system is magnetically
ordered for N  10 and non-magnetic for N � 11.

state of this model has been studied in detail and shown
to have O(3) symmetry breaking M order [19, 20]. Turn-
ing now to the large-N limit, analogous to previous work
for SU(N) anti-ferromagnets on bipartite lattices, it is
possible to show that at N = 1, the ground state is in-
finitely degenerate and consists of dimer coverings where
each dimer is the O(N) singlet state |S

ij

i. At leading

order in 1/N , Ĥ
J

introduces o↵-diagonal moves which
re-arrange parallel dimers around a plaquette, mapping
Ĥ

J

at large-N to a quantum dimer model on the trian-
gular lattice with only a kinetic term,

ĤQDM = �t
n4X

i=1

n⇣
|

`` `` i
i

h ` .........
........`

.........
........ `` |

i

+ h.c.
⌘

(2)

where the sum includes closed loops of length four of
all orientations (with periodic boundary conditions n4 =
3L2 on an L⇥L lattice). The ground state of this model
has been found in previous analytic [21] and numerical
work [22] to be a

p
12 ⇥

p
12 valence bond solid (VBS),

breaking the lattice translation symmetry but preserving
the O(N) M symmetry. We thus expect that at large-N ,
H

J

should enter this same VBS state.
Numerical Simulations: Since Ĥ

J

hosts an M ground
state for small-N and a VBS ground state for large-N ,
it is a natural and interesting question to ask what the
nature of the transition is between these two limiting
cases. Unlike the N = 2, 3 cases, no results are avail-
able for the triangular lattice Ĥ

J

for N � 4. Exploit-
ing the fact that the model Eq. (1) has no sign problem
we study the the model as a function of N on L ⇥ L
lattices at temperture � by quantum Monte Carlo sim-
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model, Eq. (1). The Bragg peaks for M
(VBS) weaken (sharpen) with increasing N , consistent with
the mapping to a quantum dimer model at large-N and the
known magnetic order for small N (see text). The cartoon of
the Brillouin zones shows the location of the ordering vectors
of both order parameters. Quantitative finite size scaling of
these orders is show in Figs. 3 and 4. Data shown is for L = 48
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that the ground state on bipartite [non-bipartite] lattices
is an SU(N) [O(N)] singlet. In addition, on the trian-
gular lattice, which is the focus of our study here, there
is no simple translationally invariant covering of singlets,
leading us to suspect that a generalization of the SU(2)
square lattice Lieb-Schultz Mattis theorem applies to H

J

on this lattice, i.e. in the thermodynamic limit there
must be a degeneracy in the ground state, so that a sim-
ple gapped paramagnet is not possible – either a symme-
try is broken or the ground state is exotic. A rigorous
proof of this intuitive assertion is expected to be at least
as technical as the proof for the bipartite N = 2 case [15]
and is well beyond the scope of this work.
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models that Ĥ
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reversal invariant basis states of a S = 1 spin: |xi, |yi
and |zi (defined such that Sx|xi = Sy|yi = Sz|zi = 0),

Eq. (1) becomes Ĥ = �J
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state of this model has been studied in detail and shown
to have O(3) symmetry breaking M order [19, 20]. Turn-
ing now to the large-N limit, analogous to previous work
for SU(N) anti-ferromagnets on bipartite lattices, it is
possible to show that at N = 1, the ground state is in-
finitely degenerate and consists of dimer coverings where
each dimer is the O(N) singlet state |S

ij

i. At leading

order in 1/N , Ĥ
J

introduces o↵-diagonal moves which
re-arrange parallel dimers around a plaquette, mapping
Ĥ

J

at large-N to a quantum dimer model on the trian-
gular lattice with only a kinetic term,

ĤQDM = �t
n4X

i=1

n⇣
|

`` `` i
i

h ` .........
........`

.........
........ `` |

i

+ h.c.
⌘

(2)

where the sum includes closed loops of length four of
all orientations (with periodic boundary conditions n4 =
3L2 on an L⇥L lattice). The ground state of this model
has been found in previous analytic [21] and numerical
work [22] to be a

p
12 ⇥

p
12 valence bond solid (VBS),

breaking the lattice translation symmetry but preserving
the O(N) M symmetry. We thus expect that at large-N ,
H

J

should enter this same VBS state.
Numerical Simulations: Since Ĥ

J

hosts an M ground
state for small-N and a VBS ground state for large-N ,
it is a natural and interesting question to ask what the
nature of the transition is between these two limiting
cases. Unlike the N = 2, 3 cases, no results are avail-
able for the triangular lattice Ĥ

J

for N � 4. Exploit-
ing the fact that the model Eq. (1) has no sign problem
we study the the model as a function of N on L ⇥ L
lattices at temperture � by quantum Monte Carlo sim-

k-space Correlations
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X
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�VBS(k)

FIG. 2. Equal time structure factors for M order, SM(k), and
susceptibility for VBS order (�VBS(k)) shown for N = 10 and
N = 14, for the Ĥ

J

model, Eq. (1). The Bragg peaks for M
(VBS) weaken (sharpen) with increasing N , consistent with
the mapping to a quantum dimer model at large-N and the
known magnetic order for small N (see text). The cartoon of
the Brillouin zones shows the location of the ordering vectors
of both order parameters. Quantitative finite size scaling of
these orders is show in Figs. 3 and 4. Data shown is for L = 48
and � = L.

that the ground state on bipartite [non-bipartite] lattices
is an SU(N) [O(N)] singlet. In addition, on the trian-
gular lattice, which is the focus of our study here, there
is no simple translationally invariant covering of singlets,
leading us to suspect that a generalization of the SU(2)
square lattice Lieb-Schultz Mattis theorem applies to H

J

on this lattice, i.e. in the thermodynamic limit there
must be a degeneracy in the ground state, so that a sim-
ple gapped paramagnet is not possible – either a symme-
try is broken or the ground state is exotic. A rigorous
proof of this intuitive assertion is expected to be at least
as technical as the proof for the bipartite N = 2 case [15]
and is well beyond the scope of this work.

Ĥ
J

at small and large-N : As we shall now see, for
small N it is known from previous results on related
models that Ĥ

J

on the triangular lattice is magneti-
cally ordered, i.e. it breaks the O(N) symmetry – we
shall refer to this as M order. Indeed at N = 2, H

J

is equivalent to a S = 1/2 XXZ model. Identifying
the two colors with " and # spins, Eq. (1) becomes
Ĥ =

P
hiji �J(Sy

i

Sy

j

+Sz

i

Sz

j

)+JSx

i

Sx

j

. Previous studies
have shown that this model on the triangular lattice has a
M ground state that breaks the O(2) symmetry [16–18].
For N = 3, identifying the three colors with the time-
reversal invariant basis states of a S = 1 spin: |xi, |yi
and |zi (defined such that Sx|xi = Sy|yi = Sz|zi = 0),

Eq. (1) becomes Ĥ = �J
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, plotted as a function
of 1/L. The data confirms that the system is magnetically
ordered for N  10 and non-magnetic for N � 11.

state of this model has been studied in detail and shown
to have O(3) symmetry breaking M order [19, 20]. Turn-
ing now to the large-N limit, analogous to previous work
for SU(N) anti-ferromagnets on bipartite lattices, it is
possible to show that at N = 1, the ground state is in-
finitely degenerate and consists of dimer coverings where
each dimer is the O(N) singlet state |S

ij

i. At leading

order in 1/N , Ĥ
J

introduces o↵-diagonal moves which
re-arrange parallel dimers around a plaquette, mapping
Ĥ

J

at large-N to a quantum dimer model on the trian-
gular lattice with only a kinetic term,
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where the sum includes closed loops of length four of
all orientations (with periodic boundary conditions n4 =
3L2 on an L⇥L lattice). The ground state of this model
has been found in previous analytic [21] and numerical
work [22] to be a

p
12 ⇥

p
12 valence bond solid (VBS),

breaking the lattice translation symmetry but preserving
the O(N) M symmetry. We thus expect that at large-N ,
H

J

should enter this same VBS state.
Numerical Simulations: Since Ĥ

J

hosts an M ground
state for small-N and a VBS ground state for large-N ,
it is a natural and interesting question to ask what the
nature of the transition is between these two limiting
cases. Unlike the N = 2, 3 cases, no results are avail-
able for the triangular lattice Ĥ

J

for N � 4. Exploit-
ing the fact that the model Eq. (1) has no sign problem
we study the the model as a function of N on L ⇥ L
lattices at temperture � by quantum Monte Carlo sim-

cf. quantum dimer model: Moessner/Sondhi (2001). Ralko/Ferrero/Becca/Ivanov/Mila (2005)



M and VBS ratios
3

FIG. 4. Crossing plots of the ratios RM and RVBS as a
function of the discrete variable N . Consistent with the finite
size scaling plots of Fig. 3, it is seen that magnetic order is
present for N  10. VBS order on the other hand is present
for N � 13. N = 12 has no magnetic order – from the RVBS

data, we are unable to reliably resolve for this N whether the
VBS order is weak or absent. N = 11 has no M or VBS order
and is a strong candidate for a QSL.

ulations. We have used the stochastic series expansion
method [23], with an extension of an algorithm that has
been described previously [19]. The M state is described
by the matrix order parameter Q

↵�

= |↵ih�|� 1/N . To
detect M order we measure the static structure factor,
SM(k) = 1

N

2
site

P
ij

eik·(ri�rj)hQ
↵↵

(i)Q
↵↵

(j)i. As shown

in Fig. 2, a peak in SM(k) is found at the � point. Al-
ready qualitatively it is possible to see the peak in SM(k)
softens as N is increased. To test quantitatively for long
range order we study the scaling of the height of the peak
in SM(k), O2

M

⌘ SM(k = 0) and the spin sti↵ness ⇢
s

on
finite size systems with Nsite = L ⇥ L. Both quantities
are expected to be finite in the M state and zero when
the O(N) symmetry is restored. Fig. 3 shows finite size
data for both quantities for di↵erent values of N . From
these plots we conclude that the M symmetry is broken
up to N = 10 and is restored for N � 11, because O2

M

scales to zero for these N . This behavior is mirrored in
⇢

s

, albeit for intermediate L there is some non-monotonic
behavior for N = 11.

The VBS ordering can be detected by the dimer-dimer
correlation functions. Defining a dimer operator be-
tween nearest neighbors, Pri,rj = |S

ij

ihS
ij

|, we can con-
struct a k dependent susceptibility in the usual way
from imaginary time-displaced operators: �VBS(k) =

1
N

2
site

P
ij

eik·(ri�rj) 1
�

R
d⌧hPri,ri+x̂

(⌧)Prj ,rj+x̂

(0)i. Fig.

2 shows the development of sharp peaks at the X and
M points as N is increased. These are exactly the mo-
menta at which previous numerical studies of the quan-
tum dimer model Eq. (2) have observed Bragg peaks,

FIG. 5. Crossings of ⇢
s

and RVBS signaling the location of
the onset of long-range M and VBS orders at N = 10.

validating the mapping of Ĥ
J

at large-N , to the quan-
tum dimer model, Eq. (2). To detect at which N , VBS
order first sets in, one might be tempted to attempt a
thermodynamic extrapolation of the Bragg peak height,
but it turns out it is more reliable to study the ratio,
RVBS = 1 � �VBS(M)

�VBS(M) as a function of L. RVBS must di-
verge in a phase in which the Bragg peak height scales
with volume and becomes infinitely sharp. On the other
hand it must go to zero in a phase in which the VBS cor-
relation length is finite and the height and width of the
Bragg peak saturate with system size. We note that at a
critical point standard finite size scaling arguments imply
that the ratio, RVBS becomes volume independent. All
of these facts together imply a crossing in this quantity
for di↵erent L. Fig. 4 shows the RVBS ratio and an anal-
ogous quantity constructed for the M order from SM(k),
RM as a function of the discrete variable, N for di↵erent
L. The data for R

M

confirms again that the magnetic
order is present for N  10 and vanishes for N � 11.
The RVBS data shows that the there is definitely long-
range VBS order for N � 13, the data is inconclusive for
N = 12 where there may be either very weak VBS order
or no VBS order. Interesting N = 11 has neither VBS or
M order, suggesting that it is a candidate for quantum
spin-liquid (QSL) behavior.
J-Q models: In order to establish the existence of the

new phase and elucidate the nature of the transitions
between the three phases on the non-bipartite lattices,
it is useful to find a continuous sign-free couplings that
can take us from M to QSL to VBS at a fixed value of
the discrete N . To this end we note that just like the J
interaction, the Q interaction introduced originally for
bipartite systems [1], can easily be generalized to the
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J-Q model

HJ�Q = �J
X

hiji

Pij �Q
X

hijkli

PijPkl

Sign-free way to tune from magnetic to VBS at fixed N!

A.W. Sandvik, PRL (2007)



J-Q Triangular Lattice

0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

Q/J

0.00

0.05

0.10

0.15

0.20

0.25

⇠ V
B

S
,M

/L

N10
0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

Q/J

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 L = 12

L = 18

L = 24

L = 36

L = 48

L = 72

L⇢s

N=10



Two critical points!

(L,L/2)



VBS exponents
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Outlook

Bipartite: Deconfined Criticality
Néel at small-N; VBS at large-N; direct transition

Evidence consistent with SU(N) “deconfined” field theory.
(continuous transition, large-N exponents, q-N phase diagram)

Physical realizations?

Non-Bipartite: Intermediate RVB phase
Magnetic at small-N; VBS at large-N; intermediate phase

No deconfined criticality
Simplest scenario: A gapped topological spin liquid

Other lattices: Kagome, Pyrochlore?



THE END


