Spin-liquid behavior of a simple spin model on the triangular lattice

Ribhu Kaul University of Kentucky

A SIMPLE MODEL OF MANY-BODY QUANTUM MECHANICS

Hilbert Space

Consider any lattice with N_{site} sites. Illustration: 2-d triangular lattice

Hilbert Space

Assign a color to each site (Hilbert space: $N^{N_{site}}$) Illustration: N = 3

Hilbert Space

To define "Hamiltonian" describe how it acts on Hilbert space.

<u>Hamiltonian</u>

Put picture in equations:

$$H_J = -\frac{J}{N} \sum_{\langle ij \rangle, \alpha\beta} |\alpha \alpha \rangle_{ij} \langle \beta \beta |_{ij} \quad (1 \le \alpha \le N)$$

<u>Hamiltonian</u>

Put picture in equations:

$$H_J = -\frac{J}{N} \sum_{\langle ij \rangle, \alpha\beta} |\alpha \alpha \rangle_{ij} \langle \beta \beta |_{ij} \quad (1 \le \alpha \le N)$$

$$|\mathcal{S}\rangle_{ij} = \frac{1}{\sqrt{N}} \sum_{\alpha} |\alpha\alpha\rangle_{ij}$$

I'll call $|\mathcal{S}\rangle$ a "singlet" state

$$H_J = -J \sum_{\langle ij \rangle} |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$$

Outline of the Talk $H_J = -J \sum |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$ $\langle ij angle$ **Q:** What is the ground state of H_J as a function of N and for different lattices?

 $H_J = -J \sum_{\langle ij \rangle} |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$

BIPARTITE LATTICES NON-BIPARTITE LATTICES

 $H_J = -J \sum_{\langle ij \rangle} |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$

BIPARTITE LATTICES NON-BIPARTITE LATTICES

Bipartite Lattices

Consider, N = 2 $H_J = -J \sum_{\langle ij \rangle} |S\rangle_{ij} \langle S|_{ij}$

is identical up to a constant to,

$$H_{\rm heis} = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j$$

Bipartite Lattices

Consider, N = 2 $H_J = -J \sum_{\langle ij \rangle} |S\rangle_{ij} \langle S|_{ij}$

is identical up to a constant to,

$$H_{\rm heis} = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j$$

Néel State

Small N: Magnetic

N=2

Classical Néel State: Breaks SU(2) symmetry

Read, Sachdev Nuc. Phys. B (1986)

VBS: breaks lattice symmetry

Read, Sachdev Nuc. Phys. B (1986)

VBS: breaks lattice symmetry

Read, Sachdev Nuc. Phys. B (1986)

VBS: breaks lattice symmetry

Emergence of scalar-QED right at critical point!

How to study fixed-N transition?

A.W. Sandvik, PRL (2007)

$$H_{\rm JQ} = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - Q \sum_{\langle ijkl \rangle} (\mathbf{S}_i \cdot \mathbf{S}_j - \frac{1}{4}) (\mathbf{S}_k \cdot \mathbf{S}_l - \frac{1}{4})$$

Lou, Kawashima, Sandvik, PRB (2009);

Kaul, Sandvik PRL (2012)

... we can now systematically derive an infinitely-large class of SU(N) Hamiltonians that are Marshall positive & hence sign-problem free.

R. K. Kaul, arxiv:1403.5678(2014)

"Designer" Hamiltonians

R. K. Kaul, R.G. Melko, A.W. Sandvik.

Ann. Rev. Cond. Mat. Phys. (2013)

QMC SSE method: Sandvik, AIP (2010)

Universal scaling dimensions

$$C_{N,V}(\mathbf{r},\tau) \sim \frac{1}{(\mathbf{r}^2 + c^2 \tau^2)^{(1+\eta_{V,N})/2}}$$

1/N expansion of \mathbb{CP}^{N-1} field theory

$$\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1}^{N} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2$$

$$\eta_N = 1 - 32/(\pi^2 N), \quad 1 + \eta_V = 2\delta_1 N,$$

$$\vec{n} = z_s^* \frac{\sigma_{ss'}}{2} z_{s'} \qquad \qquad \delta_1 \approx 0.1246$$

Halperin, Lubensky, Ma PRL (1974); Kaul, Sachdev (2008); Metlitski, Hermele, Senthil, Fisher (2008).

Néel-VBS in SU(N) magnets

R.K. Kaul & A. W. Sandvik, PRL (2012)

Comparison of exponents with CP^{N-1} theory.

exponents trends for both $J-Q \& J_1-J_2$ are consistent η_N extrapolates to 1 in $N \to \infty$ limit. $\frac{1}{N}$ correction for η_N is within few % of large-N result. Leading piece for η_V is within few % of large-N result.

Predictions for next $rac{1}{N}$ corrections to η_N & η_V

Strong evidence for a new kind of phase transition:

- Direct continuous transition
- Both order parameters simultaneously critical
- Universality class for SU(N): CP^{N-1} field theory

Two central assumptions for deconfined criticality: (1) existence of fixed point \mathbb{CP}^{N-1} . (2) irrelevance of *q*-monopoles

<u>N-q phase diagram</u>

M. Block, R.G. Melko & R.K. Kaul, PRL (2013)

 $\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2 + q \text{-fold monopoles}$

N

N-q phase diagram

$$\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1}^{N} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2 + q \text{-fold monopoles}$$

$N = \infty$	I	Ι	Ι	Ι	Ι	Ι	$\operatorname{nc-}\mathbb{CP}^{N-1}$
• • •							
N=5						Ι	$\operatorname{nc-}\mathbb{CP}^4$
N=4						Ι	$\mathrm{nc} extsf{-}\mathbb{CP}^3$
N=3						Ι	$\operatorname{nc-}\mathbb{CP}^2$
N=2						Ι	$\operatorname{nc-}\mathbb{CP}^1$
N = 1	R	R	R	Ι		Ι	XY
	q = 1	q=2	q = 3	q = 4	•••	$q = \infty$	
<u>N-q phase diagram</u>

$$\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1}^{N} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2 + q \text{-fold monopoles}$$

$$\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1}^{N} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2 + q \text{-fold monopoles}$$

$N = \infty$	I	Ι	Ι	Ι	Ι	Ι	$\operatorname{nc-}\mathbb{CP}^{N-1}$
• • •							
N=5						Ι	$\operatorname{nc-}\mathbb{CP}^4$
N=4						Ι	$\mathrm{nc} ext{-}\mathbb{CP}^3$
N=3						Ι	$\operatorname{nc-}\mathbb{CP}^2$
N=2						Ι	$\operatorname{nc-}\mathbb{CP}^1$
N = 1	R	R	R	Ι		Ι	XY
	q = 1	q=2	q = 3	q = 4	•••	$q = \infty$	

<u>N-q phase diagram</u>

$$\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1}^{N} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2 + q \text{-fold monopoles}$$

$$\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1}^{N} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2 + q \text{-fold monopoles}$$

$N = \infty$	I	Ι	I	Ι	Ι	Ι	$\operatorname{nc-}\mathbb{CP}^{N-1}$
•••							
N=5						Ι	$\operatorname{nc-}\mathbb{CP}^4$
N=4		1	 Murthy/Sach	dev		Ι	$\mathrm{nc} ext{-}\mathbb{CP}^3$
N=3						Ι	$\operatorname{nc-}\mathbb{CP}^2$
N=2						Ι	$\operatorname{nc-}\mathbb{CP}^1$
N = 1	R	R	R	Ι		Ι	XY
	q = 1	q=2	q=3	q=4	• • •	$q = \infty$	

$$\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1}^{N} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2 + q \text{-fold monopoles}$$

$N = \infty$	I	I	Ι	Ι	Ι	Ι	$\operatorname{nc-}\mathbb{CP}^{N-1}$
• • •							
N=5				Ι		Ι	$\operatorname{nc-}\mathbb{CP}^4$
N=4	Sq	uare Lattice	\rightarrow	Ι		Ι	$\operatorname{nc-}\mathbb{CP}^3$
N=3		Iveel-VDS		Ι		Ι	$\operatorname{nc-}\mathbb{CP}^2$
N = 2				Ι		Ι	$\operatorname{nc-}\mathbb{CP}^1$
N = 1	R	R	R	1		Ι	XY
	q = 1	q=2	q = 3	q = 4	• • •	$q = \infty$	

$$\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1}^{N} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2 + q \text{-fold monopoles}$$

$N = \infty$	Ι	Ι	Ι	Ι	Ι	Ι	$\operatorname{nc-}\mathbb{CP}^{N-1}$
• • •	1	▲					
N=5				Ι		Ι	$\operatorname{nc-}\mathbb{CP}^4$
N=4				Ι		Ι	$\operatorname{nc-}\mathbb{CP}^3$
N=3				Ι		Ι	$\operatorname{nc-}\mathbb{CP}^2$
N = 2	↓	•	\mathbf{I}	Ι		Ι	$\operatorname{nc-}\mathbb{CP}^1$
N = 1	R	R	R	Ι		Ι	XY
	q = 1	q=2	q = 3	q=4	•••	$q = \infty$	

q=1,2,3 is different from 4!

$$\mathcal{L}_{\mathbb{CP}^{N-1}} = \sum_{\alpha=1}^{N} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2 + q \text{-fold monopoles}$$

$N = \infty$	Ι	Ι	Ι	Ι	Ι	Ι	$\operatorname{nc-}\mathbb{CP}^{N-1}$
• • •							
N=5	-			Ι		Ι	$\operatorname{nc-}\mathbb{CP}^4$
N=4		???		Ι		Ι	$\operatorname{nc-}\mathbb{CP}^3$
N=3	L			Ι		Ι	$\operatorname{nc-}\mathbb{CP}^2$
N=2	↓			Ι		Ι	$\mathrm{nc} ext{-}\mathbb{CP}^1$
N = 1	R	R	R	Ι		Ι	XY
	q =	$1 \mid q = 2$	q = 3	q = 4	•••	$q = \infty$	

q=1,2,3 is different from 4!

Complete q-N phase diagram

M. Block, R.G. Melko & R.K. Kaul, PRL (2013)

$N = \infty, 1/N$	I	Ι	Ι	Ι	•••	Ι	nc- \mathbb{CP}^{N-1}
N = 10	R	Ι	Ι	Ι		Ι	$\operatorname{nc-}\mathbb{CP}^9$
N = 9	R	Ι	Ι	Ι		Ι	nc- \mathbb{CP}^8
N = 8	R	Ι	Ι	Ι		Ι	$\operatorname{nc-}\mathbb{CP}^7$
N = 7	R	Ι	Ι	Ι		Ι	nc- \mathbb{CP}^6
N = 6	R	Ι	Ι	Ι		Ι	$\operatorname{nc-}\mathbb{CP}^5$
N = 5	R	Ι	Ι	Ι		Ι	$\operatorname{nc-}\mathbb{CP}^4$
N=4	R	Ι	Ι	Ι		Ι	$\operatorname{nc-}\mathbb{CP}^3$
N=3	R	R	Ι	Ι		Ι	$\operatorname{nc-}\mathbb{CP}^2$
N=2	R	R	Ι	Ι		Ι	$\operatorname{nc-}\mathbb{CP}^1$
N = 1	R	R	R	Ι		Ι	XY
N = 0	R	R	R	R		R	photon
	q = 1	q = 2	q = 3	q = 4	•••	$q = \infty$	

Critical Universality?

M. Block, R.G. Melko & R.K. Kaul, PRL (2013)

 $H_J = -J \sum_{\langle ij \rangle} |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$

BIPARTITE LATTICES NON-BIPARTITE LATTICES

Special cases on Tri. lattice

$$N = 2 \qquad H_{XXZ} = -\sum_{\langle ij \rangle} \left(\frac{S_i^+ S_j^- + S_i^- S_j^+}{2} + S_i^z S_j^z \right) \qquad \mathsf{O(2) \ broken}$$

Murthy/Arovas/Auerbach, PRB (1997); Melko/Paramekanti/Burkov/ Vishwanath/Sheng/Balents ; Heidarian/Damle; Wessel/Troyer. PRL (2005)

$$N = 3$$
 $H_{\text{biq}} = -\sum_{\langle ij \rangle} (S_i \cdot S_j)^2$ O(3) broken

Tsunetsugu/Arikawa (2005);Bhattacharjee/Shenoy/Senthil (2006). Laeuchli/Mila/ Penc PRL (2006); Kaul (2012)

Special cases on Tri. lattice

$$N = 2 \qquad H_{XXZ} = -\sum_{\langle ij \rangle} \left(\frac{S_i^+ S_j^- + S_i^- S_j^+}{2} + S_i^z S_j^z \right) \qquad \mathsf{O(2) \ broken}$$

Murthy/Arovas/Auerbach, PRB (1997); Melko/Paramekanti/Burkov/ Vishwanath/Sheng/Balents; Heidarian/Damle; Wessel/Troyer. PRL (2005)

$$N = 3$$
 $H_{\text{biq}} = -\sum_{\langle ij \rangle} (S_i \cdot S_j)^2$ O(3) broken

Tsunetsugu/Arikawa (2005);Bhattacharjee/Shenoy/Senthil (2006). Laeuchli/Mila/ Penc PRL (2006); Kaul (2012)

$$N = \infty \qquad H_{QDM} = -t \left(|\Xi\rangle \langle \mathbf{i} \mathbf{i}| + h.c. \right) \qquad \frac{\sqrt{12} \times \sqrt{12}}{\mathsf{VBS} \text{ ordered}}$$

Read/Sachdev NPB (1986); Moessner/Sondhi, PRB (2001)

Anderson RVB?

At small-N: Magnetic At large-N: VBS

Theory of deconfined criticality does not apply on non-bipartite lattices.

Is there an Anderson RVB in-between?

A

M

cf. quantum dimer model: Moessner/Sondhi (2001). Ralko/Ferrero/Becca/Ivanov/Mila (2005)

A.W. Sandvik, PRL (2007)

Sign-free way to tune from magnetic to VBS at fixed N!

VBS exponents

 $\nu = 0.47, Q/J|_c = 0.1178$

<u>Model</u>

$$H_J = -J \sum_{\langle ij \rangle} |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$$

<u>Model</u>

$$H_J = -J \sum_{\langle ij \rangle} |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$$

<u>Model</u>

$$H_J = -J \sum_{\langle ij \rangle} |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$$

<u>Model</u>

$$H_J = -J \sum_{\langle ij \rangle} |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$$

<u>Model</u>

$$H_J = -J \sum_{\langle ij \rangle} |\mathcal{S}\rangle_{ij} \langle \mathcal{S}|_{ij}$$

<u>Outlook</u>

Bipartite: Deconfined Criticality

Néel at small-N;VBS at large-N; direct transition Evidence consistent with SU(N) "deconfined" field theory. (continuous transition, large-N exponents, q-N phase diagram) Physical realizations?

Non-Bipartite: Intermediate RVB phase

Magnetic at small-N;VBS at large-N; intermediate phase No deconfined criticality Simplest scenario: A gapped topological spin liquid Other lattices: Kagome, Pyrochlore?
THE END