# Theoretical and experimental study of aromatic hydrocarbon superconductors

**Zhongbing Huang** 

### <sup>1</sup>Hubei University, Wuhan, China <sup>2</sup>Beijing Computational Science Research Center

Collaborators: Prof. Haiqing Lin, Beijing Computational Science Research Center Dr. Xunwang Yan, Beijing Computational Science Research Center Dr. Guohua Zhong, Shenzhen Institutes of Advanced Technology,

**Chinese Academy of Sciences** 

Évora, Portugal, 6-10 October 2014

# Outline

- Research background
- Research plans
- Theoretical results
- Conclusions

## **Picene (C<sub>22</sub>H<sub>14</sub>) (experiment)**

nature

Vol 464 4 March 2010 doi:10.1038/nature08859

## LETTERS

### Superconductivity in alkali-metal-doped picene

Ryoji Mitsuhashi<sup>1</sup>, Yuta Suzuki<sup>2</sup>, Yusuke Yamanari<sup>2</sup>, Hiroki Mitamura<sup>1</sup>, Takashi Kambe<sup>2</sup>, Naoshi Ikeda<sup>2</sup>, Hideki Okamoto<sup>3,4</sup>, Akihiko Fujiwara<sup>5</sup>, Minoru Yamaji<sup>6</sup>, Naoko Kawasaki<sup>1</sup>, Yutaka Maniwa<sup>7</sup> & Yoshihiro Kubozono<sup>1</sup>



#### PHYSICAL REVIEW B 87, 060505(R) (2013)

#### Ś

#### **Observation of zero resistivity in K-doped picene**

Kazuya Teranishi,<sup>1</sup> Xuexia He,<sup>1</sup> Yusuke Sakai,<sup>1</sup> Masanari Izumi,<sup>1</sup> Hidenori Goto,<sup>1,2</sup> Ritsuko Eguchi,<sup>1</sup> Yasuhiro Takabayashi,<sup>1</sup> Takashi Kambe,<sup>3</sup> and Yoshihiro Kubozono<sup>1,2,\*</sup>

<sup>1</sup>Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan

<sup>2</sup>Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University,

Okayama 700-8530, Japan

<sup>3</sup>Department of Physics, Okayama University, Okayama 700-8530, Japan



K<sub>3.1</sub>picene

K<sub>3.5</sub>picene

# **Phenanthrene (C<sub>14</sub>H<sub>10</sub>) (experiment)**

Received 13 Jul 2011 | Accepted 21 Sep 2011 | Published 18 Oct 2011

DOI: 10.1038/ncomms1513

# Superconductivity at 5 K in alkali-metal-doped phenanthrene

X.F. Wang<sup>1</sup>, R.H. Liu<sup>1</sup>, Z. Gui<sup>2</sup>, Y.L. Xie<sup>1</sup>, Y.J. Yan<sup>1</sup>, J.J. Ying<sup>1</sup>, X.G. Luo<sup>1</sup> & X.H. Chen<sup>1</sup>





# **Dibenzopentacene(C<sub>30</sub>H<sub>18</sub>)(experiment)**

SCIENTIFIC REPORTS | 2:389 | DOI: 10.1038/srep00389

# Superconductivity above 30 K in alkali-metal-doped hydrocarbon

Mianqi Xue<sup>1,2</sup>, Tingbing Cao<sup>2</sup>, Duming Wang<sup>3</sup>, Yue Wu<sup>1</sup>, Huaixin Yang<sup>1</sup>, Xiaoli Dong<sup>1</sup>, Junbao He<sup>3</sup>, Fengwang Li<sup>2</sup> & G. F. Chen<sup>1,3</sup>





Curie-Weiss magnetic behavior → local spin (~0.2µ<sub>B</sub>)

 $C_{22}H_{14}$  (theory)

PHYSICAL REVIEW B 83, 134508 (2011)

#### Electronic correlation effects in superconducting picene from ab initio calculations

Gianluca Giovannetti<sup>1,2</sup> and Massimo Capone<sup>1,3</sup>

 <sup>1</sup>ISC-CNR and Dipartimento di Fisica, Università di Roma "La Sapienza," Piazzale A. Moro 5, I-00185 Rome, Italy <sup>2</sup>Institute for Theoretical Solid State Physics, IFW Dresden, D-01171 Dresden, Germany
<sup>3</sup>Democritos National Simulation Center, CNR-IOM and Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste, Italy (Received 16 November 2010; revised manuscript received 21 February 2011; published 7 April 2011)

PHYSICAL REVIEW B 83, 214510 (2011)

Density functional calculations of electronic structure and magnetic properties of the hydrocarbon K<sub>3</sub>picene superconductor near the metal-insulator transition

> Minjae Kim and B. I. Min<sup>\*</sup> Department of Physics, PCTP, Pohang University of Science and Technology, Pohang 790-784, Korea

Geunsik Lee, Hee Jae Kwon, Y. M. Rhee, and Ji Hoon Shim<sup>†</sup> Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea (Received 8 April 2011; revised manuscript received 27 April 2011; published 9 June 2011)

# Effective Coulomb interaction between electrons U<sub>eff</sub> is larger than the bandwidth W near the Fermi energy.

Picene is a strongly correlated electron system.

## $C_{22}H_{14}$ (theory)

PRL 107, 137006 (2011)

PHYSICAL REVIEW LETTERS

week ending 23 SEPTEMBER 2011

#### Intercalant and Intermolecular Phonon Assisted Superconductivity in K-Doped Picene

Michele Casula,<sup>1</sup> Matteo Calandra,<sup>1</sup> Gianni Profeta,<sup>2</sup> and Francesco Mauri<sup>1</sup>

 <sup>1</sup>CNRS and Institut de Minéralogie et de Physique des Milieux condensés, Université Paris 6, case 115, 4 place Jussieu, 75252, Paris cedex 05, France
<sup>2</sup>SPIN-CNR–Dipartimento di Fisica, Università degli Studi di L'Aquila, 67100 L'Aquila, Italy and Max-Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany (Received 8 June 2011; published 21 September 2011)

 $\lambda = 0.73$ ,  $\omega_{log} = 18.0$  meV (208 K) Intercalant and intermolecular phonon modes contribute substantially (40%) to  $\lambda$  as also shown by the isotope exponents of potassium (0.19) and carbon (0.31).

Unlike C60, where intramolecular phonons dominate  $\lambda$ .

# **Open questions:**

- 1. What are the crystal and electronic structures for the superconducting phase?
- 2. What is the physical origin for local spin?
- 3. Does electron correlation contribute to superconductivity?
- 4. Do there exist new aromatic superconductors?

**Motivation for our study** 

# **Research plans:**

Methods based on Density functional theory (LDA, GGA, HSE,...) Methods based on Many body theory (QMC, ED, DMFT...)

- •Properties of molecular crystals
- •Models of molecular crystals

- Properties of models
- •Electronic correlation effects beyond DFT

Experimental study (ongoing...)

# **Theoretical results**

- Magnetic and pairing properties of single molecule and molecular crystal (Scientific Reports 2, 922, 2012, JAP 113, 17E131, 2013)
- Identify the crystal structures for metal-doped picene (arXiv: 1407.0747)
- Identify the crystal structures for La/Ba-doped phenanthrene (JCP 139, 204709, 2013, under review in JCP)
- Prediction of superconductivity in K,Ba-codoped phenanthrene (unpublished)
- Prediction of superconductivity in K-doped benzene (unpublished)



Magnetic instability and pair binding in aromatic hydrocarbon superconductors

Scientific Reports 2, 922 (2012).

SUBJECT AREAS: PHYSICS

Zhongbing Huang<sup>1,2</sup>, Chao Zhang<sup>1</sup> & Hai-Qing Lin<sup>1</sup>

# Starting point: One-orbital Hubbard model defined on a single molecule.





### Spin phase diagram



For the charged molecules with two added electrons, the spin polarized state (S=1) has lower energy than the paramagnetic state (S=0).

local spin

### LETTERS

#### Superconductivity in alkali-metal-doped picene

Table 1 | List of Axpicene (A: alkali-metal) samples prepared in this study

| A            | x   | Annealing<br>temperature<br>(K) | Annealing time<br>(days) | Physical properties           | Shielding<br>fraction |                |
|--------------|-----|---------------------------------|--------------------------|-------------------------------|-----------------------|----------------|
| К            | 1.0 | 440                             | 6.5                      | Pauli-like                    | NA                    |                |
| К            | 1.8 | 440                             | 7.0                      | Pauli-like                    | NA                    | ]              |
| К            | 2.6 | 440                             | 8.0                      | SC ( $T_c = 6.5 \text{ K}$ )  | $\ll$ 0.1%            | •              |
| Κ†           | 2.9 | 440                             | 9.0                      | SC ( $T_c = 7.0 \text{ K}$ )  | 0.1%                  |                |
| К            | 3.0 | 440                             | 8.0                      | SC ( $T_c = 6.5 \text{ K}$ )  | ≪ <b>0.1%</b>         |                |
| К            | 3.0 | 440                             | 9.0                      | SC ( $T_c = 17 \text{ K}$ )   | 0.1%                  | Normal stato.  |
| K            | 3.1 | 440                             | 4.0                      | SC ( $T_c = 7.4 \text{ K}$ )  | < <b>0.1%</b>         | NUT mai state. |
| К            | 3.3 | 440                             | 21.0                     | SC ( $T_{c} = 8 \text{ K}$ )  | ≪ <b>0.1%</b>         | Curie-like     |
| *K‡          | 3.3 | 440                             | 21.0                     | SC ( $T_c = 6.9 \text{ K}$ )  | 15%                   |                |
| K            | 3.3 | 440                             | 8.5                      | SC ( $T_c = 7.1 \text{ K}$ )  | ≪ <b>0.1%</b>         |                |
| К            | 3.3 | 440                             | 11.0                     | SC ( $T_c = 18 \text{ K}$ )   | 0.55%                 |                |
| * <b>K</b> § | 3.3 | 440                             | 11.0                     | SC $(T_c = 18 \text{ K})$     | 1.2%                  |                |
| K            | 4.0 | 440                             | 8.0                      | Curie-like                    | NA                    |                |
| К            | 5.1 | 440                             | 12.5                     | Curie-like                    | NA                    |                |
| Na           | 3.4 | 570                             | 5.0                      | Pauli-like                    | NA                    |                |
| Rb           | 2.8 | 440                             | 16.5                     | Pauli-like                    | NA                    |                |
| Rbll         | 3.1 | 570                             | 6.7                      | SC ( $T_c = 6.9 \text{ K}$ )  | <b>10%</b>            |                |
| Cs           | 3.0 | 440                             | 9.0                      | Metal-insulator<br>transition | NA                    |                |

\_

# Effect of nearest-neighbor Coulomb interaction V on the ground state.

TABLE I: V dependence of the energy difference  $\Delta E = E(S = 1) - E(S = 0)$  for the charged molecules with two added electrons at U = 2t and  $\epsilon = 1.0t$ . Statistical errors are in the last digit and shown in the parentheses.

| V   | $\Delta E(C_{14}H_{10})$ | $\Delta E(C_{22}H_{14} - A)$ | $\Delta E(C_{22}H_{14}-B)$ |
|-----|--------------------------|------------------------------|----------------------------|
| 0.0 | -0.0452(6)               | -0.0074(8)                   | -0.1073(7)                 |
| 0.1 | -0.0305(6)               | 0.0009(8)                    | -0.1041(9)                 |
| 0.2 | -0.0016(8)               | 0.0121(9)                    | -0.1017(9)                 |
| 0.3 | -0.0044(8)               | 0.0257(9)                    | -0.0965(9)                 |
| 0.4 | 0.0134(9)                | 0.043(1)                     | -0.090(1)                  |
| 0.5 | 0.0289(9)                | 0.060(1)                     | -0.086(1)                  |

The energy difference increases with increasing V, making S=0 state more stable than S=1 state for large V.

Pair binding energy

$$\Delta_i = 2E_i - E_{i-1} - E_{i+1}$$
 i=1, 2, 3

>0: attractive interaction for added electrons<0: repulsive interaction for added electrons</li>

Notes: (1) Applied for the low energy physics of renormalized electrons, not for the bare electrons.

(2) Applied for high-Tc superconductors and C60.

### Pair binding energy for picene and phenanthrene



Pair binding energy is always negative => no contribution to formation of Cooper pairs.

### Other aromatic molecules



•In the region  $\varepsilon$ <0.8t, the pair binding energy for 9,10-dihydrophenanthrene, cis-stilbene, and biphenyl is <u>much less negative</u> <u>than</u> phenanthrene, suggesting that Coulomb pseudopotential  $\mu^*$  is rather weak in these molecular crystals.  $\rightarrow$  Higher Tc!

### Antiferromagnetism in potassium-doped polycyclic aromatic hydrocarbons

Calculated total energies at different magnetic states relative to their groundstates in unit of meV/f.u. and spin magnetic moment M in unit of  $\mu_{\rm B}$ /f.u..

| System                                                          | NM   | FM   | AFM-1 | AFM-2 | M    |
|-----------------------------------------------------------------|------|------|-------|-------|------|
| $\mathrm{K_{3}C_{14}H_{10}\text{-}A}$                           | 6.2  | 6.2  | 8     | 0     | 0.30 |
| $\mathrm{K_{3}C_{22}H_{14}\text{-}A}$                           | 15.2 | 16.2 | 00    | 0     | 0.42 |
| $\mathrm{K}_{3}\mathrm{C}_{22}\mathrm{H}_{14}	ext{-}\mathrm{B}$ | 12.2 | 11.3 | 00    | 0     | 0.40 |
| $\mathrm{K_{3}C_{30}H_{18}\text{-}A}$                           | 14.6 | 8.1  | 00    | 0     | 0.55 |
| $\mathrm{K_{3}C_{30}H_{18}\text{-}B}$                           | 19.2 | 4.4  | 8     | 0     | 0.53 |

 $K_{3}C_{14}H_{10}$ -A: phenanthrene  $K_{3}C_{22}H_{14}$ -A: picene  $K_{3}C_{22}H_{14}$ -B: 1,2:5,6-dibenzanthrancene  $K_{3}C_{30}H_{18}$ -A: 7-phenacene  $K_{3}C_{30}H_{18}$ -B: 1,2:8,9-dibenzopentacene  The ground state lies in the AFM-2 state, with spins antiparalleling between two molecular layers
The magnetic moment increases with Increasing the benzene numbers



Polarized spin density is enhanced with increasing the benzene number

# Identify the two superconducting phases in potassium-doped picene superconductors

(arXiv:1407.0747)



### **Previous studies**

#### Comparison of lattice parameters between experiment and theory

|                             | a (Å) | b (Å) | c (Å)  | $\beta$ (°) | space group | _                 |
|-----------------------------|-------|-------|--------|-------------|-------------|-------------------|
| experiment                  |       |       |        |             |             |                   |
| K <sub>2.9</sub> picene [1] | 8.707 | 5.912 | 12.97  | 92.77       | $P2_1$      | —→ Tc ~ 7K        |
| K <sub>3</sub> picene [6]   | 8.571 | 6.270 | 14.001 | 91.68       | $P2_1$      | <b>→</b> Tc ~ 18K |
| -calculation-               |       |       |        |             |             |                   |
| K <sub>3</sub> picene [11]  | 7.359 | 7.361 | 14.018 | 105.71      | $P2_1$      |                   |
| K <sub>3</sub> picene [10]  | 7.421 | 7.213 | 14.028 | 104.53      | $P2_1$      |                   |

### Large discrepancies for a and b axises!

- [1] R. Mitsuhashi *et al*, Nature **464**, 76 (2010).
- [6] T. Kambe et al, Phys. Rev. B 86, 214507 (2012).
- [10] T. Kosugi, T. Miyake, S. Ishibashi, R. Arita, and H. Aoki, Phys. Rev. B 84, 214506 (2011).
- [11] P. L. de Andres, a. Guijarro, and J. A. Vergés, Phys. Rev. B 83, 245113 (2011).

### **Possible crystal structures**



(c) K2-*BD* 











TABLE I. The optimized lattice parameters  $a, b, c, \beta$ , the fraction coordinations of the doped K atoms and the space group of unit cell for K<sub>2</sub>picene and K<sub>3</sub>picene with different structural phases.

|                             | a (Å)    | b (Ä)  | c (Å)    | $\beta$ (°) | space group |               |
|-----------------------------|----------|--------|----------|-------------|-------------|---------------|
| -experiment-                |          |        |          |             |             |               |
| K <sub>2.9</sub> picene [1] | 8.707    | 5.912  | 12.97    | 92.77       | $P2_1$      |               |
| K <sub>3</sub> picene [6]   | 8.571    | 6.270  | 14.001   | 91.68       | $P2_1$      |               |
| $K_2$ - $BD$                | 8.766    | 6.818  | 13.166   | 95.13       | $P2_1$      | Lowest energy |
|                             | (0.3461) | 0.2917 | 0.6540)  |             |             |               |
|                             | (0.1500) | 0.3017 | 0.2981)  |             |             |               |
| $K_2$ - $CE$                | 8.752    | 6.556  | 13.293   | 92.98       | $P2_1$      |               |
|                             | (0.2571) | 0.3062 | 0.5452)  |             |             |               |
|                             | (0.1073) | 0.2856 | 0.1980)  |             |             |               |
| $K_2-AC$                    | 8.651    | 6.524  | 13.306   | 92.60       | $P2_1$      |               |
|                             | (0.3150) | 0.3269 | 0.8168)  |             |             |               |
|                             | (0.2352) | 0.3291 | 0.5126 ) |             |             |               |
| K <sub>3</sub> -I           | 8.675    | 6.770  | 13.669   | 95.53       | $P2_1$      | Lowest energy |
|                             | (0.3611) | 0.3057 | 0.8222)  |             |             |               |
|                             | (0.2470) | 0.2913 | 0.5183)  |             |             |               |
|                             | (0.1098) | 0.2912 | 0.2074)  |             |             |               |
| K <sub>3</sub> -II          | 8.914    | 6.793  | 13.534   | 94.72       | $P2_1$      |               |
|                             | (0.3227) | 0.2953 | 0.6336)  |             |             |               |
|                             | (0.1753) | 0.2949 | 0.3250)  |             |             |               |
|                             | (0.2013) | 0.2372 | 0.0257)  |             |             |               |
| K <sub>3</sub> -III         | 8.523    | 6.838  | 14.058   | 96.67       | $P2_1$      |               |
|                             | (0.2732) | 0.3048 | 0.5729)  |             |             |               |
|                             | (0.1904) | 0.2976 | 0.2882)  |             |             |               |
|                             | (0.3153) | 0.2897 | 0.8434)  |             |             |               |

### **Formation energy**

$$E_{formation} = E_{Kx} - E_{pristine} - E_{dopant}$$

*x* stands for the number of K atoms. *Edopant* is the product of single atom energy in bulk metal and atom number in a unit cell.

For the K<sub>2</sub>-BD phase, the formation energy is -0.330 eV per K atom, which suggests that it is easy to be synthesized in experiment.

The formation energy of the K<sub>3</sub>-I phase is -0.295 eV per K atom, comparable to the one for K2picene.

For K<sub>4</sub>picene the corresponding formation energy is -0.067 eV per K atom.  $\rightarrow$  unstable

#### PHYSICAL REVIEW B 86, 214507 (2012)



Only K<sub>2</sub> and K<sub>3</sub> picene can be realized!

### Comparison of XRD spectra between experiment and theory



Tc ~ 7 K sample corresponds to  $K_2$ -BD.



Pristine picene and KOH are dominant in the 18 K sample.



FIG. 6. Energy bands and density of states for  $K_2$ -BD phase (a) (b) and  $K_3$ -I (c) (d). Fermi energy is set to zero.

# Conclusions

- □ The spin polarized state is realized in the charged aromatic molecules with two added electrons.
- **Electron correlation is not enough for superconductivity.**
- □ The ground state of K-doped aromatic hydrocarbons corresponds to an antiferromagnetic state.
- □ Tc ~ 7K and 18K superconducting phases of K-doped picene correspond to K<sub>2</sub>-BD and K<sub>3</sub>-I, respectively.

