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Motivation

e Gauge/gravity duality as definition of quantum gravity in AdS

Dual CFT is renormalizable and unitary. Problem: how to decode the hologram?

Unfortunately field theory is strongly coupled in region of interest for quantum gravity
(classical gravity N — oo, 1/N expansion = loop expansion).

* \Would like examples where computations in both sides are within reach

Test and understand the gauge/gravity duality with observables that are not protected by
SUSY and can not be computed using integrabillity.

How does gravitation phenomena, like black holes, emerge from gauge theory side?

ldea: Study thermodynamics of black holes dual to Matrix Quantum Mechanics
that can be simulated on a computer using Monte-Carlo methods.



The case of DO-branes

e Closed strings interact with DO-branes in flat space

@—-)

Closed string Open string

)

e Closed strings interact with geometry produced by DO-branes
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Closed string 0

[Itzhaki, Maldacena, Sonnenschein, Yankielowicz 98]}
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D0-branes: field theory description (matrix quantum mechanics) [ltizhaki et al "98]
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e 't Hooft coupling is dimensionfull (relevant)
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* Theory on Euclidean time circle with periodicity 5 = 1/T
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e Can put theory on a computer using Monte Carlo simulations, accessing in
particular strongly coupled region.
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D0-branes: gravitational description

e 11D SUGRA solution (near horizon geometry of non-extremal DO-brane)
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e Classical gravity domain (at horizon)
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e Standard gravitation thermodynamics
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e o corrections give next term in 7T expansion, at large N [Hanada et al08]
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e Low temperature expansion predicted from gravity
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e Low temperature expansion predicted from quantum gravity
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Today’s talk is not about DO-brane matrix model

e Caveat: canonical ensemble ill defined - IR divergences from flat directions
in DO-brane moduli space. This is suppressed at large N (metastable state),
but it is a source of tension in Monte Carlo simulations [Catterall, Wiseman "09]
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Instability corresponds to Hawking radiation of DO-branes. At large N this is
suppressed and black hole is stable (positive specific heat).

e Today’s talk is about BMN matrix model [Berenstein, Maldacena, Nastase "02]

Mass deformation resolves IR divergence - canonical ensemble well defined.

Much richer thermodynamics with a 1st order phase transition
(at large N there are two dimensionless parameters).



BMN matrix model
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Massive deformation of DO-brane MQM. Preserves SUSY but breaks  SO(9) — SO(6) x SO(3)

In large N ‘t Hooft limit dimensionless coupling constant E
L

Many vacua Das —%0) A %Ji J", 7] = iR gk

Focus on trivial vacuum (single M5-brane) that
is SO(9) invariant Y — YO — 0

Canonical ensemble is well defined and may still be simulated on a computer.

a=4,...,9

i=1,2,3



e Thermodynamics (N — oo)
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e At strong coupling, for large temperature, dual geometry is SO(9) invariant and is
approximately the non-extremal DO-brane solution

dr? R”
oy TR
dC = pdt A dxt A dx? A dz?®

™S Non-normalizable mode responsible
for massive deformation

ds® =

7 dz? + f(r)dt (de ]7“%(7)7 dt) Need back-reaction to decrease

temperature and study phase transition
at strong coupling. In particular,

SO(9) — SO(6) x SO(3)
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Tailored to numerical implementation
(domain of unknown is the unit square; everything dimensionless)
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Non-extremal DO-brane solution corresponds to

1
A=B=T, =T, =Ty =T, =Q=1, F=M=L=0 5:% (Euclidean time circle)

and need to use scaling symmetry of 11D SUGRA action
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with
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This scaling symmetry will be important later...



e Boundary conditions
Atinfinity (y =0): A, B,Ty,15,15,14, —1, F —0
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Regqularity at the axis of symmetry: horizon (y = 1), 54 pole (x = 1) and S° equator (x = 0).

Perform above scalings, then geometry has asymptotics of non-extremal DO-brane A T sl
with temperature T and mass deformation turned on. There is a single parameter H = 197 T
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Smarr formulae (good to check numerics)

e Let v* be a killing vector. From field equations it follows that

1 1
(K" = VY 4 S PP Copy + S0l 1091 Cp,

IS @ conserved antisymmetric tensor, I.e. d(* Kv) =0 "

* Integrate d(* Kv) = 0 over surface of constant time with y1 <y <y
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e For example take v = an (time translations generator)

Smarr formula relates horizon area to boundary data
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The solution

e Einstein-deTurck equations [Headrick,

Kitchen, Wiseman '09]

DgTur_ck term ’Fhat mgkgs en — gob (F“ _pm )
Einstein equations elliptic a3 o
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e Descretize PDEs with V x N Chebyshev grid

Derivatives are estimated using
polynomial approximation that

spectral methods - exponential convergence
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involves all points in the grid s
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e Horizon area and shape
Ratio of maximal

Horizon area radius of S2to S°
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Reproduces scalings predicted from strongly coupled low energy moduli estimate [Wiseman "13]



Black hole thermodynamics - critical temperature

changes sign, since
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 BH is thermodynamically stable for i < . ¢=T (5’T

F(T, ) = F(T,0)f(i)
=~ T (i)

 Phase transition occurs when free energy

horizon is favoured F' ~ O(N")

both using 1st law or
holographic renormalization

for T' < T, geometry without
[Lin, Maldacena '05]
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Phase diagram at large N
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Very similar to SYM on a 3-sphere (1 =1/R)
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Boundary data

* The 10 functions Q;(z,y) admit expansion
near the boundary (y = 0)

Qi(,y) = Z ?JJ@ZA@)

To preserve SO(6) x SO(3) depends
on ratio of radi Rx (X“Xa>1/2

sin 6 = Ry — XX,
e Boundary metric has SO(9) symmetry, so @’ (z) are harmonic functions on S® .

Thus we can classify the SO(6) x SO(3) invariant perturbations according to SO(9)
spin. This helps to establish bulk field / operator correspondence.



e 2- form modes in the asymptotic expansion

v(x,y) = Z (ozl f1(y) + a fl(y)) H;(x) + back reaction
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e scalar modes in the asymptotic expansion
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e VVevs read from normalizable modes appear first at order y2

2-form (I = 1)

€M (Tr (X; X, X5))

Scalar ({=2) °
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e Smarr formulae involve coefficients in asymptotic expansion up to order y7

Numerics pass this highly non-trival
check with 0.05% accuracy
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Future work

e Confirm phase diagram with Monte-Carlo simulations of PWMM; confirm
predictions for expectation values of operators dual to normalizable modes
that are turned on

e Study dynamical stability of our BH

e Construct BH duals of other vacua (different horizon topology)
(caveat: we really only determined upper limit on critical temperature)

e Deeper question: What makes the PWMM special?
What are the minimal ingredients of a quantum mechanical system such that
It gives rise to classical gravity in the limit of many degrees of freedom?
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