

INTERACTION EFFECTS IN MoS₂

Alberto Cortijo ICMM-CSIC

Correlations, criticality, and coherence in quantum systems- Évora 2014

INTERACTION EFFECTS IN MoS₂

Alberto Cortijo ICMM-CSIC

Correlations, criticality, and coherence in quantum systems- Évora 2014

... with Yago Ferreiros

MoS₂:

unit cell=1Mo atom +2 S atoms K K'

hexagonal Brillouin zone

$$
\psi = \left(\begin{array}{c} |d_{z2}\rangle \\ \frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle + i\tau|d_{xy}\rangle) \end{array}\right) \begin{array}{l} m_l = 0 \\ m_l = \pm 2 \\ m_l = \pm 1 \\ \text{valley index} \end{array}
$$
\n
$$
\mathcal{H}_0 = v_\tau \left(\tau \sigma_x k_x + \sigma_y k_y\right) + \frac{1}{2} s \tau \left(\lambda_c (\sigma_0 + \sigma_z) + \lambda_v (\sigma_0 - \sigma_z)\right) + \frac{\Delta}{2} \sigma_z
$$
\n
$$
\uparrow
$$
\n
$$
\downarrow
$$
\n<math display="</math>

$$
\psi = \begin{pmatrix} |d_{z^2} \rangle & \cdots & m_l = 0 \\ \frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle + i\tau |d_{xy}\rangle) & \cdots & m_l = \pm 2 \\ \frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle + i\tau |d_{xy}\rangle) & s = \pm 1 \leftarrow \text{ spinz index} \\ \text{valley index} & s = \pm 1 \leftarrow \text{ spinz index} \\ \tau = \pm 1 \end{pmatrix}
$$

\n
$$
\mathcal{H}_0 = v(\tau \sigma_x k_x + \sigma_y k_y) + \frac{\Delta}{2} s_0 \tau_0 \sigma_z + \frac{\lambda_c - \lambda_v}{2} s_z \tau_z \sigma_z + \frac{\lambda_c + \lambda_v}{2} s_z \tau_z \sigma_0
$$

\nhopping term (through S p-like
orthials)

H. Ochoa, R. Roldán. PRB, 87, 245421(2013) A. Kormányos et al. PRB, 88, 045416 (2013) K. Kosmider et al. PRB, 88, 245436 (2013)

$$
\psi = \begin{pmatrix}\n|d_{z^2}\rangle & & m_l = 0 \\
\frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle + i\tau|d_{xy}\rangle) & & m_l = \pm 2 \\
\frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle + i\tau|d_{xy}\rangle) & & m_l = \pm 2\n\end{pmatrix}
$$
\n
$$
\mathcal{H}_0 = v(\tau \sigma_x k_x + \sigma_y k_y) + \frac{\Delta}{2} s_0 \tau_0 \sigma_z + \frac{\lambda_c - \lambda_v}{2} s_z \tau_z \sigma_z + \frac{\lambda_c + \lambda_v}{2} s_z \tau_z \sigma_0
$$
\n
$$
\text{hopping term (through S p-likeorbitals)} \qquad \text{staggered mass} \qquad \text{Kane-Mele mass} \qquad \text{``chiral'' chemicalpotential" potential
$$

The Hamiltonian form can be fixed by symmetry arguments

how do we fix the parameters?

$$
\psi = \begin{pmatrix} |d_{z^2}\rangle & \cdots & m_l = 0 \\ \frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle + i\tau|d_{xy}\rangle) & \cdots & m_l = \pm 2 \\ & & \text{valley index} & s = \pm 1 & \leftarrow \text{ spinz index} \\ & & \tau = \pm 1 \end{pmatrix}
$$

\n
$$
\mathcal{H}_0 = v(\tau \sigma_x k_x + \sigma_y k_y) + \frac{\Delta}{2} s_0 \tau_0 \sigma_z + \frac{\lambda_c - \lambda_v}{2} s_z \tau_z \sigma_z + \frac{\lambda_c + \lambda_v}{2} s_z \tau_z \sigma_0
$$
\n
$$
\text{hopping term (through S p-likeorbitals)} & \text{stagger-Mele mass}
$$
\n
$$
\text{Kane-Mele mass}
$$
\n
$$
\text{Kane-Mele mass}
$$
\n
$$
\text{inomial potential}
$$

The Hamiltonian form can be fixed by symmetry arguments

Role of interactions?

Important for spin relaxation studies

H. Ochoa, R. Roldán. PRB, 87, 245421(2013)

experiments... K. F. Mak et al. PRL, 105, 136805 (2010)

Photon energy (eV)

finite k-point sampling. Panels (d) – (f) : symbols: experimental absorption spectra^{3,4} in comparison with the calculations (solid lines, shifted by about -0.2 eV).

A. Molina-Sanchez et al. PRB, 88, 045412 (2013)

experiments...+ analytical GW calculation

$$
G^{-1}(\omega, \mathbf{k}) = \omega - \mathcal{H}_0(\mathbf{k}) - \Sigma(\omega, \mathbf{k})
$$

Unscreened Coulomb interaction:

D(*q*)

 $\Sigma(k)$

$$
\mathcal{H}_{int} = e\psi^{+}(x)\psi(x)\varphi(x) + \epsilon\varphi(x)|\vec{\nabla}|\varphi(x)
$$
\n
$$
D(q)_{0} \equiv D_{0}(\mathbf{q}) = \frac{1}{4\pi\epsilon} \frac{1}{|\mathbf{q}|}
$$
\n
$$
\Sigma(k) = e^{2} \int \frac{d^{3}q}{(2\pi)^{3}} D(q)G(k - q)
$$
\n
$$
D^{-1}(q) = 4\pi\epsilon(|\mathbf{q}| + \Pi(q))
$$
\n
$$
\Pi(q) = \int \frac{d^{3}p}{(2\pi)^{3}} G(p)G(p - q)
$$
\n
$$
\omega \omega_{\mathbf{q}} \longrightarrow \mathcal{H}(\mathbf{q})
$$

Analytical GW calculation

$$
\Sigma(k) = e^2 \int \frac{d^3q}{(2\pi)^3} D(q)G(k-q)\Gamma(p,q)
$$
\n
$$
\Sigma(k) = e^2 \int \frac{d^3q}{(2\pi)^3} D(q)G(k-q)
$$
\n
$$
\Pi(q) \to \Pi(0, q) \quad \text{instantaneous approximation}
$$
\n
$$
\text{no vertex corrections}
$$
\n
$$
\Sigma(k) = -(\tau \sigma_x k_x + \sigma_y k_y) \delta v_s - \frac{\delta \Delta}{2} \sigma_z - \frac{\delta \lambda_c}{2} \tau_s(\sigma_0 + \sigma_z) - \frac{\delta \lambda_v}{2} \tau_s(\sigma_0 - \sigma_z)
$$
\n
$$
\text{quantum corrections to be calculated}
$$

Analytical GW calculation

we wont restrict ourselves to small values of $g_s =$ *e*2 $4\pi \epsilon v_s$

$$
\begin{array}{ccc} 1/N & \text{expansion} & \longrightarrow & \text{C}^{\bullet} \longrightarrow \text{C}^{\bullet} \longrightarrow \\ \Pi(q) = \frac{e^2}{4\pi} |\mathbf{q}| \sum_{s=\pm} \left[\frac{2m_s}{q_s^2} + \frac{q_s^2 - 4m_s^2}{q_s^3} \arctan\left(\frac{q_s}{2m_s}\right) \right] & \frac{q_s^2 = q_0^2 + v_s^2 |\mathbf{q}|^2}{m_s = (\Delta + s(\lambda_c - \lambda_v))/2} \\ & & & & \Delta = \Delta^0 + \delta \Delta \\ I_s = \frac{3m_r}{4m_s} \ln \left(1 + \frac{2g_s m_s}{3m_r} \right) + \frac{g_s}{4 + 2\pi g_r} \ln \left(\frac{v_s \Lambda}{m_s} \right) & I_s = I_s^z \sigma_z + I_s \vec{\sigma} \cdot \vec{k} + \mathcal{O}(k^2) \\ & & & & \Delta = \frac{3m_r}{4m_s} \ln \left(1 + \frac{2g_s m_s}{3m_r} \right) + \frac{g_s}{2 + \pi g_r} \ln \left(\frac{v_s \Lambda}{m_s} \right) & I_s = I_s^z \sigma_z + I_s \vec{\sigma} \cdot \vec{k} + \mathcal{O}(k^2) \\ & & & & \text{logarithmic divergent} \\ \end{array}
$$

Analytical GW calculation

we have 5 (nonlinear) algebraic equations for 11 parameters!

$$
\Sigma(k) = e^2 \int \frac{d^3q}{(2\pi)^3} D(q)G(k-q)
$$

$$
\left|\begin{array}{cc}\delta\upsilon_{\uparrow\downarrow}=I_{\uparrow\downarrow}&\frac{1}{2}\delta\Delta+\delta\lambda_{c}=I_{\uparrow}^{z}&\frac{1}{2}\delta\Delta+\delta\lambda_{v}=I_{\downarrow}^{z}&\delta\lambda_{c}+\delta\lambda_{v}=0\end{array}\right|
$$

$$
\delta \lambda_c, \delta \lambda_v, \delta \Delta, \delta v_\uparrow, \delta v_\downarrow \iff \text{quantum corrections}
$$

$$
\lambda_c^0, \lambda_v^0, \Delta^0, v_\uparrow^0, v_\downarrow^0, \longrightarrow^{\text{bare parameters that}}
$$
\n $\Lambda \longleftarrow$ cut-off

we need 6 extra conditions to solve the problem! "renormalization" conditions

experiments...

Absorption experiments see two exciton peaks

$$
E_s(n,j) = m_s \left(1 + \frac{n + \sqrt{j^2 - g_s^2/4}}{\sqrt{g_s^2/4 + (n + \sqrt{j^2 - g_s^2/4})}} \right)
$$

A. S. Rodin, A. H. Castro-Neto, PRB, 88,195437 (2013)

no more peaks are usually observed the electron-hole continuum is hardly observed!

experiments...

Absorption experiments see two exciton peaks

$$
E_s(n,j) = m_s \left(1 + \frac{n + \sqrt{j^2 - g_s^2/4}}{\sqrt{g_s^2/4 + (n + \sqrt{j^2 - g_s^2/4})}} \right)
$$

 $E_A = 1.85 eV$ A. S. Rodin, A. H. Castro-Neto, PRB, 88,195437 (2013)

 $E_A = 1.98 eV$ A. Splendiani et al. Nanolett, 10, 1271 (2010)

physical insight?

(1). In absence of interactions the hopping process does not depend on spins

$$
v_{\uparrow}^0 = v_{\downarrow}^0
$$

(2). In absence of interactions the spin orbit interaction for mz=0 is (almost) zero

$$
\lambda_c^0 \simeq 0
$$

 $11 - 5 - 4 = 2$ still unknown parameters in the theory

Let's see the outcome

 g_{-} < 1

Let's see the outcome

 g_{-} < 1

Let's see the outcome $g_{-} > 1$

We can go beyond small couplings

at large g's the exciton gs can merge the valence band!

Let's see the outcome $g_{-} > 1$

exciton peaks correspond to higer exciton levels (?)

Let's see the outcome $g_{-} > 1$

The trends do not match cause the exciton levels are not accurate close to a merging transition!

$$
E_s(n,j) = m_s \left(1 + \frac{n + \sqrt{j^2 - g_s^2/4}}{\sqrt{g_s^2/4 + (n + \sqrt{j^2 - g_s^2/4})}} \right)
$$

A. S. Rodin, A. H. Castro-Neto, PRB, 88,195437 (2013)

Conclusions:

1. The Coulomb interaction will modify the nominal value of the spin orbit splittings.

2. The conduction band can be significantly larger than the expected from DFT.

3. There is a spin dependent Fermi velocity renormalization can be observed?

- 4. Vertex corrections? Static approximation?
- 5. Redo the calculations in the doped regime. Screening effects.
- 6. Quantum corrections of quadratic terms.

Thank you for listening!