

Point defects as a source of local magnetic moments on graphene layers

ivan.brihuega@uam.es www.ivanbrihuega.com Evora, October2014

Point defects in graphene systems

Divacancy

Vacancy on HOPG

Atomic Hydrogen

Motivation

Single atomic vacancies in graphene weakly coupled to the substrate: HOPG surface

Other structural point defects in graphene: Divacancies

Single atomic vacancies in graphene weakly coupled to a metallic substrate: G/Pt(111)

Experimental approach

UHV-4K-STM M. M. Ugeda, *Doctoral Thesis*, 2011.

> Illustration by Julio Gómez-Herrero

Single Carbon Vacancies on HOPG surfaces

Theory support from:

F. Guinea

Experiments: M. M. Ugeda J.M. Gómez-Rodríguez I. Brihuega

Vacancies on HOPG

✓ Creation of single vacancies by Ar+ irradiation at RT

Vacancies on HOPG

✓ tight-binding model of monovacancies in GRAPHITE

Kelly.K et al, Surf. Science 416 L1085 (1998)

✓ DFT simulations of vacancies in GRAPHENE

O. Yazyev et al, PRB. B. 75, 125408 (2007)

F. Yndurain

Tunneling Spectroscopy

- \checkmark Sharp resonance peak around E_F of FWHM $\sim 5mV$ on the vacancies
- ✓ In agreement with theoretical expectations for graphene*
- ✓ Fundamental implications due to the existence of the resonance:

> Formation of a <u>magnetic moment</u>. The $e^ e^-$ interaction and the localization at E_F allow the polarization of the state.

Strong reduction of the electronic mobility (T. Stauber, PRB 76, 205423 (2007))

•P. O. Lehtinen et al, Phys. Rev. Lett. 93, 187202 (2004)

•V. M. Pereira et al, Phys. Rev. Lett. 96, 036801 (2006)

•O. Y. Yazyev, Phys. Rev. Lett. 101, 037203 (2008)

Carbon vacancies in graphene systems

Magnetism in graphene: just remove a p_z orbital

nice review: O. Yazyev, Rep. Prog. Phys. 73 056501 (2010)

Atomic Hydrogen on SiC(000-1)

Theory support from:

J.J. Palacios M. Moaied C. Salgado Félix Yndurain

Experiments: H. González-Herrero M.M. Ugeda J.M. Gómez-Rodríguez Pierre Mallet Jean-Yves Veuillen I. Brihuega

Atomic Hydrogen on Monolayer Graphene

Relaxed Atomic structure

Calculated spin density

• Magnetic moment = $1\mu_B$

• spin density located on the opposite triangular sublattice.

Simulated STM image (Tersoff-Hamann)

DFT calculations: M. Moaied, J.J Palacios, Felix Yndurain • Spin Polarized – DFT SIESTA code // (DZP) basis set.