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BCS theory — a Hamiltonian and an ansatz®

Reduced BCS Hamiltonian:

g
H = ZekCI{JCkG — V ZCkTC k| C—k' | CKk/T g > 0.
ko k., Kk’

BCS ansatz for the ground state:
[BCS) — H (uk + UkCLTCT—kL) 0), ui + v = 1.
k

The variational parameters uy, vk are related to the gap parameter A, which
is determined by minimizing the expectation value (VSCS|(H — puN)|[WEC),

where N is the number of electrons and p is the chemical potential.

2J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).



Fixed u versus fixed NV

The BCS ground state with fixed p does not conserve the number of electrons
and thus contradicts the superselection rule for the total charge. In the BCS
paper it was argued that in the thermodynamic limit the number fluctuations

die out. Therefore one may ignore the issue of exact number conservation.

For systems with a moderate number of particles, such as atomic nuclei or
ultrasmall metallic grains, a BCS state projected onto the subspace with N
particles is often used. In this case the expectation value of the pair operator,
the usual order parameter, vanishes and one has to look for alternatives, for

instance the concept of off-diagonal long-range order?.

2C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).



Exact in the thermodynamic limit? Early answers:

“It is possible that ¥ is exact in the statistical limit.”?

“We expect the quantum fluctuations to average out” and corrections to BCS
theory to produce at most 1/N effects.P

The BCS free energy is exact in this limit.°4

“The trial function ... does asymptotically, and on the average, approach the
exact eigenfunction of the problem.”®

2BCS paper (1957)

PP. W. Anderson, Phys. Rev. 112, 1905 (1958)

°N.N. Bogoliubov et al., Sov. Phys. JETP 12, 88 (1961)
dB. Miihlschlegel, J. Math. Phys. 3, 522 (1962)

°D. C. Mattis and E. H. Lieb, J. Math. Phys. 2, 602 (1961)



Our comparison between the exact and BCS ground states®

For certain quantities — ground state energy, order parameter,
pseudospin-pseudospin correlation function — BCS theory is exact in the

thermodynamic limit.

For some more subtle quantities — non-diagonal pair-pair correlation
function, fidelity susceptibility — the large system limit of the exact solution
differs from the mean-field solution of BCS.

20. El Araby and D. Baeriswyl, Phys. Rev. B 89, 134521 (2014).
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1. Richardson model and its exact solution



Cooper pairing in finite-size systems

Fundamental question: Anderson 1959

Nuclei: Bohr, Mottelson and Pines 1958
Granular films: Zeller and Giaever 1969
Nanosize Al particles:  Tinkham 1995-1997




Richardson model

_ Z f _9 A
vo v,v’
¢, fermionic creation and annihilation operators

.
CI/O'7

— Spectrum: €, = —% — %(V — %), v=1,....L;

non-degenerate, electron-hole symmetric, bandwidth W
(which will be used as unit of energy, i.e. W =1).

— Exact eigenstates found by Richardson®®¢

“R. W. Richardson, Phys. Lett. 3, 277 (1963)

"R. W. Richardson and N. Sherman, Nucl. Phys. 52, 221 (1964)
‘R. W. Richardson, J. Math. Phys. 6, 1034 (1965)
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BCS approximation

t (o
U5 ®) = H(UV + UVCZTCZL)|O> x e’ |0), B = Z u_VCJLTCzT/l -

The coefficients u,, and v, depend in the usual way on the gap parameter A,

which vanishes for g < g.(L) and is finite for g > g.(L).

Thermodynamic limit (for an average number of electrons (N) = L):
ge(L) =~ [log(2L) +~]"" — 0,

1\ ! L 1
A — <QSinh—> , Fy— ——coth-—.
g 1 g

Projection of |[UE“®) onto a definite number of N = 2M electrons:

BCS(N
[weSMNY o (BNM0) .
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Exact eigenstates

Singly-occupied and doubly-occupied levels are decoupled. In the ground
state no level is singly occupied and we can write the Hamiltonian as

L
H=Y 2,blb, - % S bib, b =clel

v=1 v,v’

Eigenstates for N = 2M electrons:

M L |
vy =TT B0 Bi — pi
v =II8l0. Bl=3 55
where the parameters E;, ¢ = 1, ..., M, are solutions of Richardson’s equations
- Z > Z =0.

J=1(3#1) By =

Total energy: E = sz\il E; .
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Parameters F; (“rapidities”)

The parameters E; turn out to be
complex for large enough couplings.
To which extent the threshold val-
ues of g coincide with an “onset of
superconductivity” remains to be
clarified.

The figure shows numerical results
for a spectrum of equally spaced

levels (Richardson model), with
L =N =20.
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2. Numerical algorithm and ground state energy
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Numerical approach

A recently introduced algorithm uses the variables

J — 1
A v — —
() inzl 2%, — E;’

which satisty the “substituted Bethe equations”?

A(g,) — A(e,) — % A(Eg’j — ?V(g") = 0.

These equations are much easier to solve than the original Richardson
equations. Some quantities can be directly expressed in terms of these
variables and may therefore be evaluated for very large system sizes. For
other quantities one may still calculate first these variables, from which the
rapidities can be extracted.P

2A. Faribault, O. El Araby, C. Strater and V. Gritsev, Phys. Rev. B 83, 235124 (2011).
PO. El Araby, V. Gritsev and A. Faribault, Phys. Rev. B 85, 115130 (2012).
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Ground-state energy FEj

-0.26 -

-0.28 -

Half-filled band (L = N):

L
Ey = QZEVA(s,,) — Ig

Eo/L

-0.30 -

_o32 & L=4

| —=— L=8

-0.34+

The results show clearly that the exact values of the ground-state energy
tend rapidly towards the asymptotic (L — oo) BCS result.
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3. Order parameter and off-diagonal long-range order
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Superconducting order parameter

In conventional BCS theory (fixed chemical potential) the order parameter is
defined as?

F = (Wo|bf|Wo)

and amounts to LA /g. This definition is not appropriate for a fixed number
of particles, where F' vanishes identically. A “canonical” order parameter has
been proposed ad hoc as an alternative by von Delft and RalphP, it is defined
as

Tean = 3 (010) = (el reurleljenn)) -

We have realized that this quantity is in full agreement with Yang’s concept

of ODLRO.

aL,. P. Gor'’kov, JETP 9, 1364 (1959).
bJ. von Delft and D. C. Ralph, Phys. Rep. 345, 61 (2001).
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Off-diagonal long-range order

According to Yang® ODLRO exists if and only if the largest eigenvalue wp,ax
of the reduced density matrix C' with matrix elements

Chw = <\I’0|bva’\I’0>
is of the order of the number of particles (or L in the case of a fixed finite
particle density).

Within BCS theory we have found that wy.x is equal to the canonical order
parameter for L — oo (and (N) = L),

BCS _ }Z A® _ gBos
max 4 - 53 —l— A2 can -

2C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
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Largest eigenvalue of (', within BCS theory

(El/ + 51/)2 + A2
1E? AE,E,’

CHO®) =6, E, = /e2 + A2,

A2
Eigenvalues w: 1+ Z 22+ Bye, — 2E%w) =0.

AZ
Largest eigenvalue: w(BCS) — Z for L — oo.

max
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Exact results for w,,., and V..,
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Equivalence of ODLRO and canonical order parameter
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The exact results for the largest eigenvalue agree with those for the canonical

order parameter as well as with the corresponding asymptotic BCS values.
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4. Correlation functions
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Pseudospin-pseudospin correlation function

Pseudospin representation: Correlation function:

1
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Cin

Pair-pair correlation function

Cpw = (¥obl,b,| o) = Sy —

(Wolsuz502|Wo)
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Occupancy fluctuations

Nyw = (Yol (= (np)) (1 —

(n,))[Wo)
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5. Fidelity susceptibility
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Concept

Ground state fidelity:

F(g,9") = (Yo(g)|¥o(g"))

Fidelity susceptibility®:

(g) = _2 . logl(g,9+9g)
XEAG) L5g—>0 (59)2
L i G LA
2
TS |Eo 9) — En(9)|

ap. Zanardi and N. Paunkovi¢, Phys. Rev. E 74, 031123 (2006)
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Fidelity susceptibility in BCS approximation

dA\? 1 g2
XF(Q) — (d_g> AL, EV: (5% —|—A2)2

A 5 1
— 12 [(1 + 4A*) arctan oA ZA]

for L — oo.
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Exact results
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Number-projected BCS state

The BCS pair operator

E,—c¢ >
b _ v ~Ev )74
7 _Z,,:<Eu+su> g

generates the number-projected BCS ground state
o) = (BT)M]0)
for M pairs. The fidelity is given by
V(M)
VZ(M)Z'(M)

F(g,9") =

Y

where
VM) = (D) | Z() = (0 D)

and |¥' (M) ig the ground state for the coupling strength ¢'.
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Recursive method

The action of the operator b, on |¥(M)) is given by
by W) = M f, [0MD) — M (M — 1) f0f ¥ 2))
where f, := A/(2F,), leading to a recursion relation for the norm

200 = MZMTD Y fE - MM =1) ) fr8MY,

where
SPM) = (D o] [ M=)
is calculated through

S = M [, 2070 — M(M = 1) f7S5 ).

32



6. Summary and outlook
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Many quantities, such as the ground-state energy and the
pseudospin-pseudospin correlation function, are predicted correctly by
BCS theory in the thermodynamic limit.

Yang’s concept of ODLRO is encoded in a “canonical” order parameter.

Some non-diagonal (with respect to level indices u,v) correlation
functions and the fidelity susceptibility are not reproduced exactly by
BCS theory.

We conclude that the BCS state is not the exact ground state of the
reduced BCS Hamiltonian in the thermodynamic limit.

The main difference between the exact ground state and BCS is the
quantum-critical behavior, where fluctuations beyond BCS produce

non-perturbative corrections.
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Outlook

It would be worthwhile to study the problem of the thermodynamic limit in

more depth, by investigating other aspects or models:
Dynamics
Other integrable models (such as p + ip pairing)
Models leading to gap parameters with zeroes (p-wave, d-wave)

Field theory
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