Thermodynamic limit and order parameter of the reduced BCS Hamiltonian

Omar El Araby1,2 and Dionys Baeriswyl1

1Department of Physics, University of Fribourg
2Institute of Theoretical Physics, University of Amsterdam

Workshop Evora, 10 October 2014
BCS theory, a central paradigm

Superconductivity
Atomic nuclei
Superfluid 3He
Color superconductivity
Ultracold fermionic gases
Topological superconductivity
BCS theory – a Hamiltonian and an ansatz

Reduced BCS Hamiltonian:

\[H = \sum_{k\sigma} \varepsilon_k c_{k\sigma}^\dagger c_{k\sigma} - \frac{g}{V} \sum_{k,k'} c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger c_{-k\downarrow} c_{k'\uparrow}, \quad g > 0. \]

BCS ansatz for the ground state:

\[|\Psi_0^{BCS}\rangle = \prod_k \left(u_k + v_k c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger \right) |0\rangle, \quad u_k^2 + v_k^2 = 1. \]

The variational parameters \(u_k, v_k \) are related to the gap parameter \(\Delta \), which is determined by minimizing the expectation value \(\langle \Psi_0^{BCS}|(H - \mu N)|\Psi_0^{BCS}\rangle \), where \(N \) is the number of electrons and \(\mu \) is the chemical potential.

Fixed μ versus fixed N

The BCS ground state with fixed μ does not conserve the number of electrons and thus contradicts the superselection rule for the total charge. In the BCS paper it was argued that in the thermodynamic limit the number fluctuations die out. Therefore one may ignore the issue of exact number conservation.

For systems with a moderate number of particles, such as atomic nuclei or ultrasmall metallic grains, a BCS state projected onto the subspace with N particles is often used. In this case the expectation value of the pair operator, the usual order parameter, vanishes and one has to look for alternatives, for instance the concept of off-diagonal long-range ordera.

aC. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
Exact in the thermodynamic limit? Early answers:

“It is possible that Ψ_0 is exact in the statistical limit.”a

“We expect the quantum fluctuations to average out” and corrections to BCS theory to produce at most $1/N$ effects.b

The BCS free energy is exact in this limit.c,d

“The trial function ... does asymptotically, and on the average, approach the exact eigenfunction of the problem.”e

aBCS paper (1957)
bP. W. Anderson, Phys. Rev. \textbf{112}, 1905 (1958)
cN.N. Bogoliubov \textit{et al.}, Sov. Phys. JETP \textbf{12}, 88 (1961)
Our comparison between the exact and BCS ground statesa

For certain quantities – ground state energy, order parameter, pseudospin-pseudospin correlation function – BCS theory is exact in the thermodynamic limit.

For some more subtle quantities – non-diagonal pair-pair correlation function, fidelity susceptibility – the large system limit of the exact solution differs from the mean-field solution of BCS.

Outline

1. Richardson model and its exact solution
2. Numerical algorithm and ground state energy
3. Order parameter and off-diagonal long-range order (ODLRO)
4. Correlation functions
5. Fidelity susceptibility
6. Summary and outlook
1. Richardson model and its exact solution
Cooper pairing in finite-size systems

Fundamental question: Anderson 1959
Nuclei: Bohr, Mottelson and Pines 1958
Granular films: Zeller and Giaever 1969
Nanosize Al particles: Tinkham 1995-1997
Richardson model

\[H = \sum_{\nu\sigma} \epsilon_\nu c_{\nu\sigma}^\dagger c_{\nu\sigma} - \frac{g}{L} \sum_{\nu,\nu'} c_{\nu \uparrow}^\dagger c_{\nu \downarrow}^\dagger c_{\nu' \downarrow} c_{\nu' \uparrow} \]

- \(c_{\nu\sigma}^\dagger, c_{\nu\sigma} \) fermionic creation and annihilation operators
- **Spectrum:** \(\epsilon_\nu = -\frac{W}{2} + \frac{W}{L}(\nu - \frac{1}{2}), \nu = 1, \ldots, L; \)
 non-degenerate, electron-hole symmetric, bandwidth \(W \)
 (which will be used as unit of energy, i.e. \(W = 1 \)).
- Exact eigenstates found by Richardson\(^{abc}\)

\(^a\)R. W. Richardson, Phys. Lett. **3**, 277 (1963)
\(^b\)R. W. Richardson and N. Sherman, Nucl. Phys. **52**, 221 (1964)
BCS approximation

\[|\Psi_0^{\text{BCS}}\rangle = \prod_\nu (u_\nu + v_\nu c_{\nu \uparrow} \, c_{\nu \downarrow}) |0\rangle \propto e^{B^\dagger} |0\rangle, \quad B^\dagger = \sum_\nu \frac{v_\nu}{u_\nu} c_{\nu \uparrow} \, c_{\nu \downarrow}. \]

The coefficients \(u_\nu\) and \(v_\nu\) depend in the usual way on the gap parameter \(\Delta\), which vanishes for \(g < g_c(L)\) and is finite for \(g > g_c(L)\).

Thermodynamic limit (for an average number of electrons \(\langle N \rangle = L\)):

\[g_c(L) \approx [\log(2L) + \gamma]^{-1} \rightarrow 0, \]

\[\Delta \rightarrow \left(2 \sinh \frac{1}{g}\right)^{-1}, \quad E_0 \rightarrow -\frac{L}{4} \coth \frac{1}{g}. \]

Projection of \(|\Psi_0^{\text{BCS}}\rangle\) onto a definite number of \(N = 2M\) electrons:

\[|\Psi_0^{\text{BCS}(N)}\rangle \propto (B^\dagger)^M |0\rangle. \]
Exact eigenstates

Singly-occupied and doubly-occupied levels are decoupled. In the ground state no level is singly occupied and we can write the Hamiltonian as

\[H = \sum_{\nu=1}^{L} 2\varepsilon_{\nu} b_{\nu}^\dagger b_{\nu} - \frac{g}{L} \sum_{\nu,\nu'} b_{\nu}^\dagger b_{\nu'}^\dagger, \quad b_{\nu}^\dagger = c_{\nu \uparrow}^\dagger c_{\nu \downarrow}^\dagger. \]

Eigenstates for \(N = 2M \) electrons:

\[|\Psi\rangle = \prod_{i=1}^{M} B_{i}^\dagger |0\rangle, \quad B_{i}^\dagger = \sum_{\nu=1}^{L} \frac{1}{2\varepsilon_{\nu} - E_{i}} b_{\nu}^\dagger, \]

where the parameters \(E_{i}, i = 1, \ldots, M \), are solutions of Richardson’s equations

\[\frac{L}{g} - \sum_{\nu=1}^{L} \frac{1}{2\varepsilon_{\nu} - E_{i}} + \sum_{j=1 (j \neq i)}^{M} \frac{2}{E_{j} - E_{i}} = 0. \]

Total energy: \(E = \sum_{i=1}^{M} E_{i} \).
The parameters E_i turn out to be complex for large enough couplings. To which extent the threshold values of g coincide with an “onset of superconductivity” remains to be clarified. The figure shows numerical results for a spectrum of equally spaced levels (Richardson model), with $L = N = 20$.
2. Numerical algorithm and ground state energy
Numerical approach

A recently introduced algorithm uses the variables

\[\Lambda(\varepsilon_\nu) = \frac{g}{L} \sum_{i=1}^{M} \frac{1}{2\varepsilon_\nu - E_i}, \]

which satisfy the “substituted Bethe equations”\(^a\)

\[\Lambda^2(\varepsilon_\nu) - \Lambda(\varepsilon_\nu) - \frac{g}{2L} \sum_{\mu,\mu \neq \nu} \frac{\Lambda(\varepsilon_\mu) - \Lambda(\varepsilon_\nu)}{\varepsilon_\mu - \varepsilon_\nu} = 0. \]

These equations are much easier to solve than the original Richardson equations. Some quantities can be directly expressed in terms of these variables and may therefore be evaluated for very large system sizes. For other quantities one may still calculate first these variables, from which the rapidities can be extracted.\(^b\)

Ground-state energy E_0

Half-filled band ($L = N$):

$$E_0 = 2 \sum_{\nu} \varepsilon_{\nu} \Lambda(\varepsilon_{\nu}) - \frac{Lg}{4}.$$

The results show clearly that the exact values of the ground-state energy tend rapidly towards the asymptotic ($L \to \infty$) BCS result.
3. Order parameter and off-diagonal long-range order
Superconducting order parameter

In conventional BCS theory (fixed chemical potential) the order parameter is defined as

$$F = \sum_\nu \langle \Psi_0 | b_\nu^\dagger | \Psi_0 \rangle$$

and amounts to $L\Delta/g$. This definition is not appropriate for a fixed number of particles, where F vanishes identically. A “canonical” order parameter has been proposed ad hoc as an alternative by von Delft and Ralph\(^b\), it is defined as

$$\Psi_{\text{can}} = \sum_\nu \left(\langle b_\nu^\dagger b_\nu \rangle - \langle c_{\nu\uparrow}^\dagger c_{\nu\uparrow} \rangle \langle c_{\nu\downarrow}^\dagger c_{\nu\downarrow} \rangle \right).$$

We have realized that this quantity is in full agreement with Yang’s concept of ODLRO.

\(^a\)L. P. Gor’kov, JETP 9, 1364 (1959).
Off-diagonal long-range order

According to Yanga ODLRO exists if and only if the largest eigenvalue ω_{max} of the reduced density matrix C with matrix elements

$$C_{\mu,\nu} = \langle \Psi_0 | b_{\mu}^\dagger b_{\nu} | \Psi_0 \rangle$$

is of the order of the number of particles (or L in the case of a fixed finite particle density).

Within BCS theory we have found that ω_{max} is equal to the canonical order parameter for $L \to \infty$ (and $\langle N \rangle = L$),

$$\omega_{\text{max}}^{\text{BCS}} = \frac{1}{4} \sum_{\nu} \frac{\Delta^2}{\varepsilon_{\nu}^2 + \Delta^2} = \Psi_{\text{can}}^{\text{BCS}}.$$

aC. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
Largest eigenvalue of $C_{\mu\nu}$ within BCS theory

$$C^{(\text{BCS})}_{\mu\nu} = \delta_{\mu\nu} \frac{(E_\nu + \varepsilon_\nu)^2}{4E_\nu^2} + \frac{\Delta^2}{4E_\mu E_\nu}, \quad E_\nu := \sqrt{\varepsilon_\nu^2 + \Delta^2}.$$

Eigenvalues ω:

$$1 + \sum_\nu \frac{\Delta^2}{2(\varepsilon_\nu^2 + E_\nu \varepsilon_\nu - 2E_\nu^2 \omega)} = 0.$$

Largest eigenvalue: $\omega^{(\text{BCS})}_{\text{max}} = \sum_\nu \frac{\Delta^2}{4E_\nu^2}$ for $L \to \infty$.
Exact results for ω_{max} and Ψ_{can}
The exact results for the largest eigenvalue agree with those for the canonical order parameter as well as with the corresponding asymptotic BCS values.
4. Correlation functions
Pseudospin-pseudospin correlation function

Pseudospin representation:

\[s_{\nu x} = \frac{1}{2} (b_\nu + b_\nu^\dagger) \]
\[s_{\nu y} = \frac{i}{2} (b_\nu - b_\nu^\dagger) \]
\[s_{\nu z} = \frac{1}{2} (n_\nu - 1) \]

\[H = 2 \sum_\nu \varepsilon_\nu s_{\nu z} \]
\[- \frac{g}{L} \sum_{\mu, \nu, \mu \neq \nu} s_{\mu +} s_{\nu -} \]

Correlation function:

\[S_{\mu \nu} = \langle \Psi_0 | s_\mu \cdot s_\nu | \Psi_0 \rangle \]
Pair-pair correlation function

\[C_{\mu\nu} = \langle \Psi_0 | b_\mu^\dagger b_\nu | \Psi_0 \rangle = S_{\mu\nu} - \langle \Psi_0 | s_{\mu z} s_{\nu z} | \Psi_0 \rangle \]
Occupancy fluctuations

$$N_{\mu\nu} = \langle \Psi_0 | (n_{\mu} - \langle n_{\mu} \rangle)(n_{\nu} - \langle n_{\nu} \rangle) | \Psi_0 \rangle$$
5. Fidelity susceptibility
Concept

Ground state fidelity:

\[F(g, g') = \langle \Psi_0(g) | \Psi_0(g') \rangle \]

Fidelity susceptibility\(^a\):

\[
\chi_F(g) := -\frac{2}{L} \lim_{\delta g \to 0} \frac{\log F(g, g + \delta g)}{(\delta g)^2}
\]

\[
= \frac{1}{L} \sum_{n \neq 0} \sum_{\mu, \nu, \mu \neq \nu} \frac{\left| \langle \Psi_0(g) | b_\mu^\dagger b_\nu | \Psi_n(g) \rangle \right|^2}{|E_0(g) - E_n(g)|^2}
\]

\(^a\)P. Zanardi and N. Paunković, Phys. Rev. E 74, 031123 (2006)
Fidelity susceptibility in BCS approximation

\[\chi_F(g) = \left(\frac{d\Delta}{dg} \right)^2 \frac{1}{4L} \sum_\nu \frac{\varepsilon^2_\nu}{(\varepsilon^2_\nu + \Delta^2)^2} \]

\[\rightarrow \frac{\Delta}{4g^2} \left[(1 + 4\Delta^2) \arctan \frac{1}{2\Delta} - 2\Delta \right] \]

for \(L \rightarrow \infty \).
Exact results

Number-projected BCS
Number-projected BCS state

The BCS pair operator

\[B^\dagger = \sum_\nu \left(\frac{E_\nu - \varepsilon_\nu}{E_\nu + \varepsilon_\nu} \right)^{\frac{1}{2}} b^\dagger_\nu \]

generates the number-projected BCS ground state

\[|\Psi^{(M)}\rangle = (B^\dagger)^M |0\rangle \]

for \(M \) pairs. The fidelity is given by

\[F(g, g') = \frac{V^{(M)}}{\sqrt{Z(M)Z'(M)}} , \]

where

\[V(M) := \langle \Psi^{(M)}_m | \Psi^{(M)}_m \rangle , \quad Z(M) := \langle \Psi^{(M)}_m | \Psi^{(M)}_m \rangle \]

and \(|\Psi'(M)\rangle \) is the ground state for the coupling strength \(g' \).
Recursive method

The action of the operator b_ν on $|\Psi^{(M)}\rangle$ is given by

$$b_\nu |\Psi^{(M)}\rangle = M f_\nu |\Psi^{(M-1)}\rangle - M(M - 1) f_\nu^2 b_\nu^\dagger |\Psi^{(M-2)}\rangle,$$

where $f_\nu := \Delta/(2E_\nu)$, leading to a recursion relation for the norm

$$Z^{(M)} = M Z^{(M-1)} \sum_\nu f_\nu^2 - M(M - 1) \sum_\nu f_\nu^3 S^{(M-1)}_\nu,$$

where

$$S^{(M)}_\nu := \langle \Psi^{(M)} | b_\nu^\dagger | \Psi^{(M-1)} \rangle$$

is calculated through

$$S^{(M)}_\nu = M f_\nu Z^{(M-1)} - M(M - 1) f_\nu^2 S^{(M-1)}_\nu.$$
6. Summary and outlook
Many quantities, such as the ground-state energy and the pseudospin-pseudospin correlation function, are predicted correctly by BCS theory in the thermodynamic limit.

Yang’s concept of ODLRO is encoded in a “canonical” order parameter. Some non-diagonal (with respect to level indices μ, ν) correlation functions and the fidelity susceptibility are not reproduced exactly by BCS theory.

We conclude that the BCS state is not the exact ground state of the reduced BCS Hamiltonian in the thermodynamic limit.

The main difference between the exact ground state and BCS is the quantum-critical behavior, where fluctuations beyond BCS produce non-perturbative corrections.
Outlook

It would be worthwhile to study the problem of the thermodynamic limit in more depth, by investigating other aspects or models:

Dynamics

Other integrable models (such as $p + ip$ pairing)

Models leading to gap parameters with zeroes (p-wave, d-wave)

Field theory