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Phases of Matter

1. Classification by response functions:
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2. Classification by crystalline symmetries:
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Band theory establishes a connection:
Bloch states: 1), (") = u_..(T) oik-r

Energy bands: ¢, (k) =¢, (k+ K)=¢_(gk)

METAL INSULATOR
some bands partially filled all bands either filled or empty

V/ noninteracting systems only! 7/




Effects of interactions

1) Benign : interacting ground state is adiabatically connected to
noninteracting ground state from band theory.

2) Essential : interacting ground state exhibits phenomenon of
spontaneous symmetry breaking :
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MAGNETS DENSITY WAVES SUPERFLUIDS PHASE DIAGRAM

3) Any other possibilities?



Can interactions produce a SEERESERVE,
distinct symmetric phase not
adiabatically connected to the |
noninteracting ground state?

Examples of trivial phases without SSB:

band insulators quantum paramagnets

g both topological e.g. AKLT states
u and nontopological _
-

Fermi liquids
‘\ metals, semimetals



Examples of nontrivial phases without SSB:

: . spin liquids
2\ Luttinger liquids fiald
: . . emergent gauge fields
: separation of spin fractionalizati
2 ractionalization
: and charge DOF -

BEDT-TTF
il En:r;y RiRe :65Highe:iopea;<°iosit:;?1(eV)o's
FQHE

fractional charge
and statistics

Magnetic Field (T)



Halftilled Hubbard model in d=1 dimension

U < t : Umklapp scattering relevant (g-ology)
U >t : strong coupling, A oc U
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With t =1: A:—4—|—U—|—8/

0

dw Ji(w)
w 1+ exp(Uw/2)

00 05 10 1.5 2.0 25 3.0

U/t

Spin-charge separation : spin metal + charge insulator
This state is adiabatically disconnected from the band insulator.

Filling factor : v = # electrons per cell per spin polarization

1 € 7, : adiabatic connection to band insulator

v e+ % : Mott phase preserves all symmetries, but with
no adiabatic connection to band insulator



At fractional filling, not even interactions can
induce a unique symmetry-unbroken ground state.

This prompts the following question:
Q: If v € Z is there always a band insulator?

A: No! For nonsymmorphic crystals, there is a
topological obstruction to band insulator
behavior unless the filling is v is an integer

multiple of the non-symmorphic rank, S € Z

For v #£ k - S, the ground state must either be either

(i) gapless  or  (ii) topologically degenerate



Non-symmorphic crystallographic space groups

Basically, a space group S is nonsymmorphic if it includes
screw axes or glide planes. Both of these operations involve
fractional translations that are not within the Bravais lattice.

Formally, a crystallographic space group element {R : T} acts as

R, Tyvr=Rr+T
{ 7 } \ N translation vector

point group matrix operation

This forms a group under multiplication: {R,7}{R, 7'} = {RR,RT'+ T}

A space group is symmorphic when it is a semidirect product of
the point group P and Bravais lattice translations T: S = P x T

A space group is nonsymmorphic when there is no possible choice
of origin about which all its elements can be decomposed into a
product of a lattice translation and a point group element.



Example : a lattice with a 2D glide line

Sp dCC group p4g (S. Parameswaran)
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Example : a lattice with a 2D glide line

Space group p4g (S. Parameswaran)

glide

mirror

Glide operation : reflection in x-axis followed by translation by @,

g — {Ixa %a’l}



Essential vs. inessential
nonsymmorphic operations

Graphene has a glide plane, yet its
space group p6m is symmorphic!
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The honeycomb glide is inessential,
and may be written as an ordinary
point group operation followed by
a direct lattice vector translation.
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Essential vs. inessential
nonsymmorphic operations

Graphene has a glide plane, yet its
space group p6m is symmorphic!
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nonsymmorphic operations

Graphene has a glide plane, yet its
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Essential vs. inessential
nonsymmorphic operations

Graphene has a glide plane, yet its
space group p6m is symmorphic!
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Ubiquity of nonsymmorphicity

Table 1| Some non-symmorphic groups and their ranks,
colloquial structure names and representative materials.

o

Name Examples Spacegroup S

Shastry-Sutherland ~ SrCuy(BO3); p4g

hcp Be, Mg, Zn P63/mmc
Diamond C,Si Fd3m
Pyrochlore Dy, Ti;O7 (spinice)  Fd3m

- Ol-SiOz, GeOz P3121

CrSi2 P6222
- Pr25i207,La25i207 P41
Hex. perovskite CsCuCls P61

_ A N N | /77 N

w W w w w w w N
O DWW DN DN NN

2D Shastry-Sutherland 3D hexagonal close packed

glide plane ;S=2 screw axis ; S=2
0 X CRYSTALLOGRAPHY
< % LATTICES
<9 POINT GROUPS
- SPACE GROUPS
F SYMMORPHIC
Z 5 NON-SYMMORPHIC

TOf the 157 nonsymmorphic three-dimensional space groups, 155
involve glide planes or screw axes, and two are exceptional cases.



Stickiness of nonsymmorphic energy bands

Results known from band theory. Bloch bands stick together in
groups of S. Impossible to detach without breaking the symmetry.

PHYSICAL REVIEW B VOLUME 59, NUMBER 9 1 MARCH 1999-1

Connectivity of energy bands in crystals

L. Michel® and J. Zak
Department of Physics, Technion, Israel Institute of Technology, 32000 Haifa, Israel
(Received 30 September 1998)
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Lieb-Schultz-Mattis-Oshikawa-Hastings theorem

Lieb, Schultz, Mattis (1961) / Altman and Auerbach (1998) / Oshikawa (2000) / Hastings (2004,2005)

“At fractional filling Vv, a unique, gapped, featureless,
insulating ground state is impossible.”

v & 7, | unique | gapped | featureless | insulator EXAMPLE

NOT POSSIBLE

METALLIC

DENSITY WAVE

SPIN-CHARGE
SEPARATION

TOPOLOGICAL
ORDER

BAND INSULATOR




Lieb-Schultz-Mattis argument

Consider an XXZ chain with periodic boundary conditions,

A

H_leZ S—i_S,;_l_l_'_S Sn_|_1 —I_J Z n_|_1

n=1
Suppose |¥) is the ground state, with ¢ |¥,) = e ™o |W,) .
N
Now apply the spin twist operator U = exp (27” Z ]SZ) to |¥,).

ot

Find tU 1 = U e 27550t /N 27157 S0 if |¥y) is a spin singlet, then
tW,) = e |;) with [¥,) =U|¥;) and K; =K, +27S
USE S U = FTUNSE ST, @ (U A = By + O(1/N)

Thus, we have found an orthogonal state |V,) which is degenerate
with |¥,) in the thermodynamic limit.



Example: next-nearest neighbor Heisenberg chain

H=>% [Sn - Spi1+9S,- Sn+2]

GAPLESS SPIN-PEIERLS
| | | > g
0 9c 0.5
Heisenberg model Majumdar-Ghosh
(Bethe Ansatz) point (dimers)

For g < g. >~ 0.2411, the spectrum is gapless.

For g > g., the system is in a spin-Peierls phase (doubly
degenerate ground state with excitation gap)

) :

A) = oo oo o o > 'A) £+ |B) has crystal

DO |—

Majumdar-Ghosh point (g =

momentum O, 7T

B>:‘—c —eo o—o o—o 0—>



Oshikawa-Hastings extension of LSM theorem

The LSM argument works only in d=1 because

(U |UTHU|¥,) = E, %\7;2 (Uo|H | |Vy) = Ey + O(N“?)

Oshikawa (2000) extended this areument to higher dimensions
by examining the consequences of adiabatic flux threading. Place
the system on a d-dimensional torus, and thread a flux¢ through
one of its cycles, resulting in a translationally-invariant H(¢).
Since [H(¢),t] =0, the crystal momentum of

the adiabatic ground state |¥(®)) is constant (O).
Now define |¥,) = UT|¥,(27)), which must be

a ground state of H(¢ = 0), but with momentum
AK =2rN,ve

Here v = g is the filling, and N, the number of sites in the
transverse direction. If AK not an RLV, then (¥,|¥,) = 0.




The condition AK -€ = 27N, v # 27n requires N, and ¢
to be relatively prime, and does not require d=1. In this case,
the ground state cannot be unique at fractional filling.

At integer filling, A K is a reciprocal lattice vector, hence the
states | V) and |¥4) cannot be distinguished - or so it would seem!

Some crystalline structures, however, exhibit systematic extinctions
in their Bragg patterns. Such is the case with nonsymmorphic
lattices. In such cases,|Wy) and |¥q) can be distinguished.

This is the essential content of our observation.

Fourier space crystallography and extinctions:
Under a space group operation{ R, T}, the
Fourier components of the density n,, transform
as Ny, — Npy, e* T If k-T +# 270, then ng, =0.




Examples:

m Fora S= % Kagome lattice model with one electron per site,
there are three sites per cell, hence v = % . With a featureless,
gapped, insulating ground state, the system must exhibit
topological degeneracy and fractionalization.

Science

Yan, Huse, White (2011)
Jiang, Wang, Balents (2012)
chiral order! Capponi et al. (2013)

» Fora §= % honeycomb lattice model with one electron per
site, there are two sites per cell, and the fillingis v=1. Is a
featureless, gapped, insulating gsround state necessarily a spin
liquid? No. It could be a Mott insulator. Kimchi et al. (2013)



G].St Of our al‘gument (details in paper)

= First, we require a conserved U(1) charge, which could arise from spinless or spinful
fermions, bosons, or magnets where $?is a good quantum number. We then define

total U(1) charge
V=
number of unit cells

« Next, consider a nonsymmorphic SG operation G = {R, T}, where T is not in the
direct lattice, and R7T =7 (such as in a screw or glide). Now let b be the smallest
reciprocal lattice vector for which Rb=>b. Now adiabatically thread a flux with
vector potential A =b/N, which corresponds to a pure gauge.

= Starting with a ground state which is presumed to be an eigenstate of all symmetry
operations, we must have G|W,)=e'©|U,). Let |¥,) be the adiabatic image of
[ W) after flux insertion. Flux threading commutes withG.

= We ‘pull back’ to the original flux-less Hamiltonian via

Uy = exp {% d% b-r ,(3(7“)}

where p(7) is the density operator for the U(1) charge. This removes the flux.



» Following Oshikawa (2000), define |¥) = Ublﬁf(ﬁ . Now G_lﬁbé — (A]b etbT Q/N
where () = vNN | s the total U(1) charge. Furthermore, T is fractional, hence

b-T=2nt/S,

where t and S, are relatively prime. We therefore conclude that (¥,|¥;)=0
whenever tvN, /S, is fractional. We can always choose N, so that it is relatively
prime to Sg. We conclude that adiabatic flux insertion and removal generates a
distinct ground state whenever the filling v is not an integer multiple of S, .

» The least common multiple of the {S. } must divide the nonsymmorphic rankS.

= A necessary consequence:

Both diamond and pyrochlore lattices have space group F'd3m, for which S = 2.
For interacting electrons with one e per site, one has ¥ =1 for diamond, and

v =2 for pyrochlore. Thus, a trivial insulator at this filling is impossible on the
diamond lattice, but possible on the pyrochlore lattice.



Magnetization plateaux in SrCuz(BO:3);

» CuBOs layers form Shastry-Sutherland lattice
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» [n a field, SCBO exhibits a magnetization
plateau at half the saturation value =»v =1
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» Accordingly, since Sss1=2, the plateau state
must be topologically ordered, or else break
d Symmetry. [See Momoi and Totsuka (2000)]
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applied field (T) i H(T)
Jaime et al. (PNAS, 2012) Sebastian et al. (PNAS, 2008)




Summary

= Basic question: is there always a band insulator for v € Z ? NO!

»Discrete invariant of space group: nonsymmorphic rank S

- quantum of filling for featureless insulators
- Bloch bands stick in groups of S and can’t be unstuck without breaking symmetry

- implications for band theory, interacting Bose and Fermi systems, topological
degeneracy, fractionalization

- 157 of 230 three-dimensional space groups are nonsymmorphic (S > 1)

P65 /mmc

»Questions: time-reversal! spin-orbit! quasicrystals! defects!?



