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• Question : How much a wave-function is localized 
in a given (computational) basis ? | i =

0
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CCCA

{|ii}• Various motivations :
• Localization physics : Anderson (single-particle, disorder), many-

body localization

• Complexity theory : how many states needed to describe 
correctly phenomena  ? (variational methods, computational 
complexity)
• Relation to multifractal analysis 

Introduction

• Will concentrate on wave-functions ground-states of 
quantum many-body lattice problems



Part 1 : Introduction
1. Definitions & generalities
2. Methods to compute participation

3. Basis dependence ?



Definitions

• Moments = typical tools for measuring localization 

• Historically : Inverse Participation Ratio (IPR)

| i =
X

i

ai|ii

• Assume normalized wave-function
X

i

|ai|2 = 1

• More generally, define basis state participation

Participation entropies

pi = |ai|2

S1 = lim
q!1

Sq = �
X

i

pi ln(pi)

q 6= 1Sq =
1

1� q
ln

X

i

pqi

IPR�1 =
X

i

|ai|4



Simple expectations
| i =

X

i

ai|ii• Denote by     the size of configuration space       H

• Consider the simple wave-function ai =

(
1p
N 8i 2 1...N

0 otherwise

• One simply obtains Sq = ln(N )

• Scaling : 
Sq / ln(H) : delocalized

Sq = O(1) : localized

• Remark 1 : Many-body problem :                 , in general expect H = ↵N

Sq / N

• Remark 2 : Obviously,        is basis-dependent !Sq

Is there something else beyond these remarks ?

• Main Claim (part 2) Sq = aqN + universal termq + · · ·



Computing participation
• Analytics

Stéphan et al.• Field theory approach: replica+CFT, free-field
• Exact calculations difficult (even for free fermions !)

• Numerics

• Exact diagonalization, DMRG : easy (but exact enumeration!)
• Quantum Monte Carlo: Importance sampling does the exact job !

�

� = 0

|ii = |"##"#"i

pMC
i / hi|e��H |ii �!1

= a2i = pi = h|iihi|i

‣ Measure Histogram             and obtain allH(|ii) Sq

S1‣       is easily measured as S1 = � ln(p
max

)
Most likely state



Computational replica trick
• Replica trick : Simulate q independent copies

Estimator for 
X

i

pqi = h�|i1i,|i2i,··· ,|iqii

|i1i = |"##"#"i

· · ·

|i2i = |"#"##"i |iqi = |"##"#"i

‣      for integer  q � 2Sq
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Basis dependence & universality

• Relation between basis:
S(x)
q

(h) = S(z)
q

(1/h) + ln(2)

General

1d Ising

Sx/z

q=1/2 = N ln(2)� Sz/x

q=1

• No generic proof
• Some arguments (to be continued) :

• 1d critical systems: Boundary CFT classifies basis dependence, verified by 
numerics

• Same basis, same results for systems in the same universality class

• Conjecture: Local unitary transforms does not change subleading terms 
(or only trivially)

• Some «natural» bases are singled out: 

• Eigenbasis of operators in H (computational QMC basis)

• Rokshar-Kivelson construction picks up one basis



Part II : Review of results
Catalog of universal subleading terms

1) Critical spin chains

2) 2d Spin systems

• Discrete symmetry breaking

• Continuous symmetry breaking

Review 
JSTAT, P08007 (2014)



Scaling of participation entopies
• Numerical and analytical evidences for scaling

S=1/2 XXZ model 

Transverse-field 
Ising model

Sq = aqN + universal termq +O(1/N) + · · ·

Depends on details
Multifractality

Detects physics!

• Will be illustrated on two spin models

H = J
X

hi,ji

Sx

i

Sx

j

+ Sy

i

Sy

j

+�Sz

i

Sz

j

H = J
X

hi,ji

�x

i

�x

j

� h
X

i

�z

i



Critical spin chains

• How much survives beyond the 1d tractable (exact) cases ? 

• Periodic chains: Sq = aqN + bq + cq/N + · · ·

• Open chains : Sq = aqN + lq ln(N) + b̃q + cq/N · · ·

• Numerics + Analytics give strong evidence for universal scaling

Stéphan et al.

Ising universality
 class

b⇤(x)
q

=

8
><

>:

0 q < 1

0.25439 · · · q = 1

ln(2) q > 1

b1

M M h | i

L ⇠ 32 L ⇠ 40 M = 1/2

c = 1
� > �1

� M R �

R =

r
2 � 2

⇡
arccos � , �1 < �  1.

M 6= 0 R

a Entropie d’intrication

S = S
1

S = aL+s
1

+b/L
R
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Lanczos M=0
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lnR � 1/2

s
1

K�1/2
= (2� 2/⇡ arccos(�))

1/2

Luttinger liquids
bq = �1

2
(lnK +

ln q

q � 1
)

bq>qc =
1

1� q
(q ln

p
K + lnD)

q  qc = KD2 Easy way to compute 
Luttinger parameter ! 
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2d transverse-field Ising model
• QMC data well fitted by Sq = aqN + bq + cq/N + · · ·

high-field
b(z)q ! 0

low-field
b(z)q ! � ln(2)

Marked anomaly 
close to hc

Skeptics ...

hc ' 3.044
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Ferromagnetic Polarized



2d transverse-field Ising model
• QMC data well fitted by Sq = aqN + bq + cq/N + · · ·

b1

h

Convergence to a 
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2d transverse-field Ising model
• QMC data well fitted by Sq = aqN + bq + cq/N + · · ·

• Similar behavior for b2, b3, b4 · · ·

b2
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2d transverse-field Ising model
• QMC data well fitted by Sq = aqN + bq + cq/N + · · ·

• Summary for b(z)q

b⇤2 ' 0.36
b⇤3 ' 0.26

b⇤4 ' 0.22

bq(h > hc) = 0

b(z)q

h

• Non-trivial (universal ?) values at      , different from 1dhc

• Speculation : boundary-induced phase transition at                         ?               0.5  qc  1

b⇤1 ' 0.18

bq(h < hc) = � ln(2)
b⇤1/2 ⇠ � ln(2)?



Universality 
• Same model on triangular lattice

• Same constants found at and out of criticality
hc

b⇤2 ' 0.36
b⇤3 ' 0.26

b⇤4 ' 0.22
b⇤1 ' 0.19

bq(h > hc) = 0

bq(h < hc) = ln(2)

b(z)q
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2d XXZ antiferromagnetic model

• Long range order in ground-state 

QMC data well fitted by Sq = aqN + lq log(N) + bq + · · ·

H = J
X

hi,ji

Sx

i

Sx

j

+ Sy

i

Sy

j

+�Sz

i

Sz

j

•                        continuous symmetry breaking0  �  1

•                 discrete symmetry breaking : Log vanish� > 1 4
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Figure 3. A: S1 for the d = 2 isotropic (� = 1) and anisotropic (� 6= 1) XXZ model on the square lattice as a function of
system size N . Lines are fits to the form S1 = a1N + l1 lnN + b1 + c1/N + d1/N2. B: Subleading logarithmic terms
are highlighted in semi-log scale by subtracting a1N from S1. Reported values of a1 and l1 are estimates from the best fit
including error bars from a bootstrap analysis.

due to the di�culty of accessing su�ciently large N .
Our QMC schemes enable us to address this problem.
We first consider the d = 2 transverse-field Ising model
H

Ising

= �P
hi,ji �

x
i �

x
j � h

P
i �

z
i , a paradigmatic exam-

ple of a quantum phase transition (QPT) between a low-
field ferromagnetic phase (which breaks the Z

2

spin rever-
sal symmetry) and a high-field polarized phase. �x,z

i are
Pauli matrices and hi, ji denote nearest-neighbor pairs
on the square lattice. The QPT occurs at hc ' 3.044 on
the square lattice [27]. For this discrete symmetry break-
ing, our QMC results for SR entropies in the {�z} basis
are very well-fitted by Eq. 2. Fig. 2 reveals the universal
nature of the subleading constant term bq: throughout
all the ferromagnetic phase, bq ! � ln(2) in the ther-
modynamic limit (cf. [18] for a discussion on finite-size
e↵ects), while bq ! 0 in the polarized (paramagnetic)
phase, and this for all q > 0 considered. These two con-
stants are easily understood from the limiting cases h = 0
and h ! 1. Quite strikingly, bq(hc) ! b⇤q at criticality,
where b⇤q is a non-trivial, q�dependent, constant. We be-
lieve b⇤q to be a universal function of q, characteristic of
the d = 3 Ising universality class. This is corroborated by
results for the same model on the triangular lattice [18],
which has a QPT in the same universality class. Our data
are compatible with b⇤q>1

= q
q�1

b⇤1 with b⇤1 ' 0.19(2),
which indicates that the system is e↵ectively locked in
and physics dominated by the non-degenerate configu-
ration with maximal probability p

max

in the long wave-
length limit [12, 14]. We expect the precise value of the
leading term coe�cient aq to be model-dependent, but
observe nevertheless (Fig. 2D) a clear signal of the QPT
in its field dependence.

We finally highlight the di↵erent nature of sublead-
ing corrections in models that exhibit continuous sym-
metry breaking in the thermodynamic limit. Consider
the antiferromagnetic spin-1/2 XXZ model H

XXZ

=P
hi,ji S

x
i S

x
j + Sy

i S
y
j + �Sz

i S
z
j on the square lattice with

the spin anisotropy � � 0. For 0  � < 1 (including
the XY model at � = 0), the GS breaks the continuous
U(1) rotation symmetry around z axis, while for � > 1
a discrete Ising symmetry is broken. The isotropic point

� = 1 (Heisenberg model) has an enhanced continuous
SU(2) spin rotation symmetry which is also broken in
the GS. All broken continuous symmetries are associated
with the presence of gapless Goldstone modes, while for
� > 1 the doubly-degenerate GS is separated by a gap
from the first excitation. In the case of continuous sym-
metry breakings, our QMC results (see Fig. 3 and [18])
demonstrate the presence of a logarithmic subleading cor-
rection in the scaling of SR entropies

Sq(N) = aqN + lq lnN + bq +
cq
N

+ . . . , (3)

which are absent in the discrete symmetry breaking case,
where we recover a universal constant term bq = ln 2. We
systematically found a logarithmic subleading term for
all systems with a continuous symmetry breaking that
we have studied (cf. [18] for results on models with
a next-nearest neighbor coupling), at least for q > 1.
Similar logarithmic corrections have been found in the
scaling of entanglement entropy of systems with contin-
uous symmetry breaking, with a q-independent univer-
sal coe�cient solely related to the number of Goldstone
modes [28]. We observe in our simulations that lq varies
with q (a scaling lq>1

= q
q�1

l1 seems to hold), in contrast
to entanglement entropies. When the GS is modified by
tuning an external parameter but remains in the same
phase, our best fits to Eq. 3 (cf. [18]) indicate that lq
varies slightly with the external parameter, even though
a universal lq cannot be excluded. The presence of loga-
rithmic corrections as well as the lq scalings can be seen
in a toy model of antiferromagnetism [18].

We would like to emphasize that the Monte Carlo
schemes presented above are general enough to be used
directly with minor modifications in the study of physical
phenomena in di↵erent fields (amenable to Monte Carlo
sampling) where SR entropies Sq are meaningful.

Potential condensed matter applications include detec-
tion of topological phases [29, 30] as well as problems
of disordered interacting systems, such as many-body
localization [31]. Additionally, QMC being formulated
in terms of path-integrals, a natural extension to finite-
temperature (i.e. mixed states) studies is possible. Fur-

...

PRL 112, 057203 (2014)



Log and Goldstone modes
QMC data well fitted by Sq = aqN + lq log(N) + bq + · · ·

CHAPTER 1. SHANNON-RÉNYI ENTROPY FOR NAMBU-GOLDSTONE MO . . .

Model n
log(N) coef.

Ref. [4]
NNG
4

n+1

n�1

Heisenberg
J
2

= 0 1 0.460(5) 0.5
J
2

= �5 1 0.58(2) 0.5
J
2

= 0 2 1.0(2) 1.5
J
2

= �5 2 1.25(4) 1.5

J
2

= �5 3 1.06(3) 1

J
2

= �5 4 1.0(1) 0.8333

Model n
log(N) coef.

Ref. [4]
NNG
4

n+1

n�1

XY
J
2

= 0 1 0.281(8) 0.25
J
2

= �1 1 0.282(3) 0.25
J
2

= 0 2 0.585(6) 0.75
J
2

= �1 2 0.598(4) 0.75
J
2

= 0 3 0.44(2) 0.5
J
2

= �1 3 0.432(7) 0.5
J
2

= 0 4 0.35(8) 0.4166
J
2

= �1 4 0.38(2) 0.4166

Table 1.1: Subleading logarithmic terms in the SRE of the 2D Heisenberg and XY models, possibly
with ferromagnetic second neighbor interaction J

2

(which strengthens the magnetic order). n is
the Rényi (noted q in [4]). The numerical values obtained by Toulouse’s group (supplementary
material of [4]) are given in the third column. We selected the best fit only for simplicity – which
does not do justice to their extensive and detailed data analysis. The last column is the present
theoretical prediction (Eq. 1.28, which combines the oscillators (Eq. 1.10) and TOS contributions
(Eq. 1.27). The number N

NG

of Nambu-Goldstone mode is 2 for Heisenberg and 1 for XY.

the compactness of �r. This leads to the Hamiltonian of massless free scalar field:

H =
1

2

Z
d2r

h
�?⇧

2

r + ⇢
s

(r�r)2
i

(1.1)

where ⇢
s

is the sti↵ness, c the spin-wave velocity, the transverse susceptibility is �? = c

2

⇢s
and

⇧r =
⇢s

c

2 �̇r is cannonically conjugate to �r. This is collection of harmonic oscillators, one for each
momentum k:

H =
1

2

X

k


c2

⇢
s

⇧2

k + ⇢
s

k

2 |�k|
�
. (1.2)

1.1.2 Configuration with the highest probability

We start by considering the n = 1 SRE, which amounts to evaluate the probability of the most
likely configuration.

Let us first recall that the (normalized) ground-state wave function  of an harmonic oscillator

with the Hamiltonian H = 1

2m

@

2

@x

2 + 1

2

m!2 is

 (x) =
⇣m!
⇡

⌘
1/4

exp
⇣
�m!

2
x2

⌘
. (1.3)

So, if one asks what is the probability density p
max

to find the particle at its “most likely” location,
the result is the square of the wave function at x = 0, which is just the square of the normalization
factor :

p
max

= | (0)|2 =
⇣m!
⇡

⌘
1/2

. (1.4)

Comparing this to Eq. 1.2, the mode k of the free field has a mass mk = ⇢s

c

2 and frequency
!k = c|k|. So, the probability p

max

(k) for the mode k to be “at the origin” is:

p
max

(k) =
⇣mk!k

⇡

⌘
1/2

=

✓
⇢
s

|k|
c

◆
1/2

. (1.5)

4

• Analytical prediction: Coefficient of log ∝  # Goldstone modes
Misguich, Oshikawa et al.

• Numerical simulations on larger systems ongoing...



2d quantum phase transition
• Plaquettized 2d Heisenberg Hamiltonian

J2/J1
0 1

Plaquettized Néel

3

a) subsystem Bsubsystem B

J
1

J
2

b)

J
1

J
2

subsystem Bsubsystem B

Figure 1. (Color online) Plaquettized (left) and dimerized
(right) lattices. The thick (red) lines correspond to strong
bonds with coupling J

1

and we refer to them as plaque-
ttes/dimers. The dotted bonds are the weak interplaque-
tte/interdimer couplings J

2

 J
1

. Periodic boundary con-
ditions are implicit.

II. MODELS AND METHODS OF ANALYSIS

The two models (dimerized and plaquettized Heisen-
berg models) that we study are defined with the same
Hamiltonian form:

H = J
1

X
plaquettes/

dimers

~S
i

· ~S
j

+ J
2

X
links

~S
i

· ~S
j

, (3)

with J
1

, J
2

� 0 and where the two terms correspond to
the summation over stronger bonds for columnar dimers
(plaquettes) and to the summation over the weaker links
between these entities (see Fig. 1). We only consider
g = J

2

/J
1

 1 here, with g = 1 yielding the homogeneous
Heisenberg antiferromagnet on the square lattice. The
two models have slightly di↵erent critical points at g

c

=
0.52370(1)18 for the columnar dimerized system and g

c

=
0.54854(6)17 for the plaquettized system. For g < g

c

both models display a disordered ground state separated
from excited states by a finite energy gap, whereas for
g > g

c

antiferromagnetic Néel long-range order occurs,
with a spontaneous breaking of the SU(2) symmetry. We
considered these two models as they are well-established
to harbor the same physical content (in particular the
quantum phase transitions at g

c

belong to the same 3d
O(3) universality class), yet with di↵erent microscopics:
this will allow us to discuss universality of the scaling of
SR entropies.

We study properties of the groundstates expanded in
the {Sz} basis and note that all results will be identi-
cal in any basis obtained by a global SU(2) transforma-
tion, by symmetry of the Hamiltonian. We use the index
⇤ (respectively |) to denote quantities for the plaquet-
tized (resp. dimerized) model. Considering the results of
Ref. 9, we will perform fits of the SR entropy S1 of the
full system to the following forms:

S1(N) = a1N + l1 ln N + b1 (4)

and

S1(N) = ã1N + b̃1. (5)

Equivalent forms for the line SR entropy Sline

1 (L) are:

Sline

1 (L) = aline

1 L + lline

1 ln L + bline

1 (6)

and

Sline

1 (L) = ãline

1 L + b̃line

1 . (7)

Note that in general, one also expects9 further size cor-
rections O

�
1

N

�
and O

�
1

L

�
.

The second functional forms Eqs. (5) and (7) are of
course included into the first forms Eqs. (4) and (6),
when the fitting parameters l1 or lline

1 are found to be
zero. However, given the finite values of N and L that we
can reach and the error bars inherent to QMC, the fits
to Eqs. (5) and (7) are better controlled (and errors on
estimated parameters smaller) by forcing l1 to be zero
for systems where no log term is present. Indeed, putting
a log term when not needed can result in an acceptable
fit where an artificial l1 > 0 compensates wrongly un-
derestimated a1 or b1. For systems where no log term
is present, we must have b̃1 ! b1 and ã1 ! a1 (re-
spectively bline ! bline

1 and ãline

1 ! aline

1 ) for large enough
sizes, but this scaling regime might be reached earlier
by using the second forms Eqs. (5), (7). Let us finally
mention the simple argument that if one is looking for
universal constants, then only l1 and lline

1 can be univer-
sal (but not b1, bline

1 ) in the first forms Eqs. (4) and(6):
this is seen by a redefinition of sample size N or L. With
the same reasoning, only b̃1, b̃line

1 can be universal for the
second forms Eqs. (5) and (7).

For all fits, we used a rigorous bootstrap analysis in
order to provide reliable error bars for fit parameters.
Note, however, that these error bars do not contain sys-
tematic e↵ects due to finite system sizes. These e↵ects
can nevertheless be estimated by comparison of fits over
di↵erent system size N or L ranges (“fit windows”, see
Ref. 9 for details). We also monitored the fit quality Q
(see Ref. 22) to ascertain the precision of our fits.

III. SHANNON-RÉNYI ENTROPIES

Throughout this section, we restrict our discussion and
analysis to the computationally most accessible SR en-
tropy, when q ! 1 for both the full system (S1) in
Sec. III A and the line subsystem (Sline

1 ) in Sec. III B.

A. SR entropy S1 of the full system

Figure 2 shows our QMC result for S⇤
1 of the pla-

quettized model in the range of accessible entropies (our
simulations are limited roughly to S1 . 20 as discussed
in appendix A), for di↵erent values of the parameter J

2

in the range [0, 1].
In the limit J

2

= 0 of isolated plaquettes, S⇤
1(N) can

be exactly (cf. appendix B) shown to be S⇤
1(N) = ln 3

4

N ,
i.e. a pure linear scaling with no logarithmic or constant

Jc
2 ⇠ 0.54

3d O(3)

Sq = aqN + lq log(N) + bq + · · · 4
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Figure 2. (Color online) S⇤
1 for di↵erent values of the pla-

quette coupling strength J
2

. The result for the limit J
2

= 0
is given by S⇤

1 = ln 3

4

N (see appendix B). An emerging log-
arithmic scaling term for J

2

> Jc can be guessed. Lines are
guides to the eye.

terms. In the uniform Heisenberg limit J
2

= J
1

on the
other hand, previous results9 have shown the existence
of a logarithmic scaling correction with the form Eq. (4)
with l1 6= 0.

By inspection of the bare SR entropy scaling in Fig.
2, a nonzero logarithmic scaling term l1 > 0 can be
presumed for the whole ordered phase J

2

> J
c

(with
curves clearly bending downwards for smaller system
sizes), while for the disordered phase, the scaling appears
linear. In order to quantify this, we have performed fits of
the Monte Carlo data corresponding to the form Eq. (4).
We emphasize that the quality of the fits (in particular
the extraction of the logarithmic term) is reduced when
only few system sizes are available, which is specially the
case in the disordered regime of the phase diagram (due
to faster growing S1 with system size). As the situation
is worse for the dimerized model (we have for instance

a|
1(J

2

= 0) = ln 2

2

> a⇤
1(J

2

= 0) = ln 3

4

, cf. appendix
B), we concentrated our analysis for this section on the
plaquettized model.

Fig. 3 displays the result of our fits for the prefactor
l⇤1 of the logarithmic scaling correction of S⇤

1. The trend
with increasing system sizes included in the fit is evident
in the ordered phase, as l⇤1 is found to be almost constant
with J

2

there. In the disordered phase, large finite size
e↵ects are observed which are very similar to the oscilla-
tions found for the constant term close to the quantum
phase transitions of transverse field Ising models5,9. We
expect l⇤1 to vanish in the complete quantum disordered
phase (as it is shown analytically for J

2

= 0 in appendix
B) and our data are consistent with this expectation,
although the numerical precision is not su�cient for a
definite answer. The lack of availability of larger N also
prevents us to conclude if there is a universal number l1
(and what is its numerical value) in the Néel phase, even
though the plateau shape of the curves tend to indicate
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Figure 3. (Color online) Prefactor l⇤1 of the logarithmic scal-
ing term of S⇤

1 extracted from fits over di↵erent size windows
for the plaquettized square lattice. N

max

is the maximal ac-
cessible size for which the entropy is smaller than ⇡ 20 (see
Fig. 2). We used N

max

= 144 for J
2

> 0.3 and were able to
push calculations up to N

max

= 196 around the critical point
and even to N

max

= 256 for J
2

= 1. For J
2

< Jc, the fits are
di�cult because of greater errorbars for large entropies and
large finite size e↵ects. The behavior is nevertheless consis-
tent with a vanishing l⇤1 in the disordered phase. For J

2

> Jc

a plateau emerges and l⇤1 is found to assume approximately
the same nonzero value in the whole ordered phase. The in-
set shows the subleading constant term b̃⇤1 obtained from fits
excluding a logarithmic scaling term, in the relevant low-J

2

phase.

that this is possible. The actual universal value l1 (if
any) may be quite larger than the maximum value here
(found to be l1 ' 0.45 for the fit window with the largest
N), as can be seen by the shift of the curves when smaller
sizes are removed from the fit.

The inset of Fig. 3 shows our fit results for the same
fit windows as in the main panel for b̃⇤1 as obtained from
fits to Eq. (5) close to J

c

. In this region, large finite size
e↵ects are hampering a reliable extraction of the con-
stant but a lower bound for the value b⇤,⇤

1 & 1.1 at the
critical point can be perceived. Results from fit windows
excluding smaller system sizes seem to indicate that b⇤1
vanishes in the disordered phase.

It would be of clear interest to increase the maximum
size in the simulation to have a larger fitting range, but
this is not possible with the extensive growth of the en-
tropy S1. To circumvent this problem, we consider in
the next section the scaling behavior of a the SR entropy
of a subsystem, which grows much more slowly.

B. SR entropy Sline

1 of a line subsystem

We present in this section our QMC results for the line
subsystem SR entropy Sline

1 . Its scaling with the length
of the line L will be shown to also capture the nature of
the ordered and paramagnetic phases. Sline

1 is equal to

Néel side : 
log present

Gapped side : 
hard to tell...

Critical 
point: ?? PRB 89, 165106 (2014)
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Figure 1. (Color online) Plaquettized (left) and dimerized
(right) lattices. The thick (red) lines correspond to strong
bonds with coupling J

1

and we refer to them as plaque-
ttes/dimers. The dotted bonds are the weak interplaque-
tte/interdimer couplings J

2

 J
1

. Periodic boundary con-
ditions are implicit.

II. MODELS AND METHODS OF ANALYSIS

The two models (dimerized and plaquettized Heisen-
berg models) that we study are defined with the same
Hamiltonian form:

H = J
1

X
plaquettes/

dimers

~S
i

· ~S
j

+ J
2

X
links

~S
i

· ~S
j

, (3)

with J
1

, J
2

� 0 and where the two terms correspond to
the summation over stronger bonds for columnar dimers
(plaquettes) and to the summation over the weaker links
between these entities (see Fig. 1). We only consider
g = J

2

/J
1

 1 here, with g = 1 yielding the homogeneous
Heisenberg antiferromagnet on the square lattice. The
two models have slightly di↵erent critical points at g

c

=
0.52370(1)18 for the columnar dimerized system and g

c

=
0.54854(6)17 for the plaquettized system. For g < g

c

both models display a disordered ground state separated
from excited states by a finite energy gap, whereas for
g > g

c

antiferromagnetic Néel long-range order occurs,
with a spontaneous breaking of the SU(2) symmetry. We
considered these two models as they are well-established
to harbor the same physical content (in particular the
quantum phase transitions at g

c

belong to the same 3d
O(3) universality class), yet with di↵erent microscopics:
this will allow us to discuss universality of the scaling of
SR entropies.

We study properties of the groundstates expanded in
the {Sz} basis and note that all results will be identi-
cal in any basis obtained by a global SU(2) transforma-
tion, by symmetry of the Hamiltonian. We use the index
⇤ (respectively |) to denote quantities for the plaquet-
tized (resp. dimerized) model. Considering the results of
Ref. 9, we will perform fits of the SR entropy S1 of the
full system to the following forms:

S1(N) = a1N + l1 ln N + b1 (4)

and

S1(N) = ã1N + b̃1. (5)

Equivalent forms for the line SR entropy Sline

1 (L) are:

Sline

1 (L) = aline

1 L + lline

1 ln L + bline

1 (6)

and

Sline

1 (L) = ãline

1 L + b̃line

1 . (7)

Note that in general, one also expects9 further size cor-
rections O

�
1

N

�
and O

�
1

L

�
.

The second functional forms Eqs. (5) and (7) are of
course included into the first forms Eqs. (4) and (6),
when the fitting parameters l1 or lline

1 are found to be
zero. However, given the finite values of N and L that we
can reach and the error bars inherent to QMC, the fits
to Eqs. (5) and (7) are better controlled (and errors on
estimated parameters smaller) by forcing l1 to be zero
for systems where no log term is present. Indeed, putting
a log term when not needed can result in an acceptable
fit where an artificial l1 > 0 compensates wrongly un-
derestimated a1 or b1. For systems where no log term
is present, we must have b̃1 ! b1 and ã1 ! a1 (re-
spectively bline ! bline

1 and ãline

1 ! aline

1 ) for large enough
sizes, but this scaling regime might be reached earlier
by using the second forms Eqs. (5), (7). Let us finally
mention the simple argument that if one is looking for
universal constants, then only l1 and lline

1 can be univer-
sal (but not b1, bline

1 ) in the first forms Eqs. (4) and(6):
this is seen by a redefinition of sample size N or L. With
the same reasoning, only b̃1, b̃line

1 can be universal for the
second forms Eqs. (5) and (7).

For all fits, we used a rigorous bootstrap analysis in
order to provide reliable error bars for fit parameters.
Note, however, that these error bars do not contain sys-
tematic e↵ects due to finite system sizes. These e↵ects
can nevertheless be estimated by comparison of fits over
di↵erent system size N or L ranges (“fit windows”, see
Ref. 9 for details). We also monitored the fit quality Q
(see Ref. 22) to ascertain the precision of our fits.

III. SHANNON-RÉNYI ENTROPIES

Throughout this section, we restrict our discussion and
analysis to the computationally most accessible SR en-
tropy, when q ! 1 for both the full system (S1) in
Sec. III A and the line subsystem (Sline

1 ) in Sec. III B.

A. SR entropy S1 of the full system

Figure 2 shows our QMC result for S⇤
1 of the pla-

quettized model in the range of accessible entropies (our
simulations are limited roughly to S1 . 20 as discussed
in appendix A), for di↵erent values of the parameter J

2

in the range [0, 1].
In the limit J

2

= 0 of isolated plaquettes, S⇤
1(N) can

be exactly (cf. appendix B) shown to be S⇤
1(N) = ln 3

4

N ,
i.e. a pure linear scaling with no logarithmic or constant

Sline
q = alineq L+ llineq log(L) + blineq + · · · 6
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Figure 6. (Color online) Logarithmic scaling term lline

1 of the
line SR entropy Sline

1 across the plaquettization (top) and
dimerization (bottom) transitions, as obtained from fits to
Eq. (6). We show fits over di↵erent system size windows. The
logarithmic term vanishes in the quantum disordered phase,
while in the ordered phase it assumes a nonzero, almost con-
stant value, which is similar for both models for a given fitting
size window.

correction lline,⇤
1 presumably vanishes in the disordered

phase, which will be verified in the next paragraph. Both
dimerized and plaquettized models display the same be-

havior, with aline,|
1 taking larger values due to suppressed

Néel order.
One can notice a qualitative change in the extensive

contribution to the Shannon entropy across the quan-
tum phase transition where a1 changes abruptly. More
precisely, its derivative with respect to J

2

displays a sin-
gularity at the critical point. We discuss in more detail
such features in Sec. IVD.

2. Subleading logarithmic term in the ordered phase

The first subleading scaling term is the logarithmic cor-
rection lline

1 as defined in Eq. (6). Fig. 6 represents results
of fits obtained from three sets of system size ranges. We
find that fits excluding the smallest system sizes gener-
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Figure 7. (Color online) Constant scaling term b̃line

1 of the
subsystem entropy Sline

1 across the plaquettization (top) and
dimerization (bottom) transitions, as obtained by a fit to
Eq. (7). This form is clearly not valid in the ordered phase
(J

2

> Jc), where a logarithmic scaling term of lline

1 > 0 is
found. Fit qualities drop to zero for J

2

> Jc and b̃line

1 is there-
fore shown in pale colors. In the disordered phase J

2

< Jc,
b̃line

1 = bline

1 is found to be 0 (bold). The lines cross at the
critical point at b⇤,line,⇤

1 = 0.412(6) (plaquettized model) and

b
⇤,line,|
1 = 0.41(1) (dimerized model).

ally correspond to higher fit qualities (quality factor Q
closer to 1) while on the other hand, error bars on lline

1
become larger as the number of data points included in
the fit decreases.

Nevertheless, results are stable with respect to di↵erent
fit windows: we observe a clear change in the estimated
lline

1 exactly at the transition point for both dimerized
and plaquettized models at the respective J

c

. Deep in
the quantum disordered phase, the logarithmic term lline

1
converges very well towards zero. Close to the critical
point for J

2

< J
c

, nontrivial finite size e↵ects show up in
pronounced oscillations preceding the jump to nonzero
lline

1 in the ordered phase. Similar to what is observed
in the constant term of the SR entropies of the one-
dimensional5 and two-dimensional9 quantum Ising model
close to its transition point, the oscillations become nar-
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II. MODELS AND METHODS OF ANALYSIS

The two models (dimerized and plaquettized Heisen-
berg models) that we study are defined with the same
Hamiltonian form:

H = J
1

X
plaquettes/

dimers

~S
i

· ~S
j

+ J
2

X
links

~S
i

· ~S
j

, (3)

with J
1

, J
2

� 0 and where the two terms correspond to
the summation over stronger bonds for columnar dimers
(plaquettes) and to the summation over the weaker links
between these entities (see Fig. 1). We only consider
g = J

2

/J
1

 1 here, with g = 1 yielding the homogeneous
Heisenberg antiferromagnet on the square lattice. The
two models have slightly di↵erent critical points at g

c

=
0.52370(1)18 for the columnar dimerized system and g

c

=
0.54854(6)17 for the plaquettized system. For g < g

c

both models display a disordered ground state separated
from excited states by a finite energy gap, whereas for
g > g

c

antiferromagnetic Néel long-range order occurs,
with a spontaneous breaking of the SU(2) symmetry. We
considered these two models as they are well-established
to harbor the same physical content (in particular the
quantum phase transitions at g

c

belong to the same 3d
O(3) universality class), yet with di↵erent microscopics:
this will allow us to discuss universality of the scaling of
SR entropies.

We study properties of the groundstates expanded in
the {Sz} basis and note that all results will be identi-
cal in any basis obtained by a global SU(2) transforma-
tion, by symmetry of the Hamiltonian. We use the index
⇤ (respectively |) to denote quantities for the plaquet-
tized (resp. dimerized) model. Considering the results of
Ref. 9, we will perform fits of the SR entropy S1 of the
full system to the following forms:

S1(N) = a1N + l1 ln N + b1 (4)

and

S1(N) = ã1N + b̃1. (5)

Equivalent forms for the line SR entropy Sline

1 (L) are:

Sline

1 (L) = aline

1 L + lline

1 ln L + bline

1 (6)

and

Sline

1 (L) = ãline

1 L + b̃line

1 . (7)

Note that in general, one also expects9 further size cor-
rections O

�
1

N

�
and O

�
1

L

�
.

The second functional forms Eqs. (5) and (7) are of
course included into the first forms Eqs. (4) and (6),
when the fitting parameters l1 or lline

1 are found to be
zero. However, given the finite values of N and L that we
can reach and the error bars inherent to QMC, the fits
to Eqs. (5) and (7) are better controlled (and errors on
estimated parameters smaller) by forcing l1 to be zero
for systems where no log term is present. Indeed, putting
a log term when not needed can result in an acceptable
fit where an artificial l1 > 0 compensates wrongly un-
derestimated a1 or b1. For systems where no log term
is present, we must have b̃1 ! b1 and ã1 ! a1 (re-
spectively bline ! bline

1 and ãline

1 ! aline

1 ) for large enough
sizes, but this scaling regime might be reached earlier
by using the second forms Eqs. (5), (7). Let us finally
mention the simple argument that if one is looking for
universal constants, then only l1 and lline

1 can be univer-
sal (but not b1, bline

1 ) in the first forms Eqs. (4) and(6):
this is seen by a redefinition of sample size N or L. With
the same reasoning, only b̃1, b̃line

1 can be universal for the
second forms Eqs. (5) and (7).

For all fits, we used a rigorous bootstrap analysis in
order to provide reliable error bars for fit parameters.
Note, however, that these error bars do not contain sys-
tematic e↵ects due to finite system sizes. These e↵ects
can nevertheless be estimated by comparison of fits over
di↵erent system size N or L ranges (“fit windows”, see
Ref. 9 for details). We also monitored the fit quality Q
(see Ref. 22) to ascertain the precision of our fits.

III. SHANNON-RÉNYI ENTROPIES

Throughout this section, we restrict our discussion and
analysis to the computationally most accessible SR en-
tropy, when q ! 1 for both the full system (S1) in
Sec. III A and the line subsystem (Sline

1 ) in Sec. III B.

A. SR entropy S1 of the full system

Figure 2 shows our QMC result for S⇤
1 of the pla-

quettized model in the range of accessible entropies (our
simulations are limited roughly to S1 . 20 as discussed
in appendix A), for di↵erent values of the parameter J

2

in the range [0, 1].
In the limit J

2

= 0 of isolated plaquettes, S⇤
1(N) can

be exactly (cf. appendix B) shown to be S⇤
1(N) = ln 3

4

N ,
i.e. a pure linear scaling with no logarithmic or constant
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Figure 6. (Color online) Logarithmic scaling term lline

1 of the
line SR entropy Sline

1 across the plaquettization (top) and
dimerization (bottom) transitions, as obtained from fits to
Eq. (6). We show fits over di↵erent system size windows. The
logarithmic term vanishes in the quantum disordered phase,
while in the ordered phase it assumes a nonzero, almost con-
stant value, which is similar for both models for a given fitting
size window.

correction lline,⇤
1 presumably vanishes in the disordered

phase, which will be verified in the next paragraph. Both
dimerized and plaquettized models display the same be-

havior, with aline,|
1 taking larger values due to suppressed

Néel order.
One can notice a qualitative change in the extensive

contribution to the Shannon entropy across the quan-
tum phase transition where a1 changes abruptly. More
precisely, its derivative with respect to J

2

displays a sin-
gularity at the critical point. We discuss in more detail
such features in Sec. IVD.

2. Subleading logarithmic term in the ordered phase

The first subleading scaling term is the logarithmic cor-
rection lline

1 as defined in Eq. (6). Fig. 6 represents results
of fits obtained from three sets of system size ranges. We
find that fits excluding the smallest system sizes gener-
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1 = ã1L +

˜b1

L 2 [24, 64]

L 2 [20, 64]

L 2 [16, 64]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Jc0 0.2 0.4 0.6 0.8 1

˜

bl
i
n
e
,|

1

J
2

fits to Sline,|
1 = ã1L +
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Figure 7. (Color online) Constant scaling term b̃line

1 of the
subsystem entropy Sline

1 across the plaquettization (top) and
dimerization (bottom) transitions, as obtained by a fit to
Eq. (7). This form is clearly not valid in the ordered phase
(J

2

> Jc), where a logarithmic scaling term of lline

1 > 0 is
found. Fit qualities drop to zero for J

2

> Jc and b̃line

1 is there-
fore shown in pale colors. In the disordered phase J

2

< Jc,
b̃line

1 = bline

1 is found to be 0 (bold). The lines cross at the
critical point at b⇤,line,⇤

1 = 0.412(6) (plaquettized model) and

b
⇤,line,|
1 = 0.41(1) (dimerized model).

ally correspond to higher fit qualities (quality factor Q
closer to 1) while on the other hand, error bars on lline

1
become larger as the number of data points included in
the fit decreases.

Nevertheless, results are stable with respect to di↵erent
fit windows: we observe a clear change in the estimated
lline

1 exactly at the transition point for both dimerized
and plaquettized models at the respective J

c

. Deep in
the quantum disordered phase, the logarithmic term lline

1
converges very well towards zero. Close to the critical
point for J

2

< J
c

, nontrivial finite size e↵ects show up in
pronounced oscillations preceding the jump to nonzero
lline

1 in the ordered phase. Similar to what is observed
in the constant term of the SR entropies of the one-
dimensional5 and two-dimensional9 quantum Ising model
close to its transition point, the oscillations become nar-

Sline
q = alineq L+ llineq log(L) + blineq + · · ·

Critical point:
universal constant 
bline,⇤1 ' 0.41

• Universal constant           characteristic of  3d O(3) universality class
• Likely similar universal constant      (but can’t prove it)b⇤q

bline,⇤1



Summary of 2d results + Speculations
• Gapped (broken-symmetry) phases

Sq = aqN + bq + cq/N + · · ·

bq = ln(deg) captures ground-state degeneracy

lq

• Continuous symmetry-broken phases
Sq = aqN + lq log(N) + bq + · · ·

proportional to # Goldstone modes
• Quantum critical points

Sq = aqN + b⇤q + cq/N + · · ·

b⇤q characteristic of universality class

• Could universal terms arise for spin liquids ?
Sq = aqN�bq + · · · topological order ?

critical spin liquids ??Sq = aqN+?? + · · ·



Part 3 : Relation to entanglement
1. Definitions & differences
2. Testing entanglement Hamiltonian



Participation ≠ entanglement
Participation entropy Entanglement entropy

• Consider full system (in general) • Consider bipartition of the system

• Volume law • Area law

A B

Sq =
1

1� q
ln

X

i

⇢ii Sent
q =

1

1� q
ln
X

i

�q
i

• Characterizes entanglement• Characterizes localization

• Diagonal elements of the density matrix • Eigenvalues of the reduced density matrix

Sent
q / Ld�1Sq / N = Ld

• BUT can be related in some cases

Entanglement entropy of a Rokshar-
Kivelson wave-function in dim. d  = 

participation entropy of a ground-state 
in d-1
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Entanglement Hamiltonian
• Entanglement Hamiltonian lives in A

⇢A ⌘ exp(��entHent(A))
A B

• Useful to understand what is          and its properties (range, gap...)
Hent

• Topological phases: FQH states, topological order, 
topological / Chern insulators

Hent• Li-Haldane conjecture :          characterize edge modes

• Continuous symmetry breaking: Tower-of-states in Hent

• 1d critical states :            determined by CFT
Hent

• In general : Numerical determination of           is very hard ! 
• Usually : comparison of spectra

Hent

• In rare cases,            is known (exactly or pertubatively)  Hent



Testing entanglement Hamiltonian
• Participation spectroscopy cannot find entanglement Hamiltonian, 

but can test educated guess
⇢A ⌘ exp(��entHent(A))

in any basis hi|⇢A|ii ⌘ hi| exp(��entHent(A))|ii {|ii}

Participation spectrum 
of subsystem A in the 
ground-state

Participation spectrum of the (test) 
entanglement Hamiltonian at finite T

• Idea: Measure true participation spectrum of A, compare with the 
one of test entanglement Hamiltonian at some finite temperature

• How to have an educated guess ?  Entanglement Hamiltonian 
should have at finite T the same physics than the subsystem 
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Therefore, using the entanglement Hamiltonian definition of Eq. 30, one can define an

e↵ective PS

✏E

i

= ln Z � ln
⇣
hi| exp(��

e↵

Ĥ
E

)|ii
⌘

, (32)

which has to fulfil for all levels i

✏E

i

= ✏B

i

, (33)

if H
E

is indeed the correct entanglement Hamiltonian and T
e↵

= ��1

e↵

the e↵ective

temperature.

4.1.2. 2d dimerized model In practice we focus on a 2d quantum spin-1

2

dimerized

Heisenberg model defined on a L ⇥ L square lattice (see Fig. 6(b)) by the Hamiltonian

H
dimer

= J
1

X

dimers

~S
i

· ~S
j

+ J
2

X

links

~S
i

· ~S
j

, (34)

with J
1

, J
2

� 0 and where the two terms correspond to the summation over stronger

bonds for columnar dimers and to the summation over the weaker links between these

entities. We will only consider g = J
2

/J
1

 1 here, with g = 1 yielding the isotropic

Heisenberg antiferromagnet on the square lattice. This model has been intensively

studied at zero temperature [68, 69, 70, 71, 72, 73] and exhibits a 2d + 1 O(3) quantum

critical point at g
c

= 0.52370(1)[73] separating a disordered gapped phase for g < g
c

from an antiferromagnetic Néel long-range ordered phase which occurs at g > g
c

, with

a spontaneous breaking of SU(2) symmetry.

We have already discussed SR entropies and PS for such a line shaped subsystem in

Ref. [7] where several results have been obtained for the universal scaling properties of

Sline

1 across the phase diagram 0  g  1 of model Eq. 34. Concerning the PS, ordered

and disordered phases are qualitatively di↵erent, in particular regarding the e↵ective

interaction between ferromagnetic DWs (see also Sec. 3.3). Concretely, these objects

experience a pairwise repulsive interaction which grows linearly with the distance (linear

A

B
a) subsystem Bsubsystem B

J
1

J
2

b)

J
1

J
2

subsystem Bsubsystem B

(a) (b)

L

L

Figure 6. Schematic picture for the chosen line-shaped bipartition. (a) Subsystem B

is a single line of length L embedded in a L ⇥ L torus. (b) The dimerized Heisenberg
lattice model Eq. 34 has thick (red) lines for strong bonds with coupling J

1

and weak
interdimer couplings J

2

 J
1

represented by dotted (black) lines.

Concrete example

• Dimerized 2d Heisenberg Hamiltonian

J2/J1
Jc
2 ⇠ 0.520 1

Dimerized Néel

• What is the entanglement Hamiltonian of a line sub-system ?

→ 1d S=1/2 Hamiltonian with SU(2) symmetry 

→ Must have extensive entropy, therefore finite T

→ Disordered at finite T in the disordered phase, long-
range at finite T in the ordered phase

JSTAT (2014)



Disordered phase Dimerized Néel

• Perturbation theory at small J2 : Hent =
X

i2A

Si.Si+1 �ent = 2J2

• For (slightly) larger J2 : test short-range entanglement Hamiltonian 
Hent = �

X

i,j2A

(�)|i�j|JijSi.Sj Jij = exp(�(|i� j|� 1)/⇠ent)
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4.2.3. Evolution of the entanglement Hamiltonian across the full gapped regime

In order to monitor the evolution of the e↵ective parameters of the entanglement

Hamiltonian for the entire disordered phase 0  J
2

< J
c

= 0.5237 we have scanned

the two-dimensional parameter space ⇠
E

— �
e↵

, where a very large number of PS have

been recorded using QMC simulations of the ⇠-model (Eq. 39) for L = 16 chains. Such

e↵ective PS are then compared to the actual {✏B}
J2 with L = 16 for various values of

J
2

, as displayed in Fig. 8 where color maps of the normalized KL divergences I
1

/S
1

are shown (here S
1

is the Shannon entropy of the line S
1

=
P

i

✏B

i

exp(�✏B

i

) in the

dimerized model). Before the calculation of the KL divergence, we use all translation

symmetries of the lattice in order to improve the quality of the spectra. A detailed

bootstrap analysis reveals that the error bars of relative KL divergences I
1

/S
1

are

typically smaller than 10�6 and can be neglected in this discussion. We clearly see

in Fig. 8 that a small area develops in the diagrams where I
1

/S
1

is extremely small,

with a relative KL divergence between two spectra as small as I
1

/S
1

= 0.001%. The

parameter region with minimal KL divergence where both PS {✏B}
J2 and {✏E}

⇠E ,�e↵
are

almost identical, slowly moves towards the upper right corner of the parameter space

when J
2

increases while at the same time, its size gradually shrinks to zero. For instance,

in the last panel (bottom right) of Fig. 8 for which the inter-dimer coupling is beyond

the critical point J
c

= 0.5237, the very bright region has disappeared (cf. isodivergence

lines) which signals that the ⇠-model is not anymore appropriate as an entanglement
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multiplicity

Figure 7. Comparison of participation spectra of the line subsystem for J
2

= 0.3 and
L = 16 with the e↵ective models. For each |Sz| sector, two spectra are displayed (the
left one corresponds to the line subsystem, the right to the e↵ective model). On the left
panel a), the e↵ective model is the nearest-neighbor only spin chain model (⇠E = 0) at
�

e↵

= 0.6. On the right panel b), it is the improved e↵ective model with ⇠E = 0.4 and
�

e↵

= 0.65. Errorbars are smaller than the linewidth and the di↵erent colors code for
the di↵erent multiplicities of the basis states.

True Participation 
spectrum

Test 
Participation 
spectrum

n.n. Heisenberg short-range



Finding optimal test Hamiltonian
• Want to compare two probability sets (two participation spectra)

 Small if participation spectra similar, large if not

• Kullback-Leibler divergence
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confinement) in the Néel regime while the confinement is much weaker, and short-ranged,

in the gapped phase, with a deconfinement occurring above a finite distance controlled

by the finite correlation length of the disordered phase.

In the following we want to address the question of which e↵ective entanglement

Hamitonian correctly describes the entire PS, trying to satisfy Eq. 33, across the phase

diagram of the dimerized antiferromagnetic model Eq. 34. Our approach will consist in

trying to compare di↵erent possible entanglement Hamiltonians, which are motivated by

symmetry, perturbative arguments in the limit of small g, and also by the fact that they

should display antiferromagnetic ordering at the e↵ective temperature T
e↵

for g > g
c

.

4.1.3. Quantitative approach to compare two spectra: Rényi and Kullback-Leibler

divergences For a quantitative comparison between the PS {✏B

i

} of subsystem B and

{✏E

i

} of the e↵ective entanglement Hamiltonian, it is necessary to introduce a measure

of distance between two such PS. This question is also strongly relevant for the ES, for

which the method presented here is also directly applicable. The comparison of two

PS translates mathematically to the problem of comparing two (in this case discrete)

probability distributions P and Q. Rényi introduced the Rényi divergence of order q

I
q

(Q|P ) =
1

1 � q
ln

 
X

i

Qq

i

P q�1

i

!
, (35)

a quantity representing “the information of order q obtained if the distribution P is

replaced by the distribution Q”[74]. Clearly, I
q

(Q|P ) vanishes if the two distributions

are identical. As for the case of the Rényi entropies, the Rényi divergence reduces to

the classical result by Kullback and Leibler (KL)[75] in the limit of q ! 1:

I
1

(Q|P ) =
X

i

Q
i

ln
Q

i

P
i

. (36)

Let us emphasize the quantitative information brought by KL and Rényi

divergences which compare the two spectra state by state (including possible

multiplicities), which contrasts with the qualitative information gained by a visual

comparison of spectra. In the following analysis, we will display mostly results for

I
1

({✏B}|{✏E}) which allows to compare PS across their entire range, as opposed to I
q�1

which increases the weight in the low “pseudo-energy” part (corresponding to higher

probabilities). However, it is important to emphasize that we always check that the

analysis remains stable under variations of q.

For a reliable comparison of Rényi divergences for di↵erent model parameters and in

particular system sizes, we find that it is useful to consider the relative Rényi divergences

I
q

(Q|P )

S
q

(Q)
. (37)

This quantity denotes the relative information gain if the distribution P is replaced by

Q with respect to the information contained in Q.
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Hamiltonian.

The fact that ⇠
E

and �
e↵

both increase with J
2

can be qualitatively understood

as follows. When J
2

increases in the dimerized system, antiferromagnetic correlations

build up over an increasing range and in the same time, the finite energy gap decreases.

We therefore expect the coupling range in H
E

to increase (⇠
E

grows) and the e↵ective

temperature 1/�
e↵

to decrease when J
2

increases. More quantitatively, the first order

perturbative result (Eq. 38) gives �
e↵

= 2J
2

, as nicely checked in Fig. 13(b) where the

optimal e↵ective inverse temperature is plotted against J
2

. Interestingly, we see that the

first order perturbative result gives a very good description in the full gapped regime,

and remarkably, the e↵ective temperature remains finite when J
c

is approached. We

will return to this in Sec. 4.3.3.

The exponential form of the interactions in the ⇠-model Eq. 39 can be simply

understood following Ref. [77]. Indeed, couplings at distance r > 1 are generated at

r-th order in perturbation theory, and are proportional to (J
2

)r = exp(�r| ln J
2

|) if

J
2

⌧ 1. Therefore, in the small J
2

limit we expect the following behavior for the

entanglement length

⇠
E

/ � 1

ln J
2

. (40)

Figure 8. Relative KL divergence I
1

/S
1

of the line shaped subsystem spectrum and
the e↵ective short range Hamiltonian (⇠-model) for di↵erent inverse temperatures �

e↵

and ranges ⇠E of the interaction. Here L = 16. As J
2

approaches the phase transition,
the range of the e↵ective interaction and the inverse e↵ective temperature both slowly
increase.
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Figure 13. (a) Comparison of the normalized KL divergence I
1

/S
1

given in permils
of the line shaped subsystem spectrum and the e↵ective Hamiltonians for the optimal
parameter set as a function of J

2

. Errorbars from a bootstrap analysis for I
1

/S
1

are typically smaller than 10�6, however due to the finite grid in parameter space, the
uncertainty might be higher as the real minimum might lie between our sampled points.
(b) E↵ective inverse temperature of the di↵erent models. (c) Optimal parameters of
the di↵erent models.

5. Conclusions

The analysis presented in the last part of this paper (Sec. 4), shows the usefulness of

studying participation spectra for understanding which entanglement Hamiltonian can

emerge at the boundary of a physical system cut by a bipartition. While this approach

cannot provide per se the entanglement Hamiltonian, it allows to rapidly test whether

a physically-motivated ansatz entanglement model correctly describes the subsystem

physics at play. An interesting aspect is that e↵ects of the entanglement temperature

can directly be considered in this approach, which is clearly di↵erent from an analysis

based on solely the (low-lying) levels of the entanglement spectrum. In addition, we

also introduced in Sec. 4.1.3 the Kullback-Leibler and Rényi divergences which provide

a quantitative way (a number) to characterize how close a physical (entanglement or

participation) spectrum is from the one of a reference system. This will certainly be

useful for methods which provide a direct access to entanglement spectra. Note that

a visual inspection of spectra is easily misguided as di↵erent states may have di↵erent

multiplicities and the representation in the form of spectra usually does not distinguish

the corresponding states. Both problems are easily solved by the introduction of KL

and Rényi divergences. Finally, simple arguments (Sec. 3.1) based on the existence of

a gap in the PS allow to provide an exact proof for the existence of a gap in the ES of

Rokshar-Kivelson wave-functions.

Dimerized

Final results: «Best» entanglement Hamiltonian

Néel

NB: 4+ spins interactions neglected 
but likely in Néel phase

Jc
2 ⇠ 0.52 J2/J1

JSTAT (2014)

Long-range + 
power-law

Jij = ⇤/L+ |i� j|�3

LRO Spin-waves ! / k

Néel-ordered phase

Short-range

Jij = exp(�(|i� j|� 1)/⇠ent)

Disordered phase

Power-law ?
Jij = |i� j|�↵

Quantum critical point



Conclusions & outlooks

• Message 2 : QMC is well suited when wave-function is 
“reasonably” localized.

• Message 1 : Universality sits in subleading terms of 
participation entropies

‣ Extension of localization at finite temperature is possible 
(many-body localization ?)

‣ Check universality for different phases of matter 
( topological phases ?, critical spin liquids ?)

• Outlooks :

• Message 3 : In some cases, knowledge of participation entropy 
helps in understanding / measuring entanglement entropy


